A ‘targeted’ approach to identify the proteins underlying the biobehavioral mechanisms of addiction

Stephanie Groman, Ph.D.
Associate Research Scientist
Department of Psychiatry
Addiction: vulnerability vs. consequence

Vulnerability

Consequence

Escalation in drug use

Heritability estimates of addiction are ~50%

Prevention

Treatment
Decision-making in addiction

- Jentsch et al., 2002; Schoenbaum et al., 2003
- Ersche et al., 2008; Fillmore and Rush, 2003
- Cervantes et al., 2013
Decision-making: a biomarker of addiction

Consequence

Chronic drug use → Decision-making deficits

Vulnerability
Probabilistic reversal learning (PRL) task
Decision making in addiction-relevant behaviors

Vulnerability

\[R^2 = 0.25 \]
\[p = 0.03 \]

Number of reversals (z-score)

Consequence

Number of reversals completed

**
Computational mechanisms of addiction pathology

Chronic drug use

Decision-making deficits

Reinforcement learning process A?

Reinforcement learning process B?
Reinforcement-learning model

\[V(t + 1) = \gamma V(t) + \Delta_j \]

- \(i f \ r(t) = 1, \Delta_j = \Delta_1 \)
- \(i f \ r(t) = 0, \Delta_j = \Delta_2 \)

3 free parameters:

\(\gamma \) Forgetting rate
\(\Delta_1 \) Appetitive strength of rewards
\(\Delta_2 \) Aversive strength of no rewards

Barraclough et al., 2004
Different reinforcement learning mechanisms underlie addiction vulnerability vs. consequence.

Vulnerability

Number of drug infusions (z-score) vs. Δ_1 parameter (z-score)

Consequence

Δ_2 parameter vs. Time (Before vs. After)

- Saline
- MA

* Significant difference
Decision-making as a tool for identifying novel protein targets for addiction

Protein A?

Chronic drug use

Value updating to negative outcomes

Decision-making deficits

Value updating to positive outcomes

Protein B?
Identification of protein-computational correlates

- PRL assessments
- Sample collection (ventral striatum)
- Protein extraction/purification
- Peptide fractionation
- Label-free mass spectrometry

Δ₁ parameter

Δ₂ parameter

309
26
108
Narrowing in on protein targets

Drug-naïve study
- Assess decision-making in rats
- Collect tissue from the ventral striatum
- Protein expression (LC-MS/MS)

Drug self admin study
- Assess decision-making in rats
- Meth self-administration
- Reassess decision-making in rats
- Collect tissue from the ventral striatum
- Protein expression (LC-MS/MS)
Narrowing in on addiction vulnerability targets

<table>
<thead>
<tr>
<th>Gene (Protein)</th>
<th>Link to addiction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryr2 (Ryanodine receptor 2)</td>
<td>Genetic association with impulsivity and gambling (Khadka et al., 2014; Lind et al., 2012)</td>
</tr>
<tr>
<td>Snx1 (sorting nexin 1)</td>
<td>Reduced following meth CPP (Yang et al., 2008)</td>
</tr>
<tr>
<td>Gdap1 (Ganglioside-induced differentiation-associated protein 1)</td>
<td>Methylation of GDAP1 is correlated with alcohol use (Bruckmann et al., 2016)</td>
</tr>
<tr>
<td>Plppr4 (Phospholipid phosphatase-related protein type 4)</td>
<td>Not directly – but involved in postnatal neural development</td>
</tr>
<tr>
<td>Hsbp1 (Heat shock factor binding protein 1)</td>
<td>Not directly, but HSP are heavily implicated</td>
</tr>
</tbody>
</table>
Narrowing in on addiction consequence targets

\[\Delta_2 \text{ drug exposed} \]
\[\Delta_2 \text{ drug naive} \]

<table>
<thead>
<tr>
<th>Gene (Protein)</th>
<th>Function</th>
<th>Link to addiction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rab3B (Ras-related protein 3B)</td>
<td>Involved in synaptic transmission and vesicle trafficking</td>
<td>Identified as putative QTL acute cocaine response (Philip et al., 2012)</td>
</tr>
</tbody>
</table>
Decision-making to identifying novel protein targets for addiction

- Decision-making deficits
- Value updating to negative outcomes
- Value updating to positive outcomes
- Chronic drug use
- Rab3B
- Snx1
- Ryr2
- Hspbp1
A ‘targeted’ approach to identify the proteins underlying the biobehavioral mechanisms of addiction

Hypothesis 1: Decision making and proteins linked to addiction vulnerability phenotype (e.g., Ryr2, Snx1) will be altered in animal models known to have addiction-related vulnerabilities.

Hypothesis 2: Decision making and protein linked to the addiction consequence phenotype (e.g., Rab3B) will be altered in animals following heroin self-administration.
Pilot Grant: Experimental design

Prenatal morphine (or vehicle) self-admin

Cross foster to drug naïve dams

Assess PRL performance

Tissue collection for targeted proteomics

Assess heroin-taking behaviors

Hypothesis 1

Hypothesis 2

Tissue collection for targeted proteomics
Pilot Grant: Experimental design

- *Prenatal morphine (or vehicle) self-admin* → Cross foster to drug naïve dams → Tissue collection for targeted proteomics → Assess PRL performance → Assess heroin-taking behaviors → Tissue collection for targeted proteomics

Hypothesis 1
(N=40)

Hypothesis 2
(N=40)

N=80
Summary and future directions

• Computational analyses of decision making can be used to disentangle the pathology of addiction

• Proteomics combined with computational tools provides a mechanistic bridge between signaling mechanisms and complex behaviors
 • High translatability to humans

• Ongoing studies will provide experimental support for these protein-computational correlates to potentially identify novel targets for the prevention and treatment of addiction
Acknowledgements

Jane Taylor
Angus Nairn
Daeyeol Lee
Becky Carlyle
Rashaun Wilson
Robert Kitchen
Jean Kanyo
Heather Ortega
Alex Keip
Bronson Krull
Yale/NIDA Neuroproteomics Core
Reinforcement learning mechanisms predicting MA-taking behaviors

\[\gamma \text{ Forgetting rate} \quad \Delta_1 \text{ Appetitive strength of rewards} \quad \Delta_2 \text{ Aversive strength of no rewards} \]
MA-induced disruptions in reinforcement learning mechanisms

- **Forgetting rate** (γ)
- **Appetitive strength of rewards** (Δ_1)
- **Aversive strength of no rewards** (Δ_2)

![Graphs showing changes in parameters before and after treatment with MA and saline.](image-url)
Rab3B

\[\Delta_2 \text{ parameter estimate} \]

![Scatter plot of Rab3b expression vs. \[\Delta_2 \text{ parameter estimate} \]]

![Bar graph comparing Rab3B expression in Saline and Meth conditions]

- Saline
- Meth

The graph shows a positive correlation between Rab3b expression and \[\Delta_2 \text{ parameter estimate} \]. The bar graph indicates a significant increase in Rab3B expression in the Meth condition compared to Saline, with a statistical significance indicated by the "***" symbol.