Identifying novel behavioral and protein biomarkers in addiction-related behaviors

Stephanie Groman, Ph.D.
Department of Psychiatry
Yale University
Addiction: a disorder of poor decision-making

- Taking drug in larger and longer amounts than intended
- Wanting to cut down or quit but not being able to
- Difficulty stopping or reducing drug use despite negative consequences

Ersche et al., 2008; Fillmore and Rush, 2003
Addiction: a disorder of poor decision-making

- Taking drug in larger and longer amounts than intended
- Wanting to cut down or quit but not being able to
- Difficulty stopping or reducing drug use despite negative consequences

Jentsch et al., 2002; Schoenbaum et al., 2003
Decision-making: a risk-factor for addiction?

Cervantes et al. 2013
Decision-making as a biomarker of addiction?

Addiction

???

Poor decision-making

???
Decision-making in the rat: Probabilistic reversal learning

10% 70% 30%

p(Reward | NPx)

Trials

p(NPx)

Trial
Investigating decision-making in addiction pathophysiology

![Graph showing decision-making in addiction pathophysiology](image)
Investigating decision-making in addiction pathophysiology

Graph Image

- **Y-axis:** Number of infusions earned in a 6 h session
- **X-axis:** Self-administration session
- **Legend:**
 - Meth
 - Saline

Diagram Details

- The graph compares the number of infusions earned over time between self-administration with Meth and Saline.
- A significant increase is observed for Meth compared to Saline after the 8th session.

Additional Text

- **PRL assessments**
- **Self administration (saline or meth)**
Investigating decision-making in addiction pathophysiology

PRL assessments

Self administration (saline or meth)

PRL assessments
Decision-making as a biomarker of addiction?

Poor decision-making

???

Addiction
PRL performance predicts early-stages of meth use

SALINE

Total number of saline infusions earned vs. Number of reversals completed

$R^2 = 0.15; p = 0.27$

METH

Total number of meth infusions earned vs. Number of reversals completed

$R^2 = 0.67; p = 0.01$
Decision-making as a biomarker of addiction?
Self-administration of meth disrupts decision-making in PRL

Time x group: $F_{(1,16)}=4.81; p=0.04$

Group: $F_{(1,16)}=16.94; p=0.0008$

Time: $F_{(1,16)}=1.70; p=0.21$
Disruptions in PRL caused by experimenter administered meth

Groman et al., 2017
Decision-making: a biomarker of addiction

Poor decision-making

Addiction

Meth

**
Delineating decision-making processes

Reinforcement learning model (Barraclough et al., 2004):

If trial is rewarded:
\[V(t) = \alpha \times V(t) + \Delta_1 \]

If trial is unrewarded:
\[V(t) = \alpha \times V(t) + \Delta_2 \]

Unchosen actions:
\[V(t) = \alpha \times V(t) \]

Three free parameters:
\[\alpha = \text{forgetting rate} \]
- \(\uparrow\) retain action values longer

\[\Delta_1 = \text{appetitive strength of rewards} \]
- \(\uparrow\) greater influence of rewards on choices

\[\Delta_2 = \text{aversive strength of no reward} \]
- \(\downarrow\) greater influence of no rewards on choices
Decision-making processes that influence addiction vulnerability

???

Poor decision-making

Addiction
Appetitive strength of rewards predicts future drug use

\[\alpha \] parameter

\[\Delta_1 \] parameter

\[\Delta_2 \] parameter

- \[\alpha \] parameter estimate vs. total number of infusions earned: \(R^2 = 0.32; p = 0.14 \)
- \[\Delta_1 \] parameter estimate vs. total number of infusions earned: \(R^2 = 0.43; p = 0.07 \)
- \[\Delta_2 \] parameter estimate vs. total number of infusions earned: \(R^2 = 0.11; p = 0.4 \)
Decision-making process disrupted by drugs

Addiction

Poor decision-making

???
Effects of meth on decision-making

Saline

Meth

α parameter

Δ₁ parameter

Δ₂ parameter
Decision-making: a biomarker of addiction

Δ₁ parameter

Δ₂ parameter

Poor decision-making

Addiction
Decision-making and addiction interventions

Prevention
- Gene X
- Disruptions in Protein Y
 - Decision-making problems due to low Δ_1 values
 - Heightened vulnerability to addiction

Treatment
- Chronic drug use
- Disruptions in Protein Z
 - Decision-making problems due to reductions in Δ_2 values
 - Compulsive drug taking
Protein discovery with proteomics

Sample collection

Sample preparation

Protein digest (Trypsin) to create unique peptides for mass spec analysis

Data analysis

Compare protein measurements to decision-making phenotypes

Data processing

Matching peptides to protein sequences

Processing protein digests

Liquid chromatography for peptide separation
Tandem mass spec to identify and quantify each peptide
Identifying behavior-protein correlates

Behavior-protein correlates (N=16)
- PRL assessments
- Tissue collection (ventral striatum)
- Protein expression (LC-MS/MS)

Post-drug behavioral-protein correlates (N=18)
- PRL assessments
- Meth self-administration (6 h/day for 14 days)
- Tissue collection (ventral striatum)
- Protein expression (LC-MS/MS)
Data processing

Proteins must be detected in at least 25% of samples. Abundance lower threshold was set at 10^6.

2,833 proteins
Protein-behavior correlates

$p<0.05$; not corrected for multiple comparisons
Isolating protein targets involved in addiction vulnerability

Criterion:
- Correlates with Δ_1 parameter in drug-naïve rats
- Correlates with Δ_1 parameter in drug-exposed rats
- Is NOT disrupted in rats exposed to meth

[Diagram showing Venn diagram with sets Unaffected by meth, Δ_1 drug naive, and Δ_1 drug exposed, with numbers 2240, 300, 217, and 9]
Protein targets involved in addiction vulnerability

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Function</th>
<th>Link to addiction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ndufb10</td>
<td>NADH: ubiquinone oxidoreductase subunit B10</td>
<td>Subunit of mitochondrial membrane respiratory system</td>
<td>Altered in alcohol preferring rats (McClintick et al., 2017)</td>
</tr>
<tr>
<td>Dpp10</td>
<td>Inactive dipeptidyl peptidase 10</td>
<td>Promotes surface expression of KCND2</td>
<td></td>
</tr>
<tr>
<td>Setd7</td>
<td>Histone-lysine N-methyltransferase SETD7</td>
<td>Monomethylates Lys-4 of histone 3 (methylates nkkb and histones – wb hlk4); histone extraction; histone here repressive at lysine9</td>
<td>Genetic association with smoking behaviors (Thorgeirsson et al., 2010)</td>
</tr>
<tr>
<td>Sort1</td>
<td>Sortilin</td>
<td>Sorting receptor in the Golgi compartment</td>
<td>Low expression in high novelty seeking rats (Kabbaj et al., 2004)</td>
</tr>
<tr>
<td>Ryr2</td>
<td>Ryanodine receptor 2</td>
<td>Channel that mediates Ca2+ release from sarcoplasmic reticulum</td>
<td>Genetic association with impulsivity and gambling (Khadka et al., 2014; Lind et al., 2012)</td>
</tr>
<tr>
<td>Snx1</td>
<td>Sorting nexin-1</td>
<td>Intracellular trafficking</td>
<td>Reduced following meth CPP (Yang et al., 2008)</td>
</tr>
<tr>
<td>Gamt</td>
<td>Guanidinoacetate N-methyltransferase</td>
<td>Converts guanidoacetate to creatine</td>
<td>Reduced in alcohol dependent individuals (Sokolov et al., 2003)</td>
</tr>
<tr>
<td>Naa15</td>
<td>N(alpha)-acetyltransferase 15</td>
<td>Subunit of NatA complex; important for neuron growth</td>
<td>Gene expression disrupted in rats prenatally exposed to alcohol (Downing et al., 2012)</td>
</tr>
<tr>
<td>Atxn2l</td>
<td>Ataxin 2-like</td>
<td>Involved in stress granule and P-body formation</td>
<td>Genetic association with lifetime THC use (Pasman et al., 2018)</td>
</tr>
</tbody>
</table>
Addiction vulnerability proteins

- **Ryr2** (ryanonide receptor 2): forms channels that transport Ca2+
 - Target for heart disease (might be difficult to target systemically)

- **Snx1** (sorting nexin 1): involved in intracellular trafficking
 - Possible role in regulating GIRK channels

- **Atxn2l** (Ataxin-2 like): unknown function but part of the spinocerebellar ataxia family
 - Seems to be important in dopamine signaling (Atxn2 KO mice have lower D2 receptors)
Isolating behaviorally relevant protein targets altered by meth

Criterion:
• Correlates with the Δ_2 parameter in drug-naïve rats
• Correlates with the Δ_2 parameter in meth-exposed rats
• Disrupted in rats exposed to meth
Rab3B: a mechanism for drug-induced impairments?
Ras-related protein (Rab-3b)

- Monoameric GTPase protein enriched in synaptic vesicles
 - Involved in synaptic transmission and vesicle trafficking

- Knock down of Rab3B in the hippocampus impairs inhibitory LTD and improves reversal learning (Tsetsenis et al., 2011)

- Overexpression of Rab3B protects DA neurons from 6-OHDA insults (Chung et al., 2009)
Future studies

Reduce addiction vulnerability

• Increase expression of Ryr2, Snx1, or Atxn2l (via viral techniques)
 – Improve decision-making \rightarrow reduce drug taking

Restore decision-making

• Reduce Rab3B expression
 – Improve decision-making \rightarrow reduced relapse-related behaviors
Summary

Addiction

Poor decision-making

Rab3B

Ndufb10, Setd7, Dpp10, Ryr2, Sort1, Gamt, Naa15, Snx1, Atxn2l
Acknowledgements

Taylor Lab
Jane R. Taylor, Ph.D.
Nathaniel Smith, Ph.D.
Colby Keistler, Ph.D.
Stacey Quick, Ph.D.
Carol Gianessi
Dayshalis Ofray

Nairn Lab
Angus Nairn, Ph.D.
Becky Carlyle, Ph.D. (MGH)
Rashaun Wilson, Ph.D.

Yale/NIDA Proteomics Center
Jean Kanyo

NIDA
NATIONAL INSTITUTE ON DRUG ABUSE

CMHC
Connecticut Mental Health Center

Brain & Behavior Research Foundation
Awarding NARSAD Grants