Reduced Emotion-Specific Neural Response to Faces Relates to Impaired Emotion Recognition in Adults with Autism and Typical Development

E. Gabriel, E. Cummings, A. Bagdasarow, C. Carlos, S. Kala, A. Naples, J. Wolf, J. Foss-Feig, A. Anticevic, A. Srirahi, & J. McPartland
McPartland Lab, Yale Child Study Center

Background

- Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication.
- Difficulty interpreting emotional faces is a characteristic of ASD influencing day-to-day social interactions, making it important to identify its neural correlates.
- The Reading the Mind in the Eyes Test (RMET) assesses ability to infer mental and emotional states of others.
- Past studies have identified delayed latency of N170, a face-sensitive event related potential (ERP), in individuals with ASD compared to individuals with typical development (TD) (McPartland et al., 2004).
- There is a lack of research examining emotion-specific variance in N170 latency and how this variance may contribute to common ASD symptomatology, specifically impaired emotion recognition.

Objective

To investigate how neural response to emotional faces relates to emotion recognition in individuals with and without ASD.

PARTICIPANT DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Diagnostic Group</th>
<th>N</th>
<th>Sex (M/F)</th>
<th>Mean Age (Range)</th>
<th>Mean WASI-BI (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>20</td>
<td>12/8</td>
<td>24.70 (18-44)</td>
<td>105.23 (70-142)</td>
</tr>
<tr>
<td>DNM</td>
<td>12</td>
<td>9/3</td>
<td>24.94 (18-40)</td>
<td>102.25 (77-120)</td>
</tr>
</tbody>
</table>

Table 1. Participant demographic data. DNM did not meet traditional research standards of ASD. Diagnostic groups did not differ significantly in age or IQ (p>0.05)

BEHAVIORAL DATA

ASD diagnoses were confirmed via the Autism Diagnostic Observation Schedule (ADOS-2) and clinician endorsement of DSM-5 criteria for ASD.

TRIAL STRUCTURE

- Crosshair followed by a static face with a neutral expression.
- Faces changed expression from neutral to happy or fearful after 500 ms of fixation (Figure 1).

RESULTS

- RMET raw scores across diagnostic groups ranged from 11 to 34 (M=26.54, SD=4.83; Figure 3).

STATISTICAL ANALYSIS

- Data was compared across diagnostic groups to increase the variance of RMET scores in the sample; the goal was to look at a range of RMET scores independent of diagnosis in an RDoC (Research Domain Criteria) framework.
- N170 latency was submitted to a 2 (condition: fearful, happy) x RMET score (continuous) general linear model.
- RMET scores were Z-transformed into a continuous variable.
- We compared high performers to low performers, where high performers scored 1 standard deviation above the mean, while low performers scored 1 standard deviation below the mean.

CONCLUSIONS

- These results suggest that high RMET performance is associated with neural discrimination between fearful and happy faces, as evidenced by differences in N170 latency between emotions; low RMET performance is associated with similar N170 latency for fearful and happy faces.
- These data indicate that differences in N170 latency between happy and fearful faces may help to identify adults with autism who have difficulty recognizing emotions.
- Future research should examine variance in N170 latency to different emotions before and after interventions that aim to improve emotion recognition skills to determine whether emotion-specific N170 latency may be an effective biomarker for specific treatments.

Acknowledgements

McPartland Lab, Yale Child Study Center, New Haven, CT (mcp-lab.org)

Funding sources: NIMH R01 MH103733 (McPartland), NIMH R21 MH104330 (McPartland), Autism Speaks Translational Postdoctoral Fellowship (Naples), Autism Science Foundation 101-1464 (McPartland), Patrício Trust; 025260 (McPartland); NIMH R01MH103733 (McPartland), NARSAD Young Investigator Award (McPartland), Autism Speaks 101-1464-02 (McPartland), STSM Grant Number USA 05241301 (McPartland).