Molecular Correlates of Cognitive Dysfunction in Animal Models of Addiction – Finding the Targets

Peter Olausson, Dilja Krueger, Alexia Kedves, Angus Nairn & Jane Taylor

> Division of Molecular Psychiatry Yale University

Cristopher Colangelo, Kathy Stone, Erol Gulcicek, Terence Wu, Can Bruce, & Ken Williams

Yale/NIDA Proteomics Center

Impaired Cognitive-Motivational Processes in Addiction

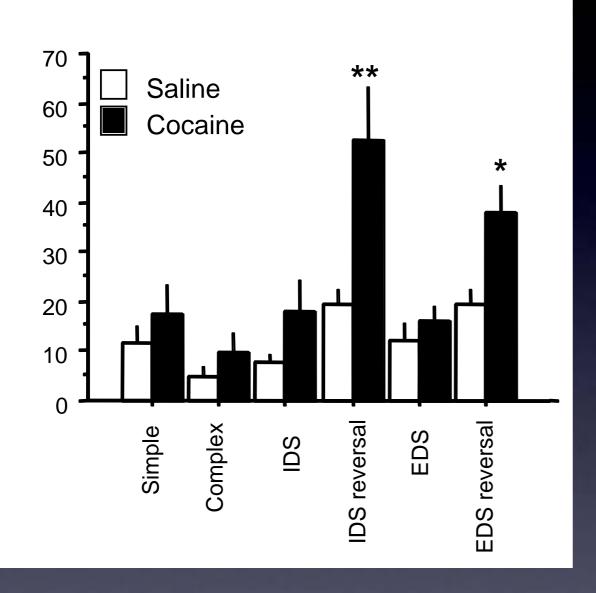
Addicts display behavior characterized by:
Cognitive/decision-making deficits
Augmented reward-associated motivation

Motivation
 Compulsive Drug-Taking
 Inhibitory Control

Jentsch & Taylor 1999; Olausson et al. 2007

Chronic Cocaine Exposure in Primates

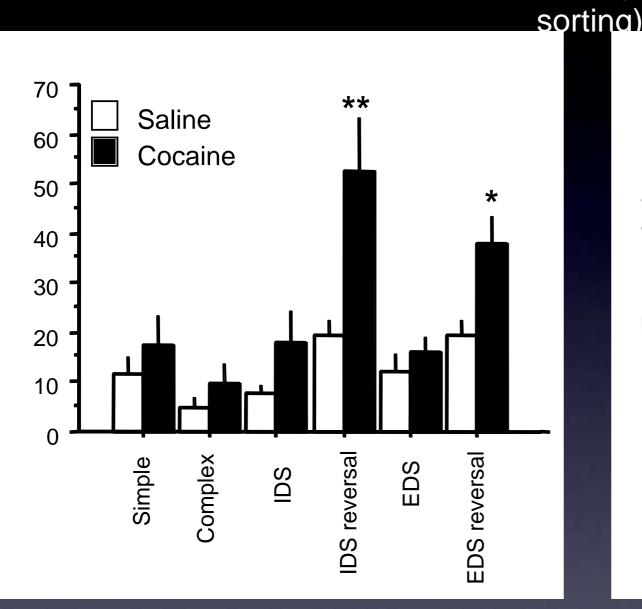
Young adult Vervet monkeys

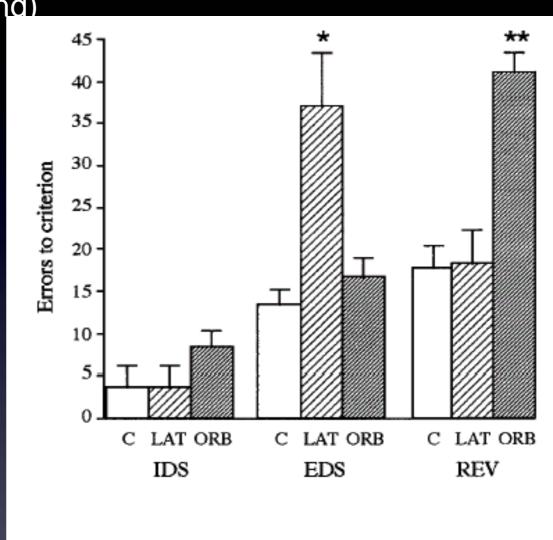

- Treatment: Cocaine 2 mg/kg, 14 days
- Behavioral testing (14-20 days after the last treatment):

Biochemistry:

- Animals sacrificed 21 days after final injection.
- Synaptosomes prepared from cortical and striatal regions.
 DIGE & iTRAQ analyses in biological triplicates

Cocaine-Induced Cognitive Deficits



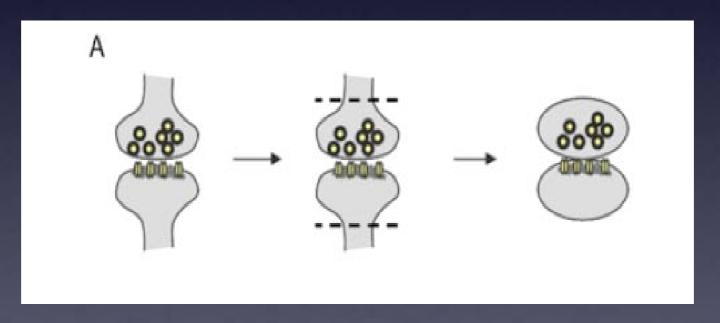


Prior chronic cocaine exposure impairs reversal learning

Cocaine-Induced Cognitive Deficits

Attentional Set-Shifting (Wisconsin card

Dias et al. 1996


Prior chronic cocaine exposure impairs reversal learning

Cocaine-induced deficits are identical to those of OFC lesions

Effect of Cocaine on the Synaptic Proteome

Since the synapse is a critical site of plasticity and adaptation, we have analyzed synaptic protein expression using proteomic techniques

Synaptoneurosomes

Proteomic Analysis

DIGE and iTRAQ of Synaptoneurosomes

Cortical regions:

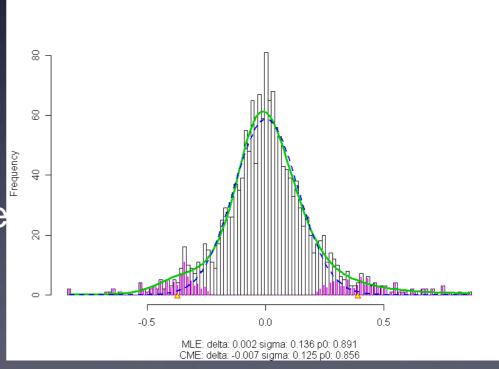
Area 11/12 (lateral OFC) Area 13/14 (medial OFC) PrCO/OFO (posterior OFC) Area 24 (Anterior Cingulate) Area 9/46 (Dorsolateral PFC) Prelimbic/Infralimbic Cortex (medial PFC)

Striatal regions:

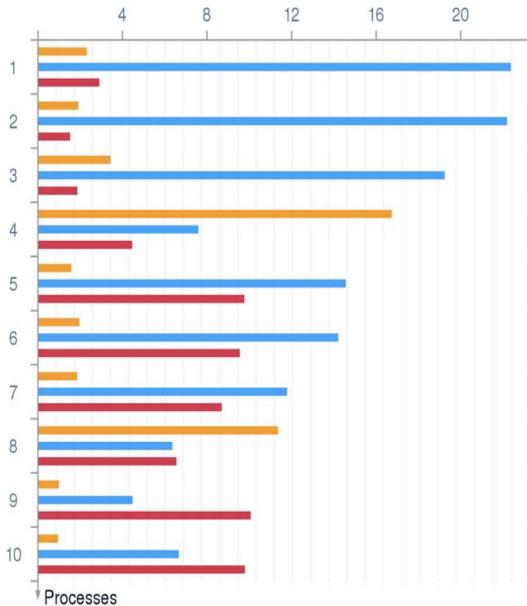
Caudate Putamen Nucleus Accumbens

Samples:

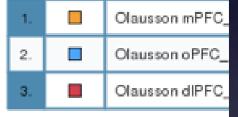
Pooled 2 monkeys/region Biological triplicates



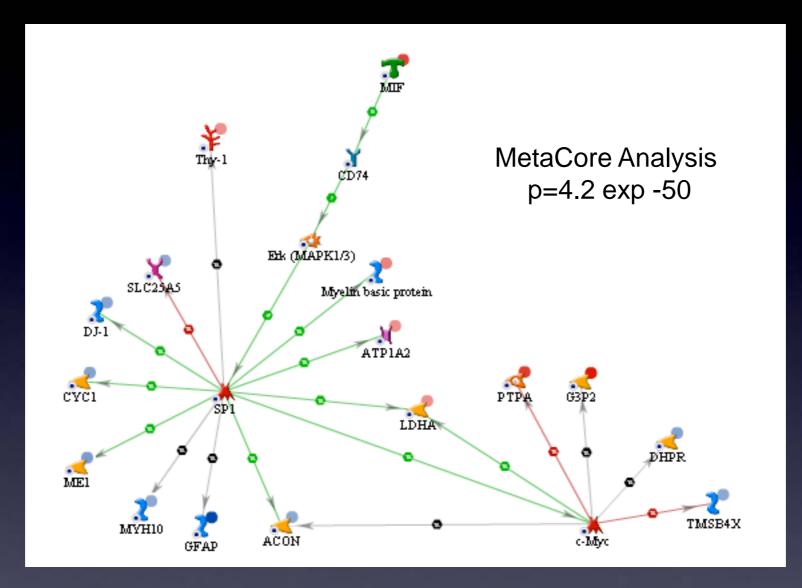
Proteomic Analysis


Pathway Analyses of the OFC

- Genego MetaCore and Ingenuity IPA
- 1.3x starting cut-off (98 altered proteins), p≤0.05, False Discovery Rate=0.2
- 49 remaining proteins included in the analysis
- >1.45x regulation (1.45-3.83x)
- 25 downregulated and 24 upregulated


 Focus on transcriptional regulation for identification of common cocaine-regulate processes

OFC Compared to mPFC and dIPFC



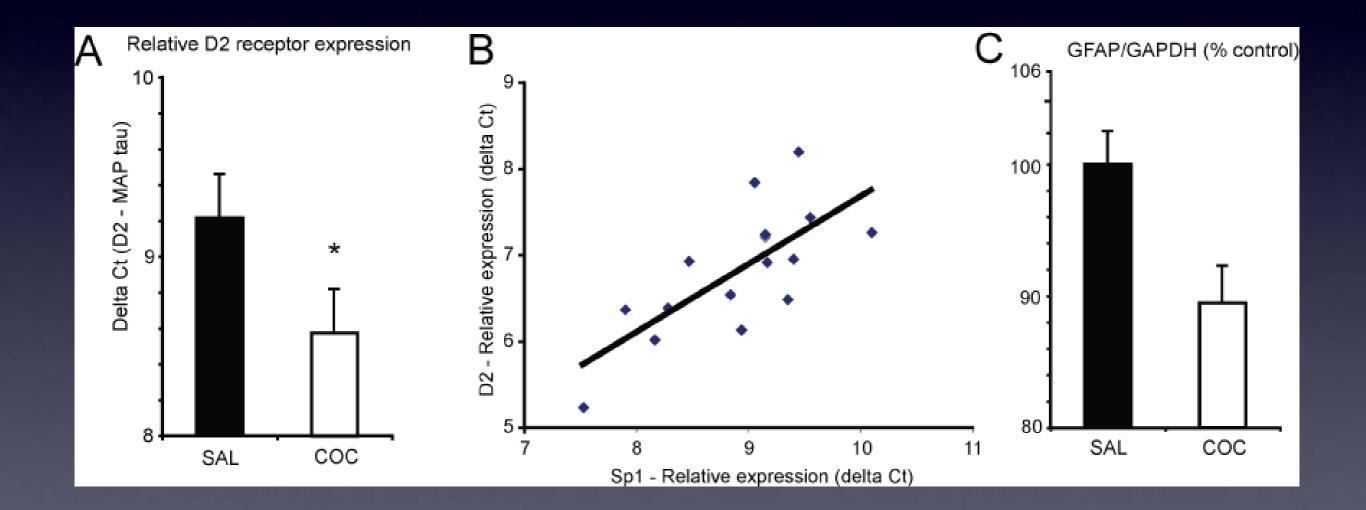
- 1. Energy derivation by oxidation of organic compounds 2. Generation of precursor metabolites and energy 3. Main pathways of carbohydrate/glucose metabolism 4. Organelle organization and biogenesis 5. Establishment of localization 6. Localization 2. 7. Transport 8. Cytoskeletal organization 9. Intracellular transport
 - 10. Establishment of cellular localization

Enrichment analysis: Prior cocaine strongly regulates proteins involved in glucose and energy metabolism in the OFC compared to mPFC or dIPFC

Altered Sp1 Transcription in the OFC

85% of Sp1-regulated proteins are downregulated in the OFC

Sp1 and Dopamine Neurotransmission

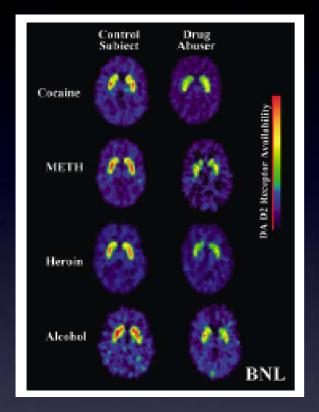

Spl is expressed in both striatum and cortex

Sp1 is a DNA-binding protein which interacts with a large number of gene promoters containing GC-box elements

Sp1 regulates proteins involved in dopamine neurotransmission including dopamine transporters, MAO, D1 and D2 receptors

Decrease in Sp1 Activity?

Reduced levels of the Sp1 targets D2 receptors and GFAP in the OFC



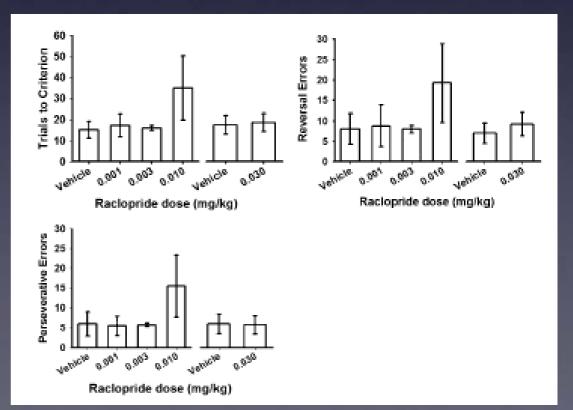
Secondary Confirmations - D2 Receptors

Target	mRNA	COC IO FC	COC mOFC	COC ACg	COC Cau
D1		=	=	Down	=
D2	Down	Down?	Down?	Down	Down
Sp1	=	=			
GFAP		Down			Up
TrkB					Up
ERK					
pERK/ERK			Down	=	
DARPP-32					Up
pAKT/AKT		Up?	AKT down		Up?
CaM			Down		Up?
Neurogranin			Down		
Cytochr ome C			Down	Down?	Down
a-synuclein					=
PSD-95				Up	Up

Consistent decrease in D2 receptor levels after cocaine exposure

Decreased Dopamine D2 Receptor Levels in Addicts; Relevance to Reversal Learning

Dopamine in drug abuse and addiction: results from imaging studies and treatment implications


ND Volkow^{1,2,3,5}, JS Fowler⁴, G-J Wang³ and JM Swanson⁶

¹National Institute on Drug Abuse, Bethesda, MD, USA; ²National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; ³Medical Department, Brookhaven National Laboratory, Upton, NY, USA; ⁴Chemistry Department, Brookhaven National Laboratory, Upton, NY, USA; ⁴Chemistry Department, Brookhaven National Laboratory, Upton, NY, USA; ⁶Department of Psychiatry, State University of New York at Story Brook, Story Brook, NY, USA; ⁶Department of Psychiatry, Upton, CA, USA

Dopamine D_2/D_3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys

Buyean Lee¹, Stephanie Groman¹, Edythe D London^{1,2,3} and James David Jentsch^{8,3,4}

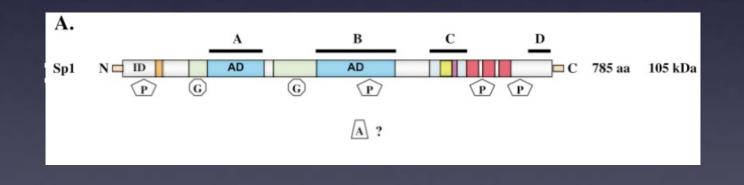
¹Department of Psychiatry and Bibbehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA; ²Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, USA; ³The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; ⁴Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA;

Alterations in Sp1 but not Sp3 in COC-Exposed Rats

Nuclear Fraction

150 ** 125 100 **Control Fluorescenc** Saline 75 Cocaine 50 25 0 Sp1 unmodified Sp1 Phaspharylated Sp1 ather modification Sp3 Sp3 attenuated Sp1 attenuated

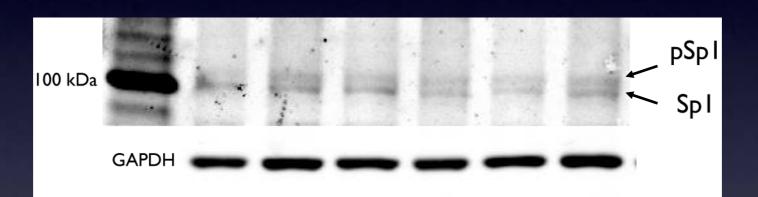
Cytosolic Fraction


- - Decreased Sp1 levels in the nucleus
 - Increased Sp1 levels in the cytosol
 - Does chronic cocaine lead to redistribution of Sp1?

Possible Mechanism of Sp1 Redistribution

O-linked glycosylation of Sp1 leads to its transport to the nucleus (Majumdar et al. 2003; Dauphinee et al. 2005)

Requires PP2A-mediated dephosphorylation of Ser59



Reduced Sp1 glycosylation after Cocaine?

Post-Translational Modifications?

Analysis of Sp1 phosphorylation and glycosylaton in OFC of cocaineexposed monkeys underway

Immunoprecipitation of Sp1

Immunoprecipitation of Sp1 and blotting using kinase subtrate-specific antibodies in dIPFC of COC-exposed monkeys

Ongoing Work

1) Overexpression of Spi in the OFC in cocaine-exposed animals to reverse deficits (collaboration with Ralph DiLeone)

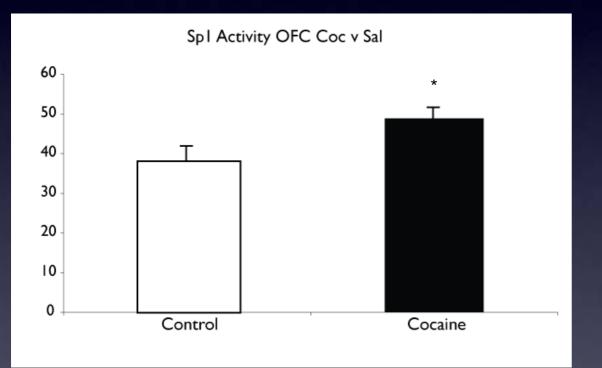
2) Post-translational modifications of Sp1 in cocaine-treated monkeys?
(Orbitrap MS of immunoprecipitated Sp1 - Erol Gulcicek & Kathy Stone)

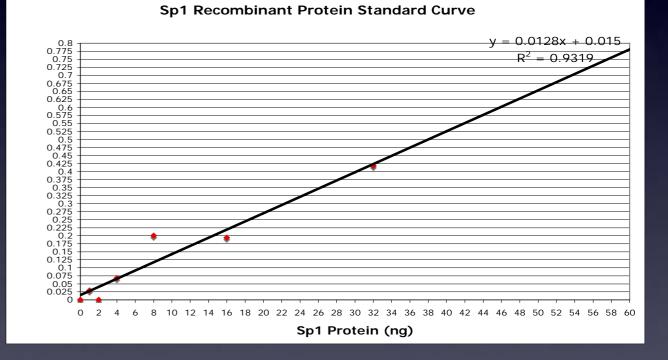
3) Complete the data for the dIPFC and ACg (iTRAQ - Chris Colangelo)

4) Integrated data analysis (Biostatistics and Bioinformatics Cores)

5) Preparing manuscripts:

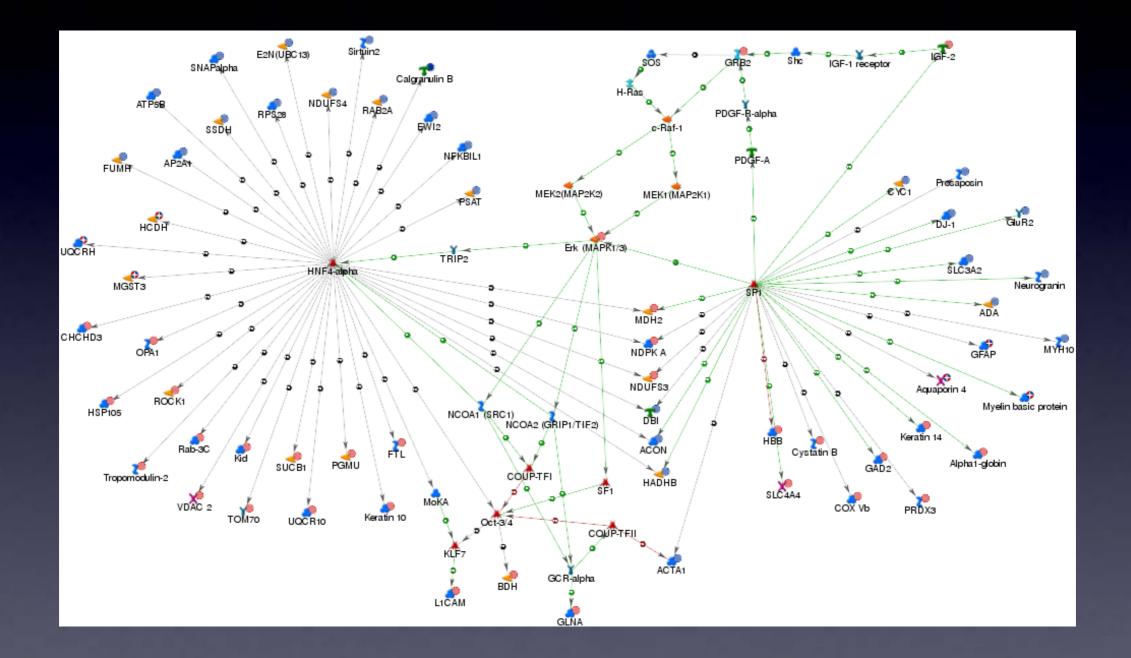
A. PCP exposure to primates (behavior and proteomic analyses)
 B. Cocaine exposure to primates (behavior and proteomic analyses)


Thank You!


Post-Translational Modifications?

Known Modification Sites on Sp1							
Position	Modification	Enzyme Activity	Consequence	Reference			
			increased association				
			with chromatin; mediates				
Serine 59	Dephosphorylation	PP2A	glycosylation	Vicart et. al. 2006			
		ataxia telangiectaia-					
Serine 103	Phosphorylation	mutated kinase	unknown	Olofsson et. al. 2007			
			enhancement of				
			transcription through Sp1				
Threonine 366	Phosphorylation	PKA	DNA binding	Rohiff et. al. 1997			
			increased Sp1-DNA				
			binding; enhancement of	Milanini-Mongiat et. al.			
Threonine 453	Phosphorylation	MAPK (ERK 2)	basal transcripion	2002			
		O-linked N-					
C		acetylglucosamine	Prevents Sp1-TAF110				
Serine 484	Glycosylation	transferase	(cofactor) association	Roos et. al. 1997			
Threepipe 570	Dheenhendetien	accessing kineses 11	decreased Sp1-DNA	Armetrong et al 1007			
Threonine 579	Phosphorylation	casein kinase II	binding Sp1 binds DNA; no TF	Armstrong et. al. 1997			
Aspartic Acid 590	Proteolytic cleavage	caspase 3	activity	Rickers et. al. 1999			
Aspartic Acid 370	Troteorytic cleavage		increased Sp1-DNA	Rickers et. al. 1777			
			binding when Thr668,				
			Thr670 and Thr 681 all				
Threonine 668	Phosphorylation	PKC zeta	phosphorylated	Tan et. al. 2008			
			increased Sp1-DNA				
			binding when Thr668,				
			Thr670 and Thr 681 all				
Serine 670	Phosphorylation	PKC zeta	phosphorylated	Tan et. al. 2008			
			decreased Sp1-DNA				
			binding alone; increased				
			Sp1-DNA binding when				
			Thr668, Thr670 and Thr				
Threonine 681	Phosphorylation	PKC zeta	681 all phosphorylated	Tan et. al. 2008			
			increased Sp1-DNA				
Threonine 681	Dephosphorylation	PP2A	binding	Vicart et. al. 2006			
			increased DNA binding;				
			enhancement of basal	Milanini-Mongiat et. al.			
Threonine 739	Phosphorylation	MAPK (ERK1/2)	transcripion	2002			

Prior Repeated Cocaine Exposure Increases Sp1 DNA Binding Activity in OFC


Transcription factor ELISA (ActiveMotif)

Suppression of activity by post-translational modifications?

Transcriptional Network Analysis of Altered Synaptic Proteins

HNF4alpha and Stimulatory Protein I (Sp1) appears highly integrated in the proteomic map