# **Decoding the temporal dynamics of face-specific neural representations in autism: Results from the Autism Biomarkers Consortium for Clinical Trials (ABC-CT)**

## Jason W. Griffin<sup>1</sup>, Alan H. Gerber<sup>1</sup>, Susan Faja<sup>2</sup>, Shafali Jeste<sup>3</sup>, Natalia Kleinhans<sup>4,5</sup>, Geraldine Dawson<sup>6</sup>, Adam Naples<sup>1</sup>, April Levin<sup>7</sup>, Sara Jane Webb<sup>8,9</sup>, Frederick Shic<sup>9,10</sup>, Catherine Sugar<sup>11</sup>, James Dziura<sup>12</sup>, and James C. McPartland<sup>1,13</sup> for the Autism Biomarkers Consortium for Clinical Trials

<sup>1</sup>Yale Child Study Center, Yale University School of Medicine; <sup>2</sup>Department of Pediatrics, Boston Children's Hospital; <sup>3</sup>Department of Pediatrics, Children's Hospital Los Angeles; <sup>4</sup>Department of Radiology, University of Washington School of Medicine; <sup>5</sup>Center On Human Development and Disability, University of Washington; <sup>6</sup>Duke Center for Autism and Brain Development, Duke University; <sup>7</sup>Department of Neurology, Boston Children's Hospital; <sup>8</sup>Department of Psychiatry and Behavioral Science, University of Washington School of Medicine; <sup>9</sup>Center for Child Health, Behavior, and Development, Seattle Children's Research Institute; <sup>10</sup>Department of General Pediatrics, University of Washington School of Medicine; <sup>11</sup>Department of Biostatistics, University of California Los Angeles; <sup>12</sup>Emergency Medicine, Yale University School of Medicine; <sup>13</sup>Center for Brain and Mind Health, Yale University School of Medicine

## Objective

## Multivariate Pattern Analysis (MVPA) Background 6 128 categories (upright faces, houses) 10-trial averages; 5-fold validation Electrode 1 Method Results Autistic children show less distinct faceselective neural representations; Persists across time House Face Inverted Neurotypical 80% – 10-11 8-9 6-7 urac 70% al (NT) 60% coding [6-11] 50% eC 55) 40%·

identity, emotion), and orientation-selectivity in autism<sup>1,3</sup>

distinct for the visual processing system to discriminate

## **Goal 1:** Characterize how face-selective neural representations unfold across time in autism **Goal 2:** Evaluate developmental group differences in face-selective neural representation in autism Autism impacts face-specific functional brain development and is associated with difficulty in face perception and recognition<sup>1,2</sup> Reduced social input reduces neural specialization for object categorization (i.e., faces, houses), within-class discrimination (e.g., Reduced face recognition may result from neural representations – the specific patterns of scalp signal triggered by a stimuli – that are less Autism Biomarkers Consortium for Clinical Trials (ABC-CT)<sup>4</sup> Large (*N* = 399), multi-site study evaluating multiple electroencephalography (e.g., resting state, faces, visual evoked potentials) and eye-tracking assays in autistic and neurotypical children across multiple time points (Baseline, 6weeks, 24 weeks) **Faces EEG Assay** 216 Trials (72 per category) 3 unique exemplars 500ms exposure 128 channel EEG recording



|                       | Autistic            | Neurotypica   |
|-----------------------|---------------------|---------------|
| Ν                     | 280                 | 119           |
| % Male                | 76.8%               | 69.7%         |
| Age (years)           | 8.55 (1.64)[6 - 11] | 8.51 (1.61) [ |
| Full Scale IQ         | 96.58 (18.11)       | 115.12 (12.5  |
| SRS-2 Total           | 73.54 (10.92)       | 42.57 (4.66)  |
| ADOS-2 CSS            | 7.65 (1.77)         | 1.58 (0.87)   |
| Note Mean (SD)[Bange] |                     |               |

Note. Mean (SD)[hange

## Method

