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Summary 

Microarrays have emerged as powerful tools allowing investigators to assess the expression of 

thousands of genes in different tissues and organisms. Statistical treatment of the resulting data 

remains a substantial challenge. Investigators using microarray expression studies may wish to 

answer questions about the statistical significance of differences in expression of any of the genes 

under study, avoiding false positive and false negative results.  We have developed a sequence of 

procedures involving finite mixture modeling and bootstrap inference to address these issues in 

studies involving many thousands of genes. We illustrate the use of these techniques with a dataset 

involving calorically restricted mice. 
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1. INTRODUCTION 

 A relatively recent addition to the armamentarium of investigators studying the genetics, 

molecular biology, and physiology of living organisms is the use of microarrays. This technique 

enables simultaneous and rapid assessment of the expression of literally thousands of genes or 

ESTs1 in different tissues, different groups of experimental animals, humans, or other organisms, or 

organisms measured under different circumstances (Kahn, et al., 1999). After the gene expression is 

measured, one may try to identify those genes for which there is differential expression across groups, 

and then interpret the results.  

In brief, there are two broad classes of microarrays for gene expression measurement. One class, 

cDNA arrays, apply spots of cDNA’s to glass slides. One can than estimate mRNA by examining 

hybridization to the cDNA spots. These arrays, though somewhat easier to develop, may not be as 

specific in their measurement properties as the second class of arrays, namely oligonucleotide arrays.  

Oligonucleotide arrays place many thousands of gene-specific oligonucleotides in silico and allow one 

to examine mRNA binding to the oligonucleotides after correcting for estimates of background binding 

(‘noise’). For more details, see Weindruch et al. (2001) and references therein. 

An example of this approach can be found in Lee et al. (1999) who studied differences in gene 

expression in 6,347 genes in three groups of mice: (a) old mice; (b) young mice; and (c) old mice that 

had their caloric intake restricted since weaning. Each group consisted of three mice. Using a criterion 

of a two-fold increase in gene expression in the group exhibiting higher expression, Lee et al. (1999) 

identified 113 genes that appeared to exhibit differential expression between groups a and b. The two-

fold criteria is admittedly somewhat arbitrary and Lee et al. (1999) did not provide any formal statistical 

information regarding significance levels, confidence intervals around effect size estimates, or related 

statistics. This is not surprising since detailed discussions of how to approach such data from a 

                                                

1 “Expressed sequence tag (EST): A unique stretch of DNA within a coding region of a gene that 
is useful for identifying full-length genes and serves as a landmark for mapping. An EST is a sequence 
tagged site (STS) derived from cDNA.”according to Medterms Dictionary 
(http://www.medterms.com/). 
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statistical point of view are notably absent from the literature and the approach used by Lee et al. 

(1999) appears to be state of the art (see White et al. (1999) for a similar example taking a similar 

statistical approach).   

Investigators, of course, may wish to answer the question “Is the difference in expression for the 

such-and-such gene statistically significant?” However, there are number of other questions that are at 

least equally important and interesting including: (Q1)Is there statistically significant evidence that any 

of the genes under study exhibit a difference in expression across the groups?; (Q2)What is the best 

estimate of the number of genes for which there is a true difference in gene expression?; (Q3)What is 

the confidence interval around that estimate?; (Q4)If we set some threshold above which we declare 

results for a particular gene ‘interesting’ and worthy of follow-up study, what proportion of those genes 

are likely to be genes for which there is a real difference in expression and what proportion are likely to 

be false leads?; (Q5)What proportion of those genes not declared ‘interesting’ are likely to be genes 

for which there is a real difference in expression (i.e., misses or false negatives)? 

A key challenge to the development of statistical methods for microarray data is the fact that the 

sample size (e.g., the number of mice) is often small but the number of measurements per item (the 

number of genes) is very large.   The expression levels for an individual gene or EST may not be 

independent.  If they were, statistical models could be developed that model gene expression levels as 

independent measurements.  The absence of such models limits one’s ability to answer many 

important questions regarding the distribution of differential gene expression levels across two or more 

groups.   

The purpose of this paper is to present methods for addressing questions above. We begin with 

only two very general assumptions and another specific assumption that we later relax.  The two 

general assumptions are: 1) For each gene (EST), the measurements of gene expression have a finite 

population mean and variance; 2) For each gene under study, there is a measure of expression 

available for each case and this measure has sufficient reliability and validity to be useful (we use the 

word ‘case’ generically to refer to any organism or tissue on which expression is measured). The 

extent to which any particular measure of gene expression meets the second criterion is an important 

question, but beyond the scope of this paper.  The more specific assumption that we later relax is that 

differences in gene expression levels across two groups are independent.  This allows the 
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development of a statistical model that will facilitate answers to many of the above questions (and 

perhaps additional questions).   After presenting the methodology, we then illustrate it using a data 

example.   A simulation study evaluates the performance of the methods, assesses the effect that 

“dependence” has on the interpretation of results from the model, and provides a mechanism to allow 

for non-independence.  Finally, we provide a discussion and description of future work. 

 

2. Methods  

Suppose that N = 2n cases are randomly divided into two groups of size n.2 We assume equal 

numbers in each group to remain consistent with the data example (Section 3) and simulation (Section 

4), but it is not required.  Suppose that the investigator uses some statistical test to produce a p-value 

for testing the null hypothesis Ho: there is no difference in gene expression between the two groups 

for the ith gene, i = 1, …, k.  Ordinary frequentist significance testing and estimation procedures will 

provide reasonable answers to all of the key questions framed in the introduction only in the unrealistic 

event that power is maintained at nearly perfect (e.g., .99) levels for the smallest effect of interest 

(e.g., 1% of the variance) and the experimentwise type 1 error rate is maintained at some low level 

(e.g., .05) overall.  However, as stated above, the number of simultaneous tests can be large with 

microarray data. For example, if k=6,347 as in Lee et al. (1999), the per test α required is ~0.0000081 

to keep the overall experiment –wide type I error to be 0.05. In order to have ~99% power to detect a 

group difference of 0.2 standard deviations (or 1% of the variance) in gene expression at this α level, 

would require approximately 2,400 cases per group.  Such a large number of cases is currently 

                                                

2 We discuss two groups for simplicity without loss of generality. However, the rationale can be 

applied to any number of groups by extension to ANOVA and other tests for differences among 

multiple groups.  Similarly, the rationale can be extended to allow for tests of genes whose expression 

changes over time as long as one can construct a test for changes over time (i.e., a paired t-test if 

there are only two time points) that yields valid p-values at the level of the individual gene. 
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unrealistic for microarray data.  We therefore propose a set of alternative procedures designed to 

circumvent this problem and provide answers to questions of interest. This set of procedures is based 

on the idea that when many statistical tests are conducted, one obtains a distribution of test statistics 

and corresponding p-values and that there is information available in this distribution that can be 

exploited (Thomas et al., 1985; Devlin, 1999; Drigalenko, 1997; Parker & Rothenberg, 1988). 

 

2.1. A Mixture-Model Approach 

Assuming independence of gene expression levels across genes, under the null hypothesis, the 

distribution of p-values is uniform on the interval [0,1] regardless of the statistical test used (as long as 

that test is valid) and regardless of the sample size (Donahue, 1999). In contrast, under the alternative 

hypothesis, the distribution of p-values will tend to cluster closer to zero than to one (Sackrowitz & 

Samuel-Cahn, 1999). Thus, by referring to the entire distribution of p-values obtained in the sample, 

we can answer the question (Q1) by conducting an omnibus test of whether the observed distribution 

of p-values is significantly different from a uniform distribution. A useful way in the present context is 

through the use of finite mixture models (Titterington, 1990). Other approaches such as the 

Kolmogorov-Smirnov test (Conover 1999, chapter 6) are also possible but do not address the 

additional questions of interest as effectively as does the mixture model approach.  

Parker and Rothenberg (1998) point out that any distribution on the interval [0,1] can be modeled 

as a mixture of V separate component distributions where the jth component (j=1 to V) is a beta 

distribution with parameters rj and sj. The probability density function (PDF) for the beta distribution is: 
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exclusively. The beta distribution is chosen because of its great flexibility in modeling any shaped 

distribution on the interval [0,1]; a uniform distribution a special form of the beta distribution when 

r=s=1. The log of the likelihood for the collection of k p-values from a model with v+1 components can 

then be expressed as: 
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where xi is the p-value for the ith test, λo is the probability that a randomly chosen test from the 

collection of tests is for a gene for which there is no population difference in gene expression (i.e., a 

test of a true null hypothesis), and λ j is the probability that a randomly chosen test from the collection 

of tests is for a gene from the jth component distribution for which there is a true population difference 

in gene expression (i.e., a test of a false null hypothesis).  The sum from 1 to k in the above log-

likelihood expression results from our independence assumption.  Without this assumption, the 

expression would be intractable.  If there is statistically significant evidence for there being more than 

the one uniform component, that is, if for some model with v greater than zero, the accompanying λ j 

are not all zero, then the global null hypothesis can be rejected and one can conclude that there is 

statistically significant evidence that one or more of the genes under study exhibit a difference in 

expression across the groups.  

For any given model with v components, maximum likelihood estimates (MLE’s) of the parameters 

λ j, rj, and sj, can be obtained by iteratively finding those values that maximize the log-likelihood 

expression above subject to the constraint that ∑
=

+=
v

j
j

1
01 λλ  and 0 ≤ λ j ≤ 1 for all λ j.  The log-

likelihood evaluated at the MLE’s using a model with v components beyond the uniform distribution (v 

= 1, 2, … ) will be denoted by Lv.  The fit of models with v components can be compared to the fit of 

models with v -1 components by means of a statistic Q, where Q= 2(Lv – Lv-1). Unfortunately, in the 

case of mixture modeling, the statistic Q cannot be assumed to be distributed as χ2 with 3 df under the 

null hypothesis as might be expected (Parker & Rothenberg, 1988; Schork, 1992; Schork et al., 1996). 

However, Schork (1992) and others have shown that the so-called “parametric bootstrap” can provide 

valid significance tests and confidence intervals in the mixture model context.  

 

2.2 Testing for the number of components 

 In constructing a bootstrap approach to significance testing, it is necessary to take two things 

into account. First, the expectation of the statistic Q is not known under the null hypothesis (Schork et 

al., 1996; McLachlan, 1987). Second, the magnitude of gene expression at various genes may not be 

(indeed seems unlikely to be) independent. The first issue necessitates use of some variant of the so-

called “parametric bootstrap” (Schork, 1992; McLachlan, 1987; Chernick, 1999) in which W bootstrap 
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samples are generated from a distribution under a presumed null hypothesis and from these W 

samples, one derives a critical value of the test statistics as that value of Q corresponding to the (1-

α)W order statistic of the collection of W values of Q.  

The second issue is that of the potential non-independence of expression across genes. This 

implies that the p-values to which the mixture models will be fitted will not necessarily be independent. 

As Horowitz (in press) points out, bootstrap inference can be conducted with dependent data provided 

that the bootstrap samples are generated by a process that preserves the dependency in the data. 

The typical approach to bootstrapping in the mixture model context would take bootstrap samples 

directly from the data to which the mixtures are fitted, in this case, the p-values. However, once the p-

values are calculated and the data on individual cases put aside, the information about the 

dependency in the data is lost. An alternative would be to resample from n cases in each group (with 

replacement) so that the correlation structure of the data would be preserved in the resampling 

process.   It is unclear, however, that resampling n cases in each group would accurately reflect the 

true sampling variability of parameter estimates from the mixture model, which would have been fitted 

with k observations. So we proceed with the former approach, that is, resampling from the distribution 

of k p-values and later, in a simulation study, we assess the sensitivity of calculated results to various 

levels of dependence among measures of gene expression.   

The following procedure is proposed for significance testing of a model with v components 

compared to a model with v -1 components. 

1. Fit the models with v -1 components and v components to the data and calculate the statistic Q 

(begin with v = 1, and note that a model with 0 components is a uniform distribution). 

2. Use parameter estimates from a model with v -1 components to create a parametric mixture 

model.  This is an assumed  model under the null hypothesis. 

3. Create W bootstrap samples by selecting k observations from the model from step 2. 

4. For each of the W bootstrap samples, fit the models with v components and v -1 components 

to the sample, and calculate the statistic Qw (w=1 to W). 

5. Define the critical value, Qcrit, as the (1-α)W order statistic of Qw. 

6. If the observed value of Q exceeds Qcrit, then one can reject the null hypothesis at level α. 

From this procedure, one can determine the gain in the likelihood associated with adding one or 
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more beta components, and a p-value of the hypothesis test, Ho: there are v - 1 beta components 

versus Ha: there are v components, can be calculated.   

Comparing a model with v=1 to a reduced (null) model with λ1 = 0, allows one to answer the first 

question (Q1). That is, if the null hypothesis that λ1 = 0 is rejected, then there is statistically significant 

evidence that the expression of one or more genes does differ between the groups.  One can then 

successively compare models with greater values of v eventually selecting the “best” model.  Once the 

best (and simplest) model is selected,  the remaining questions (Q2) – (Q5) can be answered.  

 

2.3 Interpreting the mixture model 

The best estimate of the number of genes for which there is a true difference in gene expression is 

simply k(1- 0λ̂ ), where 0λ̂  is the maximum likelihood estimate of λ0. A 100(1-α)% confidence interval 

can be placed around 0λ̂  by usual bootstrap methods (cf. Efron, 1982) and/or the standard error of  

0λ̂   can be estimated via the bootstrap or by numerically obtaining the Fisher information matrix 

(Lehman, 1991 (section 2.7)).    

Other questions can also be considered.  If we set some threshold (T) below which results (e.g., p-

values for differences in gene expression) for particular genes are declared ‘interesting’ and worthy of 

follow-up study, the proportion of those genes that are likely to be genes for which there is a real 

difference in expression can be written as: 
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Similarly, the proportion of those genes not declared ‘interesting’ that are likely to be genes for 
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which there is a real difference in expression (i.e., misses or false negatives) can be written as: 
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Once again, confidence intervals around these estimates can be calculated using a bootstrap 

technique. The value of T can be adjusted up or down to achieve a balance of minimizing the false 

positive rate (i.e., maximizing specificity) and minimizing the false negative rate (i.e., maximizing 

sensitivity) in the manner of receiver operating characteristic (ROC) methodology (Hanley, 1989). 

 

2.4 Remarks on Small Samples.  

Very small sample sizes present two potential complications. First, parametric statistical tests of the 

differences between the mean levels of gene expression for each of the genes will be more sensitive 

to assumed distributional forms of the expression data, and resulting p-values may not be accurate.  

This could be resolved by use of an appropriate non-parametric test at the first stage when the 

differences between the mean levels of gene expression for each of the genes are tested. Here we 

would again recommend use of a bootstrap test rather than a permutation test or traditional non-

parametric test such as the Mann-Whitney U or Kruskal-Wallace tests because, unlike these latter 

tests, the bootstrap need not assume homogeneity of variance (Good, 1999) and is therefore less 

restrictive.  If one chooses the bootstrap as an alternative method to “nonparametrically” produce the 

distribution of p-values, a second complication arises when resampling from very few cases, that is, 

the maximum number of different bootstrap samples is only 
( ) 2

max )!1(!
!12








−
−=

nn
nW  (Horowitz, in 

press). If n is very small (e.g., n<5), p-values will be affected by the discreteness of the bootstrapped 

distribution and there will be a limited number of “distinct” p-values among the k reported p-values.  

The resulting mixture model that would be fitted to such data might be unreliable since the mixture 

model approach attempts to fit a continuous model to the data.  An alternative could employ a 

smoothed bootstrap (Chernick, 1999) to produce the k p-values.  This is a subject for further research.   
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3.  An Illustrative Example 

To illustrate the methods that we are proposing, we analyze data described by Lee et al. (2000). 

Two groups of mice were considered: each group contains three mice3. A distribution of 6347 t-

distribution based p-values was obtained. Each p-value was obtained from the test, for a specified 

gene, Ho: there is no difference in mean gene expression versus Ha: there is a difference in mean 

gene expression.  

 A uniform distribution (v=0), a mixture of a uniform and one beta distribution (v=1) and a mixture of 

a uniform and two beta distributions were fitted to the distribution of p-values using numerical routines 

in S-Plus. The graphical display is shown in Figure 1. Figure 1 suggests that p-values are clustering 

toward smaller values than would be expected if Ho was true. The two mixture models using the beta 

distributions (a uniform plus 1 beta vs a uniform plus 2 betas) do not appear very different. The next 

step is to determine some best model to represent the distribution of p-values, keeping in mind that 

the primary purpose is to model the peak near zero. To proceed with a statistical test, 6347 p-values 

were generated from a uniform distribution on the interval 0 to 1 and a mixture model with a uniform 

component and one beta distribution was fit to the simulated data and L1 was recorded. This was done 

500 times. In 389 of the 500 simulations, the algorithm correctly identified the uniform distribution, that 

is, it estimated λo to be one. In the remaining 111 simulations, a beta distribution component was 

identified that was very close to being a uniform distribution (i.e., r1 and s1 were close to one). The 

maximum value of L1 from the 500 simulations was 8.8. Thus, noting that L0 is equal to zero, the 

critical statistic Qcrit would be estimated less than 2(8.8) = 17.6. The value of the maximum log-

likelihood, L1, from fitting the mixture model to the actual data was 454.2 so the observed value of Q 

would be twice 454.2 or 908.4 since, again, L0 = 0. An estimated p-value for the test of Ho: the 

distribution is uniform versus Ha: the distribution is not uniform, would be < 0.005. This p-value is 

“estimated” since all possible bootstrap samples were not taken.  

Of course, it must be recognized that the critical value used in the example was based on 

                                                

3 We use t-tests for illustration, but any test producing a valid p-value can be used.  The selection 

of the test may depend on distributional assumptions and/or sample size. 
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simulations under the null hypothesis when all genes were independent. In a small number of 

preliminary simulations under the null hypothesis with data from genes with different degrees of 

dependency (data not shown) the critical values necessary for significance were, not surprisingly, 

higher. Thus, to derive more appropriate critical values with applied data, it might be preferable to 

generate the initial simulated critical values from a dataset with the same covariance structure as the 

observed data. This is something currently under investigation, but the computational burden of 

estimating the 6,347 x 6,347 covariance matrix among the genes and conducting simulations 

therewith is challenging. However, in simulations, to be described in the next section, with relatively 

strong dependencies in the block diagonal matrices (i.e., pairwise correlations equal to 0.8), we did not  

observe a Q-statistic larger than 666 (with n = 3), with most values being well below 150. In contrast, 

the cortex data yield a Q statistic of 908.4 suggesting that the significance of the omnibus test is not in 

doubt.  Moreover, we computed the (6347(6347-1))/2 pairwise correlations in the actual data after 

centering the group means around zero. The average correlation was 0.001, the average squared 

correlation was 0.266, and the average absolute correlation was 0.440. We then computed the same 

statistics on 1000 samples of simulated data from 6 mice with 6347 genes for which expression values 

were simulated from a multivariate normal distribution with the covariance matrix being a 6347x6347 

identity matrix; that is with no dependence. Across all simulated data sets, the average correlation was 

0.000, the average squared correlation was 0.227, and the average absolute correlation was 0.383. 

This indicates that our observed data appears rather like data for which there is little dependency once 

again suggesting that the significance of the omnibus test is not in doubt. 

  As another illustration, we obtained a simulated sampling distribution of L1 by drawing 500 

bootstrapped samples from the original distribution of p-value. For each sample we fit the mixture 

model with one uniform and one beta distribution and computed L1. This distribution is shown in Figure 

2.  The horizontal dotted line at 458 is the value of L2, the maximum log-likelihood when fitting a 

uniform and “two” beta distributions to the actual data. Figure 2 suggests  that fitting a second beta 

distribution does little to increase the value of the likelihood since the value of 458 is well within the 

sampling distribution of L1. A p-value of the test of Ho: one beta distribution suffices versus Ha: two 

beta distributions are needed can be approximated by calculating how many values of the simulated 

sampling distribution fall equal to or above 458, the value of the maximum log-likelihood when using 
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two beta distributions. This p-value is 0.476. We conclude that a mixture of a uniform and one beta 

distribution is the best model for the distribution of the 6347 p-values. We cannot say that more than 

one beta distribution in addition to the uniform will never be required to adequately fit a dataset, but in 

our experience with multiple datasets, we have yet to need more that one beta beyond the uniform. 

 Fitting this model results in MLE’s for λ0, r1, and s1 of 0.712, 0.775, and 3.862, respectively. The 

bootstrap was then implemented by resampling from the distribution of p-values. Simulated sampling 

distributions of statistics of interest are shown in Figure 3. These distributions represent 500 statistics 

obtained from the bootstrap procedure. The standard deviations of the distribution could be used as 

standard errors of the estimators from the mixture distribution.  Since the sampling distributions 

appear fairly symmetric, approximate 95% confidence intervals could be obtained from the original 

estimate plus/minus two standard deviations. Taking this approach, an approximate 95% confidence 

interval for λ0 is (0.673, 0.751), for r1 it is (0.708, 0.842), and for s1 it is (2.784, 4.940). Any function of 

parameters from the mixture distribution can be estimated using the corresponding statistics that are 

calculated for each bootstrap sample. The validity of point estimates and confidence intervals will 

depend on the effect that correlation among gene expression levels might have on results. This is 

investigated in the next section.  

Given these parameter estimates, our best estimate for the number of genes that have a real 

difference in mean expression across the two groups is, therefore, 6347(1 - .712) = 1828. Suppose we 

believed p-values from the distribution of p-values that are less than 0.10 are interesting and worthy of 

follow-up (the p-values are from a 2-tailed test). The estimated proportion of these genes that are 

likely to be false leads is (0.712 * 0.10)/[0.712 * 0.10 + 0.288 β(0.10, 0.775, 3.862)], where β(a, r, s) is 

the cumulative beta distribution with parameters r and s, evaluated at a. This proportion is 0.356. That 

is, there is about a 36% chance that any randomly selected gene with an ordinary p value less than 

0.10 will be a gene for which there is no real difference. The proportion not declared interesting (using 

an ordinary p-value of 0.10 as the cutoff for interesting) that are likely to be genes for which there is a 

true significant difference in expression is 0.199. Furthermore, the mean of a beta distribution is 

r/(r+s), which in the current example is 0.775/(0.775+3.862) = .167. This implies that even among 

genes for which there is a real difference in expression, we only expect the p-values to be about .17 on 

average. This indicates that, not surprisingly, given the sample size, power is very low with an n of 3 
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per group and conventional significance testing with an alpha level of .05 or smaller would lead to 

many false negatives (i.e., misses). 

Figure 4 displays the posterior probabilities of the 6347 genes along with their corresponding p-

values. As can be seen, as long as the p-value is smaller than about 0.35, there is more than a 50% 

chance that the gene is a gene for which there is a real difference in expression. Thus, if one used the 

unconventionally large alpha level of 0.35 as indicative of genes for which one guessed there was a 

real effect, one would be correct more often than not in this case. 

Finally, we highlight just a few specific genes and show how the mixture model can guide our 

inferences. The gene identified by accession number L06451 was more highly expressed among 

restricted animals and had an ordinary (frequentist) p-value of 0.06 and posterior probability of 0.68. 

Thus, although this gene would not be “significant” at the conventional .05 alpha level, there is still a 

68% chance that it is a gene with a real difference in expression induced by caloric restriction (CR). 

This gene encodes a protein that is homologous to agouti signaling protein (Miller et al., 1993). This 

gene product is believed to be involved in body weight and appetite regulation and it is therefore quite 

plausible that it is affected by CR. As another example, consider the gene identified by accession 

number M74180. This gene had, by Affymetrix’s definition, a “fold-change” of 2.7 (increased 

expression among CR animals) which, while large, was hardly the largest of those reported by Lee et 

al (2000). Nevertheless, this gene had the highest posterior probability (0.95) meaning that there is a 

95% chance (in the Bayesian sense; Savage, 1951) that there is a true difference in gene expression 

for this gene. This gene encodes a protein that is homologous to mouse hepatocyte growth factor-like 

or macrophage stimulating protein (MSP) (Degen et al., 1991). Finally, consider the gene identified by 

accession number W75705 which codes a protein that is over 80% homologous to mouse cyclophilin 

(Hasel & Sutcliffe, 1990). This gene had a “fold-change” of 3.3 (by Affymetrix’s definition; increased 

expression with CR) which many investigators would consider clearly significant (Glynne et al., 2000). 

Nevertheless, we estimate the posterior probability for that gene to be only 0.44 indicating that it is at 

least equally reasonable to guess that, based on these data, this gene is not differentially expressed 

as a function of CR. The reason that our posterior probabilities do not ‘agree’ (i.e., have a 1:1 

correspondence) with the fold-change metric is that the latter does not take the within group variability 

in gene expression into account. That is, fold-change is a measure of magnitude effect (and not 
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necessarily an optimal one) and not a direct measure of strength of evidence for an effect. These 

examples illustrate how the mixture model can guide the interpretation of the overall suite of group 

gene expression differences as well as differences for individual gene expression levels. 

  

4.  Simulation Study 

  To remain consistent with the previous example we use the term “mouse” to refer to a case or an 

experimental unit.  We generated gene expression levels for 2n mice (n mice per experimental group, 

where n = 5, 10, 20, and 40), and k = 3000 genes.  The data for the 2n mice are multivariate normal 

and generated independently from a 3000 dimensional normal distribution.  That is, measurements for 

a mouse are generated from, 

                                                              ( )∑,~ 3000 µNX   

where µ was a constant vector of length 3000 and equal to 10 and Σ = σ2B⊗ I6, B=15001’500 ρ + (1-

ρ)I500, 1500 = (1,1,…,1)’ with length 500, and Im is the m-by-m identity matrix. For the simulations, the 

common variance was σ2 = 4.  We varied ρ over the three values of 0 (independence), 0.4 (moderate 

dependence), 0.8 (strong dependence).  The covariance structure  seems plausible since groups of 

genes are likely to be co-expressed but it is unlikely that a particular gene expression is correlated with 

ALL other genes.  In fact, empirical studies of resulting sample correlation matrices from simulated 

data suggested that even ρ = 0.4 tended to produce higher correlations among gene expressions than 

were present in the actual example data set. We only considered positive values of ρ though a 

negative correlation could also be plausible.    Finally, for 20% of the genes (600 randomly selected 

genes), a true mean difference in expression between the two groups of n mice was incorporated by 

adding d to the gene expression measurements of mice (n+1) through 2n.  So when d > 0, the true 

mean difference in gene expression levels for 20% of the genes is equal to d, and it is zero for the 

other 80% of the genes.  If d = 0, then there is no difference in mean gene expression levels across 

the two groups for any of the 3000 genes.  The ability of the mixture model method to detect a 

distribution of p-values different from a uniform will depend, of course, on the magnitude of d, on n, 

and on ρ.  Our focus with the simulation was to assess the performance of the mixture model for 

modeling the distribution of p-value and to assess the meaningful interpretation of )ˆ1(ˆ
01 λλ −= , the 
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estimated proportion of genes for which there is a true difference in expression.      The following 

cases were considered:  Case 1, ρ = 0.0 and d = 0;  Case 2: ρ = 0.0 and d = 2;  Case 3: ρ = 0.0 and d 

= 4;  Case 4: ρ = 0.4 and d = 0;  Case 5: ρ = 0.4 and d = 2;  Case 6: ρ = 0.4 and d = 4;  Case 7: ρ = 0.8 

and d = 0;  Case 8: ρ = 0.8 and d = 2;  Case 9: ρ = 0.8 and d = 4. For each case, a group size of n = 5, 

10, 20, and 40 were used (Tables 1 – 4, respectively).  In cases 1, 4, and 7, the true λ1 is equal to 0, 

but in all other cases it is equal to 0.2.  We investigated the mixture model procedure by generating 

500 sets of gene expression data, fitting a mixture model to the distribution of p-values using a uniform 

and one beta component, and estimating model parameters.  We then recorded the mean of the 500 

estimated λ1 ( "1λ  in the tables) for each of the nine cases described above and for each group size.  

We also recorded the standard deviation of the 500 values ( "1( )S λ in the tables), and the 5th, 50th, and 

95th percentiles of the value of the log-likelihood, L1.  Then, as a second check of the bootstrap 

method of evaluating standard errors, we bootstrapped the resulting 3000 p-values that were obtained 

from each of the 500 sets of gene expression data.  For each set of 3000 p-values, we took 100 

bootstrapped samples and, for each bootstrap sample, fitted the mixture model.  We then computed 

the bootstrap standard deviation, "*
1( )S λ .  We recorded the mean of the 500 "*

1( )S λ for each of the 

nine cases ( "*
1( )S λ  in the Tables).   

The simulation results (Tables 1 – 4) provide some insight into the performance of the mixture 

model approach.  In Case 1,  the distribution of L1 is very near zero suggesting that the distribution of 

p-values is nearly uniform.  This is true for all group sizes.  However, 1̂λ is not near zero since the 

model often fit a uniform component mixed with a beta distribution that was nearly uniform.  The high 

variability in 1̂λ  can be seen in S( 1̂λ ).  However, Cases 2 and 3 show that for fixed n and as d 

becomes larger, values of 1̂λ  approach the true 0.2 and S( 1̂λ ) becomes smaller.  Also, for fixed d > 0, 

values of 1̂λ  approach the true 0.2 and S( 1̂λ ) becomes smaller as n becomes larger.  Cases 1, 2, and 

3 are differentiated by the location of the distribution of L1.   

Cases 4 – 6, and Cases 7 – 9 show a similar pattern except that the effect of ρ > 0 is apparent.  

However, this effect is less pronounced for larger n.  For small n, d must be sufficiently large for the 
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mixture model to detect a set of genes differentially expressed between two groups.  For example, 

when n = 5 and ρ = 0.4, 1̂λ is close to the true 0.2 with low standard deviation when d = 4, but not 

when d = 2.  However, when n = 20 and ρ = 0.4, 1̂λ is close to the true 0.2 with low standard deviation 

when d is only 2.  When n = 10, 20 or 40, Cases 4 – 6 are differentiated by the location of the 

distribution of L1.  Cases 7 – 9 are differentiated when n = 20 or 40.  When n = 5, there is some 

overlap in the distribution of L1 for Cases 4 – 6 and Cases 7 – 9.  When n = 10, there is overlap for 

Cases 7 – 9.  These results suggest that as n increases, the mixture model will detect a difference in 

mean gene expression between two groups even when there is strong dependence among gene 

expression measurements. 

The bootstrap estimates of standard deviation ( "*
1( )S λ ) appear to estimate the standard deviation 

of 1̂λ  when ρ = 0, but underestimate it when ρ > 0.  This is sensible since the bootstrap operates on a 

fixed distribution of p-values, and variation due to correlation among gene expression is not accounted 

for.   This issue, also discussed in the next section, may be addressed by modifying the bootstrap so 

that correlation among gene expression is maintained in the resampling procedure.   

    The mixture model of interest to this procedure is one that models a peak of the p-value distribution 

that is close to zero. This would imply that the mean of the beta component is less than ½.  This 

condition was difficult to assess and control in the automated simulations that we conducted.  In an 

actual data analysis, one has the added advantage of visually interpreting the distribution of p-values, 

as we had in the earlier data example (Figure 1).  

 

5.  Issues, Future Work, and General Discussion  

      In the present paper, we have developed a set of procedures for analyzing microarray gene 

expression data that are intended to not only take into account but indeed to capitalize on the fact that 

many thousands of genes may be studied. This set of procedures should lead to the ability to answer 

important questions about group or condition differences in gene expression, can be adapted to allow 

for non-normality and heteroscedasticity, and may be used with small sample sizes. Nevertheless, it 

must be emphasized that though these procedures are usable even with small sample sizes, this does 

not justify their use when sample sizes are very small.  Indeed, when very small samples are used, it is 
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likely that for any given threshold for “interestingness” selected either the proportion of misses or the 

proportion of false positives will be undesirably high. In such cases, it may be desirable to use two 

thresholds where genes with scores below one threshold are “ruled out” as uninteresting, genes above 

the higher threshold are declared interesting, and genes between the two thresholds are declared 

indeterminate. This may help to prioritize efforts for future research.   

     In some simulations that we conducted and in analyses of other microarray gene expression data  

sets, we noticed that when there were differences in gene expression across two groups, a single beta  

distribution beyond the uniform captured this difference adequately and that a second beta distribution 

was not needed.  A second beta distribution was only significant in the mixture model under a certain 

type of gene expression data.  This occurred when we simulated gene expression data with a high 

correlation parameter, i.e., ρ = 0.9 (not reported in this paper), and when d > 0.  This high dependency 

between gene expression levels created a bimodal distribution of p-values.  The first beta distribution 

modeled the peak near zero, and the second beta distribution modeled the second peak that occurred, 

typically, between 0.5 and 1.0.  For the 80% of genes that were generated with no difference in mean 

expression between the two groups, the dependency among these genes created a cluster that 

resulted in the second peak.  Furthermore, this second beta distribution took much of the weight off of 

the uniform component, and estimates of λ0  are not interpretable.  This indicates that caution must be  

exercised if using this procedure when the distribution of p-values is clearly multi-modal, or if there is 

only one mode but that mode is not on the left side (nearer to zero) of the distribution.  In such cases, 

the beta distribution is not modeling the genes for which there is a significant difference in expression.   

This could be controlled somewhat by restricting the fitting algorithm to only use beta component(s) 

with a mean less than 0.5  

Much work remains to be done in this area. Future research should evaluate these procedures 

under a variety of circumstances including different types of non-normality and other types of 

correlation among gene expression patterns such as negative correlation among groups of genes.  In 

such endeavors, robust modeling with t-distributions in place of the beta distributions may be useful to 

consider (Peel & McLachlan, 2000). The simulation code that we used was written using the statistical 

package S-Plus, and it can be easily adapted to simulate more complex dependency relationships 

between genes and different values of d. 
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The simulation study focused on the validity of the mixture modeling approach.  Further simulations 

would need to be performed to evaluate other procedures based on the model, such as estimating the 

number of false positives in gene expression data.   

It is likely that the type 1 error rate and the power of a test of a difference in mean gene expression 

levels for a single gene are related to the ability of the mixture model to detect a departure from the 

null hypothesis that the distribution of p-values is not uniform.  This should be investigated (analytically 

and/or through simulation) under varying distributional assumptions.  This could lead to a method to 

determine a recommended sample size (number of cases per group) for which the mixture model 

method would be reliable in estimating the number of genes for which there is a true difference in 

mean expression levels.  The simulation results suggest that the mixture model method improves as 

sample size increases, even in the presence of moderate correlation among gene expression.   

We simulated a sampling distribution of mixture model parameter estimates by bootstrapping from 

the empirical distribution of p-values.  In the simulation, we estimated standard errors of mixture model 

parameter estimates using this bootstrap procedure.  This method of resampling is valid when the p-

values are treated as independent observations.  An alternative procedure would be to resample 

cases (i.e., mice) and recompute the p-values for each bootstrapped sample, and then fit the mixture 

model.  This would preserve the dependency among gene expression patterns.  It is unclear if this 

method would induce the appropriate and valid sampling variability in parameter estimates in the 

mixture model.  This is a topic of ongoing research.  In addition, this alternative resampling approach 

will require modifications when the sample size (i.e., number of mice) is very small since there would 

be a limited number of unique resamples.   

A popular approach to the analysis of microarray gene expression data is to cluster the genes into 

subsets of co-expressed genes. Using such approaches might yield clusters of genes that, across 

clusters, are largely independent. It might then be possible to obtain p-values for the effect of the 

independent variable (e.g., age) on gene expression at the level of the cluster. Such p-values might be 

more likely to be independent than p-values obtained at the level of the individual gene, Future 

research might evaluate whether this can alleviate some of the challenges posed by non-independent 

data.  

Finally, in the absence of near-perfect power, ordinary estimates of effect size calculated only for 
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the statistically significant results will be biased toward showing a greater difference than really exists 

even when those estimates are maximum likelihood estimates and asymptotically unbiased when 

considered across all results regardless of significance. This bias occurs because one is estimating 

effect sizes only for those results that are statistically significant and has been described elsewhere 

(Beavis, 1998; Thomas et al, 1985).  This bias may be reduced and estimates with smaller loss 

functions produced by use of Empirical Bayes techniques (Morris, 1983; Samaniego & Vestrup, 1999) 

could be considered.  Incorporating this into the mixture model approach is a topic of current research.  
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Table 1.  Simulation results for 9 cases as described in Section 4.  Group size = 5.  500 Simulation 

were conducted for each case.   "1λ  is the mean of 500 estimates of 1λ , "1( )S λ is the standard 

deviation, and "*
1( )S λ  is the mean of 500 estimates of standard deviation obtained from 100 

bootstrapped samples.  The last column are percentiles from the 500 maximum log-likelihood values.

n = 5 per group λ1 "
1λ  "

1( )S λ  "*
1( )S λ   

L1 (5, 50, 95)th percentiles 

Case 1:  

ρ = 0.0, d = 0 
0.0 0.147 0.335 0.285 

 
(0, 0, 2.8) 

Case 2:  

ρ = 0.0, d = 2 
0.2 0.147 0.092 0.087 

 
(69.2, 87.8, 107.4) 

Case 3: 

 ρ = 0.0, d = 4 
0.2 0.178 0.008 0.024 

 
(592, 644, 703) 

Case 4: 

 ρ = 0.4, d = 0 
0.0 0.210 0.353 0.127 

 
(0, 0, 150.1) 

Case 5: 

 ρ = 0.4, d = 2 
0.2 0.143 0.118 0.072 

 
(0, 75, 328) 

Case 6:  

ρ = 0.4, d = 4 
0.2 0.206 0.089 0.038 

 
(393, 641, 1020) 

Case 7: 

 ρ = 0.8, d = 0 
0.0 0.206 0.312 0.039 

 
(0, 0, 452) 

Case 8: 

 ρ = 0.8, d = 2 
0.2 0.212 0.218 0.042 

 
(0, 84, 766) 

Case 9:  

ρ = 0.8, d = 4 
0.2 0.313 0.206 0.035 

 
(244, 662, 1626) 
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Table 2.  As for Table 1 except that the group size is 10.

n = 10 per group λ1 "
1λ  "1( )S λ  "*

1( )S λ   
L1 (5, 50, 95)th percentiles 

Case 1:  

ρ = 0.0, d = 0 
0.0 0.153 0.338 0.277 

 
(0, 0, 2.7) 

Case 2:  

ρ = 0.0, d = 2 
0.2 0.164  0.033 0.045 

 
(303, 348, 394) 

Case 3: 

 ρ = 0.0, d = 4 
0.2 0.195 0.002 0.013 

 
(2182, 2271, 2362) 

Case 4: 

 ρ = 0.4, d = 0 
0.0 0.219 0.364 0.127 

 
(0, 0, 112.4) 

Case 5: 

 ρ = 0.4, d = 2 
0.2 0.195 0.048 0.105 

 
(143, 345, 798) 

Case 6:  

ρ = 0.4, d = 4 
0.2 0.233 0.088 0.025 

 
(1798, 2261, 2842) 

Case 7: 

 ρ = 0.8, d = 0 
0.0 0.253 0.346 0.055 

 
(0, 0, 451) 

Case 8: 

 ρ = 0.8, d = 2 
0.2 0.271 0.213 0.039 

 
(0, 329, 1193) 

Case 9:  

ρ = 0.8, d = 4 
0.2 0.300 0.132 0.018 

 
(1541, 2290, 3194) 
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Table 3.  As for Table 1 except group size is 20. 

 

n = 20 per group λ1 "
1λ  "1( )S λ  "*

1( )S λ   
L1 (5, 50, 95)th percentiles 

Case 1:  

ρ = 0.0, d = 0 
0.0 0.149 0.336 0.276 

 
(0, 0, 2.8) 

 

Case 2:  

ρ = 0.0, d = 2 
0.2 0.178     0.014 0.026 

 
(1116, 1197, 1283) 

Case 3: 

 ρ = 0.0, d = 4 
0.2 0.208 0.008 0.009 

 
(5873, 6004, 6156) 

Case 4: 

 ρ = 0.4, d = 0 
0.0 0.194 0.339 0.132 

 
(0, 0, 110.6) 

Case 5: 

 ρ = 0.4, d = 2 
0.2 0.220 0.096 0.033 

 
(777, 1186, 1800) 

Case 6:  

ρ = 0.4, d = 4 
0.2 0.234 0.051 0.015 

 
(5087, 5997, 6878) 

Case 7: 

 ρ = 0.8, d = 0 
0.0 0.238 0.332 0.046 

 
(0, 0, 604) 

Case 8: 

 ρ = 0.8, d = 2 
0.2 0.309 0.166 0.027 

 
(608, 1225, 2255) 

Case 9:  

ρ = 0.8, d = 4 
0.2 0.263 0.085 0.012 

 
(4724, 5988, 7839) 
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Table 4.  As for Table 1 except group size is 40. 

n = 40 per group λ1 "
1λ  "

1( )S λ  "*
1( )S λ   

L1 (5, 50, 95)th percentiles 

Case 1:  

ρ = 0.0, d = 0 
0.0 0.137 0.327 0.273 

 
(0, 0, 2.6) 

 

Case 2:  

ρ = 0.0, d = 2 
0.2  0.199 0.002  0.013  

 
(3335, 3467, 3604)  

Case 3: 

 ρ = 0.0, d = 4 
0.2 0.204 0.001 0.007 

 
(13476, 13638, 13810) 

Case 4: 

 ρ = 0.4, d = 0 
0.0 0.224 0.365 0.136 

 
(0, 0, 102) 

Case 5: 

 ρ = 0.4, d = 2 
0.2 0.231 0.068 0.020 

 
(2679, 3429, 4317) 

Case 6:  

ρ = 0.4, d = 4 
0.2 0.214 0.025 0.009 

 
(12615, 13584, 14645) 

Case 7: 

 ρ = 0.8, d = 0 
0.0 0.233 0.335 0.042 

 
(0, 0, 486) 

Case 8: 

 ρ = 0.8, d = 2 
0.2 0.273 0.106 0.014 

 
(2284, 3449, 4856) 

Case 9:  

ρ = 0.8, d = 4 
0.2  0.222 0.042 0.009 

  
(12295, 13749, 15075) 
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Figure 1:  Distribution of 6347 p-values from the mice data example.  Fitted models are a 

uniform distribution, a mixture of a uniform and one beta distribution, and a mixture of 

the uniform and two beta distributions. 
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Figure 2:  Boxplot of simulated sampling distribution of 500 values of the log-likelihood 

evaluated at the MLE’s.  The horizontal dotted line is the  maximum of the log-likelihood 

using two beta distributions with the uniform distribution. 

 



Allison — 32 

0.64 0.66 0.68 0.70 0.72 0.74 0.76

0
20

40
60

80
10

0

Weight on Uniform Component

St.Dev. = 0.020

0.24 0.26 0.28 0.30 0.32 0.34 0.36

0
20

40
60

80
10

0

Weight on Beta Component

St.Dev. = 0.020

0.70 0.75 0.80 0.85 0.90

0
20

40
60

80
10

0

First Beta Shape Parameter

St.Dev. = 0.034

3 4 5 6

0
50

10
0

15
0

Second Beta Shape Parameter

St.Dev. = 0.550

 

Figure 3:  Simulated sampling distributions of the estimators for the mixture distribution 

using a uniform and one beta distribution fitted to the example mice data. 
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Figure 4. 

Posterior probability of there being a real difference in 
expression level.
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