ZetaView® NTA system Training Quick Guide

1) Turn system ON:

- (a) turn ON the switch at the back side of the blue box;
- (b) then turn on the computer Windows Password is 123456.
- (c) Turn ON the ZetaView software

- (e) The system will initialize for about a minute, so wait for a prompt from the software
- 2) Allow software to prime the sample cell with water from Pump 1 (the following window will appear)

Choose "Rinse" the bottle attached to pump #1 should contain water; the deionize water from the white faucet (house DI water) is sufficiently clean to use on the system.

ZetaView (version 8.05.16 SP3) [ZNTA] <zetauser></zetauser>			- 0 8	< 1
File Administrator Help				
Cell Check Pump & Temp Measurement Analysis				
Remove Cell Assembly Cell Definition Cell Number 2NTA Step 1: Cell Quality Cell Quality Check Very Good Step 2: AutoAlignment (Focus & Profile Symmetry) Q AutoAlignment (Focus & Profile Symmetry) After Power Up & After Cell Change Particles visible, not blurred Number of Particles Optimize Focus	Cel Connected Fluorescence Filter Scatter (None) Laser 405 488 520 640 Position Initialize Call Sensitivity Shutter 100 - 322- 88.0 100	100%		
Number of Particles vs. Sensitivity Daily Performance (Particle Size Standard) Size Standard Concentration Daily Performance nm per mL	Scattering No. of Detected Intensity Particles 28 - 1000 - 100 - 1		•	×
	Concentration: Particles /ml:	Post Acquisition Parameters Part	de onift at g The instrument is being rinsed.	Please wait.
	Measured 0.00E±0		R Partida Dri	Abort
	Original Calculated 0.00E+0		che Check>	
Temperature pH Conductivity Update 24.2 °C 11520 µS/cm Cond.				

3) After the rinsing is complete the following window appear:

ell Check Pump & Temp Measurement Analysis		
Remove Cel Assembly -Cel Definition Cel Definition Step 1: Cel Quality O Cel Quality Cel Quality Celd O Cel Quality Celd Step 2: AutoAlgoment (Focus & Profile Symmetry) 2 AutoAlgoment (Focus & Profile Symmetry) 2 AutoAlgoment (Focus & Profile Symmetry) 2 AutoAlgoment (Focus & Profile Symmetry) Coll Change Particles Number of Particles Number of Particles Daily Performance (Particle Size Standard) Size Standard Concentration 3 Daily Performance	Cell Connected Connected Norescence Filter Connected Soft Connected No Soft Position Connected Intersity Shutter 0- 02 0-	
	Diution Diution Diution Diution Diution Concentration: Particles / mi Diution: Particles / mi Diution: Parti	ter.

4) After the Cell quality is assessed (should read Very Good) the following window appears:

🐲 Zetaview (Version 8.05. 10 5P3) [ZIVIA] <zetauser></zetauser>		- u x
File Administrator Help		
Cell Check Pump & Temp Measurement Analysis		
Remove Cell Assembly Cell Definition Cell Number ZNTA Step 1: Cell Quality Cell Quality Cell Quality Check Very Good Step2: AutoAlignment (Focus & Profile Symmetry) AutoAlignment Optimize Focus After Power Up & articles visible, not blurred Number of Particles Number of Particles Step Standard Concentration	Cell Connected Florescence Filter Scatter (None) Laser Position 0.5 Cell Connected Scatter (None) 0.5 Cell Connected Scatter (None) 0.5 Cell Connected Scatter (None) 0.5 Cell Connected Sensitivity Shutter 100 Scattering No. of Detected Intensity Particles 86 - 1000 100 100 100 100 100 100 100	n • Eselect all Belect none ary Invert selection Select v v v size
Jeany Performance	0- 1-	👁 2. Autoalignment 🛛 🕹
	1.9 6	Dises fill the cell with 100 pp slippment supremies (divise 250000)
		Please hill the cell with 100 him alignment suspension (dilution 250000).
	Concentration: Particles / ml: Post Acquisition Parameters Particle	OK Cancel
	Measured 2.74E+6 Max Area 200 Check P	artide Drift
	Original 2.74E+6 Min Bright. 25 Min Area 10	()
	Calculated Auto Analog View Last: <n< th=""><th>o Chedc></th></n<>	o Chedc>
Temperature pH Conductivity Update	Autoalignment	
24.2 ℃ 15000 µS/cm Cond.		Stop

- 5) You may rinse the cell with water from the sample loading port.
- 6) ABSOLUTELY NO LEVER LOCK SYRINGES

a) Before proceeding further, practice the "art of" injecting a sample into the cell by making a droplet at the end of the sample loading syringe (per figures below).

Try to inject your sample in this way, here you are not creating air bubbles!

- 7) **Run cell Quality Check** as prompted. Results should be reported as 'Very Good" under the cell check tab if not Very Good, the flush syringe and/or water source are likely unclean, so replace them both and repeat
- Prepare 100 nm standard suspension (250,000x dilution) for AutoAlignment / Optimize Focus, as prompted by Software, and then inject the standard sample into the cell. Use a 1 mL syringe to inject 250k times diluted 100nm polystyrene (PS) standard (stock and 1000x dilution are kept in the fridge- bottom shelf, left corner)

Side Note: A primary 1,000x stock of 100 nm PSL standard is typically usable for 2 months (i.e., for making a final dilution for daily instrument Start-Up checks); however, the fully diluted standard is only good for a couple hours, so always have some 1,000x stock available to prep a full 250kx dilution for Start-Up checks.

2) Once the cell is filled with the PS 100nm standard, you should monitor the particle number to make sure that they are either in green or orange range; if too concentrated, make an additional 2x dilution:

Please ensure that the system has been ON for ≥ 20 minutes to get it up to temperature (> 21°C). Choose **OK**

3) The system will start autoalignment and focusing:

ZetaView (version 8.05.16 SP3) [ZNTA] <zetauser> File Administrator Help</zetauser>		-
Cell Check Pump & Temp Measurement Analysis Remove Cell Assembly Cell Definition Cell Quality Cell Quality Cell Quality Cell Quality Cell Quality Result Cell Quality Result Cell Quality Check Very Good Step 1: Cell Quality Check Very Good Step2: AutoAlignment (Focus & Profile Symmetry) Cell Change After Power Up & After Cell Change Particles visible, not blurred Number of Particles Number of Particles vs. Sensibility Size Standard Concentration Daily Performance (Particle Size Standard) Size Standard Concentration	Cell Connected Q Postion Q 0-5 Q Sensitivity Shutter 100 2000 55.0 100 Scattering No. of Detected 700 100 100 100 100 100 100 100 100 100 100 100 100 100	
Temperature pH Conductivity Update	0	

4) You should see the parabola appeared after this step is completed:

5) And you will see the message that the microscope is ready

6) At this point you should run DAILY Performance -

name the results file with the date for reference

7) When done the following window appear

:

Advector Provide the Provid	le Administrator Help					
at Check Parey & Hoursenand Analysis						
Newsel (a Ausself) C (a Convected Researce the Cathware (2 TA	Cell Check Pump & Temp Heasurement Analysi	a				
	Call Check Yang, & Teng, "Resourcement," Advance Seever Cal Average Call Check Yang, Call Check Yang, Call Check Yang, Sep 2: Advance of Parka Sep 2: Advance of Park	Control (Control	2015. 	 Dely Reference Excel Dely Reference Excel Heaved pack the law backgrout development Reading Quellis: Tourner Reading Quellis: Tourner 	-) 98.9 mm 1.1 % 1.0 %	Wry said Wry said
				· · · · ·		
	Temperature pH Conductivity Lipdate					

8) Even though the daily performance was done, the results are not accessible for reference, so it is a good practice to run the measurement as a regular experiment, so the result can be saved with your other data; choose Measurement and Run Video Acquisition

pize_488.avi	
Reload	
Save Current Settings as New SOP	
Delate COD Herden COD	
beete sor opuate sor	
Autosave.txt Set Temperature Scatter (Nove)	
25.0	
Concentration	
Concentration	
Concentration	
Concentration	
Concentration Concentration Correction Factor Compare the current values with the Sensibility Frame Rate Compare the current values with the	
Concentration Cancentration Correction Pactor Compare the corrent values with the Spheritings, Applies to Compare the	
Cancentration Camera Control Camera Control Camera Control Compare the current values with the SOP settings Souther Prane Rate SOP settings Souther Prane Rate SoP settings And some of the Post Acquisition Prameters Praneters	
Concentration I Concentration Correction Factor Camera Control Sensibility Frame Rate SOP settings. Sop settings. Sop actings. Sop acti	
Concentration 1 Concentration Correction Factor Camera Control Sensitivity Frame Rate 6.5.0 5.0	
9	

10) You will need to choose SOP (standard operating procedure) for this measurement from the pull down menu

ize Distribution Vide	eo: Sample Parameters		
periment ID File 230417_0011 II	<no sop=""> Au20nm_488Q Au20nm 6400</no>		
n - <please t<="" td="" the="" use=""><td>Au_ZetaPotential</td><td></td><td></td></please>	Au_ZetaPotential		
D:\User_data\Ewa\0	AutoAlignment		
P Experiment Pa	DR660 640 F660Q		
elect an SOP	✓ EV_488_Abrahams EV_488_F500Q		eload Reload
-Description	EV_488Q		ttings as New SOP
Ev/ Hoorin idser	OR520_520_F550Q		
	PS100nm_405Q		Update SOP
Experiment	PS100nm_488Q PS100nm_5200		
Zetapot. Size	PS100nm_640Q		Fluorescence Filter
2 0	PS200nm_488Q		perature Scatter (None)
	YG405_405_F410Q		Laser
	YG488_488_F500Q		405 488 520 640
Cont.Pulsed	2P_468_11-pos+roni_Q 7P_488_SL_0		
LN	92		
Continuous: < 2 mS Puísed: > 2 mS	/cm Low Med. High Highest	Use Pump µL Pump 1 0	
Post Acquisition Para	neters	Concentration	
Min Brightness	Auto Brightness	Concentration Correction Factor	
Max Area () 10		Camera Control	Compare
Min Area 10	PSD log Correction	Sensitivity Frame Rate	Compare the current values with the SOP settings. Applies to Camera Control
naceeigai gris		Shutter	Parameters
nm / Class / 10	Classes / Decade (2) 64	2 100	

11) For PS standard use: PS 100nm_488Q

.

and choose "OK"; at this point the measurement will start and when done the result's window appears:

Save as 🗸	Mx Mn Br /	Post Aquisition Paramete	Max ZP 198.0	PSD pm / Class	PSD Classes / 4 64
20230417_0011_PS_100nm_041723b_size_488	1000 10 30	Li / cui grue	Max Area () 1000	(Decade
		Min Brightness 3 30	Min Area () 10	Tracelength () 15	Multi-Threshold
	14	Auto Brightness	PSD log Correction	New Traces	Show 11-Pos Tab
mple	Video Type	Display Info			Scatter Pi
nple: ctrolyte:Water, pH7.0 entered, Conductivity: 52.00 uS/cm sensed	Size Distribution Frames 30	· · · · · · · · · · · · · · · · · · ·	A + 🔿	~	6
	Duration 1.0 sec # Cycles 1	5.0E+6-		beretan the race	101202
Already Analyzed Cancel	# Positions 11	4.5E+6-	0250417_0011-246_10000	204M230_SIZE_400[1000	
ults: Average Results: X Values Peaks ROI		4.0E+6-			
Zeta Potential (mV) @25°C 0.00	Cisplay Mode	3.52+6-			
Dustom ± 0.00 Span 2.34	No ² Vo ² Vo	3.0E+6-			
0.0 ZP Factor 13.0 FWHM 722.15	lin log	10 2 FL6-			
	NAM	erto.			
	1001 02	- 2.0E+6-	1		
		1.5E+6-			
alty	Data Display	1.0E+6-			
Traces Pound 965	2 6 42	5.0E+5-	1 1		
		0.0E+0-		Mild Baran	
where of Particles Apparent Particles Apparent Particles	es / mL 5.4E+7	j ó s	io 100 150 3	00 250 300 35 Diameter/nm) 400 450 50

12) The *.pdf with results report will appear as well:

13) At this point the instrument is ready for analysis of samples of interest. Rinse the cell with water and

your buffer until there are just a few particles detected by the camera:

Check Pump & Temp Measurement Analysis	100%	
Run Video Acquisition Run Options Autosave .bxt Autosave .pdf Overlay Multiple Acquisitions	Cel Connected Fuorescence Fiter Scatter (Non) C Laser 405 488 52 640 Position 0.50501 C Sensitivity Shutter 100 - 22 0 - 22 0 80.0 100	
Number of Particles Number of Particles vs. Position 400- 350- 2 200- 150- 100- 50- 0 20 40 60 80 100 Sensitivity	Scattering No. o Detected Intensity Particles 28 - 1000 0 - 1 100 0 - 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

14) If you want to see the 11-position results table you will need to choose this option under Analysis tab:

15) Select: Measurgment, Run video acquisition and choose appropriate SOP from the acquisition window

16) Update the data storage folder and the name of the results file and choose OK.

17) Once the sample is loaded; check the drift before the data are collected:

I Check Pump & Temp Measurement Analys	is and the second se	
Run Video Acquisition Run Options Autosave .txt Autosave .pdf Overlay Hultiple Acquisitions	Cel Connected Plucrescence Piter Scatter (None) C Laser Position 0.50729 C Sensibility Skutter 100 - 2000 -	: * ¹ '
Number of Particles Number of Particles vs. Sensitivity 400	0 - 32 - 150 55.0 5.0 5.0 For the form of	
350 - 250 - 250 -	0- 1- 0.5 109 Division 0 1	Þ
2 150 - 100 - 50 - 0 20 40 60 80 100 Sensitivity	Concentration: Particles / mi: Measured 4.83E+7 Original Calculated 4.83E+7 Auto Analog View Calculated 1000 Min Bright. 200 Min Area 1000 Auto Analog View	

18) Once you choose this option, the instrument will start tracking the drift in the following display;

Check Pump & Temp Measurement Analy	sis	
Run Video Acquisition	Cell Connected	
	Fluorescence Filter	
in Ontions	Scatter (None)	
	Laser	
Autosave .Dxt	405 488 520 640	
Autosave .pdf	Poston	
	Sensitivity Churther	
Overlay	100 - 2000 -	
Multiple Acquisitions		
		i 🔶
	A 65.0 A 150	
	Scattering No. of Detected	
umber of Particles	Intensity Particles	
Number of Particles Number of Particles	28- 1000 -	
vs. Position vs. Sensitivity	100	
400 -	10 2	
350 -	0 1	
300 -	0.5 130	
250 -	Dilution	
200 -		
150 -	Concentration: Particles / ml: Post Acquisition Parameters Particle Drift at 0 V	
100 -	Measured 5.98E+7	\bigcirc
50-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	Original Calculated 5.98E+7 Min Bright. 20 Min Area 10	
0 20 40 00 00 100	Auto Digital View 19:27:11	

make sure that the drift bar with within the circle and shown in green.

19) Deselect "Check Particle Drift" and start measurements. Before measurement, you may update the dilution factor for your reference:

Check Pump & Temp Measurement Anal	ysis			
Run Vice Acquisition	Cel Connected			
Run Options	Laser 405 488 520 640			
Overlay	0.50729			
	0- 32- () 65.0 () 150	8		
Number of Particles Number of Particles vs. Persition	Scattering No. of Detected Intensity Particles 28 - 1000 - 100 -			
400				
250-	Diutio	Acquisition Parameters	Particle Drift at 0 V	Þ
100- 50- 0 20 40 60 80 100	Measured 5.37E+7 Original Calculated 5.37E+7 Min Brig	Max Area () 10 ht. () 20 Min Area () 10	Check Particle Dnft at 0 V	

20) Once the measurement is finished; the 11-position table will appear for your review:

		Save as	V	Mx Mn B	Post Aquisition Parameters ZP / Class 2.0 Max ZP 2198.0		PSD nm / Class	PSD Classes / ())		64		
- ALLAND	Po	sitions Overv	view									
	Use	Position	Mean Int.	Av. No of Particles	Conc. (p./mL)	Orig. Conc. (p./cm^3)	No. of Traces	x50 (nm)	Peak ø (nm)	Span	Drift (µm/s)	Remova
	X	0.10	0.6	91.0	4.1E+7	4.1E+7	72	109.2	104.1	1.2	6.3	
-	X	0.15	0.6	118.0	5.3E+7	5.3E+7	94	110.4	109.3	1.1	9.2	
-		0.20	0.3	101.0	4.5E+7	4.5E+7	85	103.8	93.9	1.1	10.2	GRUBBS_MI
yte:Water.	X	0.30	0.8	129.0	5.8E+7	5.8E+7	93	112.8	119.1	1.0	10.8	2010
0 uS/cm ser	X	0.40	0.7	135.0	6.1E+7	6.1E+7	97	115.4	120.5	0.9	11.0	
	X	0.50	0.6	130.0	5.8E+7	5.8E+7	87	99.0	93.8	0.9	8.7	
	X	0.60	0.5	134.0	6.0E+7	6.0E+7	86	111.5	93.4	1.0	5.3	
-	X	0.70	0.6	158.0	7.1E+7	7.1E+7	109	106.0	96.4	1.0	4.0	3
-	X	0.80	0.7	129.0	5.8E+7	5.8E+7	86	103.2	100.1	0.9	0.6	
Average	X	0.85	0.6	121.0	5.4E+7	5.4E+7	79	111.9	93.4	1.1	0.3	
-	X	0.90	0.7	127.0	5.7E+7	5.7E+7	90	109.2	88.0	0.9	0.8	-
. 1	-	Mean	0.7	127.2	5.7E+7	5.7E+7	89.3	108.8	101.8	1.0	5.7	
ctor		St.Dev.	0.1	16.7	7.5E+6	7.5E+6	10.1	4.9	11.2	0.1	4.2	-
2		Rel.St.Dev.	11.6	13.1	1.3E+1	1.3E+1	11.3	4.5	11.1	10.0	73.5	
					1.92+4	5-				1		Continue
Very Good		Trace	s Found 978	Data Display	1.0E+	s 1						
er of Particle	5-124	1.87	Annar	Dankidar (al. 5 (E) 7	0.0E+0	o 50 100 150	200 250	300 350	400 450	500		

And once you choose "Continue" the results will pop up and the report will show up as a *.pdf file.

File Administrator Help		
Cell Check Pump & Temp Measurement Analysis Image: Save 45 V Msr. Mn. Br. J.	Post Aquisiton Parameters 2P / Cless () 2.0 Max 2P () 191 P50 nm / Cless () 5 P50 Classes / () 6 Decade	20230417_0012_P5_100nm_041723b_size_488.pdf - Adobe Acrobat Read (64-bit) File Edit View Sign Window Help
<	Mar. Area 3 100 Min Brightness 3 50 Min Area 3 10 Tracelength 3 15 Multi-Threef Auto Brightness PSD log Carrel tion V New Traces V Show 11-Po	Home Tools 20230417_0011_PS 20230417_0012_PS × □ ☆ �
Sample: Somple: Sample: Secure Secu	Dipolary Info Scart 4.00 + 6 20230417 0072,95,400, 4+6,6461723b, size, 488 [1000 10]30] Image: Control of the second sec	
Cell Ivers Good Traces Pound (893)	1.00+45- 5.00+45- 0.00+40- 0 50 100 150 250 350 350 460 450 Dameter / rm	

SHUT DOWN

- 21) Rinse cell with buffer in which the samples were prepared and finally with water.
- 22) Check conductivity recorded in the sample cell by clicking "Update Conductivity" button. Observe the number; it should change from a few thousand, to below 20 for clean water.
- 23) Keep on rinsing with water, but if this is not sufficient, you may soak the cell for 1-2 minutes with diluted HELMMA detergent (in 100ml bottle on the shelf above the instrument) and rinse with water again.

- 24) Once the cell is clean and the conductivity is low; push 10ml of air to empty the cell.
- 25) Close the software.
- 26) Shut down the instrument (power it down- the blue light at the right corner should shut down **IMPORTANT.**
- 27) EMPTY WASTE bottle and bottle with water used for rinsing (attached to pump #1).

Additional information:

28) Interpretation of NTA Data Analysis – explain the following parameters, details in manual pg. 161-179:

- a) 11 position analysis briefly describe the fields in the 11-pos table, with removal criteria (pg 117-122)
- b) X50, mean, peak analysis make sure to point out the 3 main types of particle size values reported
- c) Vol vs. frequency plot explain obsolescence of Volume Plot, except for those correlating to DLS values
- d) Peak summary manual pg. 173 ... explain the spotty peak-picking algorithm, often missing smallest
- e) ROI manual pg. 175 ... very useful to complement data exported to graphing tools ... quick & easy!
- f) Scatter plots pg. 188-190, show where to set FCS file conversions in SOPs & convert via post-analysis
- g) Run peak overlay the manual describes all the peak comparison tools but without explicitly showing how to do a simple peak overlay with the buttons ... this needs to be demonstrated.
- h) Ave, relative view, smoothing pg 166-172 ... quickly demonstrate.

29) Modifying, or building own SOP's – details found in the manual from pg. 144-160

- a) per section 8, initiate a "trial run" using a starting SOP hit OK, then hit Cancel
- b) Go to Measurement tab, enter digital mode, then optimize Camera Sensitivity & Shutter for application:
 (i) for particles > 200 nm, set Sens. = 70, Shutter = 175 then reduce Sens. to optimal, minimizing noise
 (ii) biological particles < 80 nm, Sens. = 84, Shutter = 110, reduce Sens. to optimal, minimizing noise
- c) What do all the different options do?
 - i) Movie length: *silly film strip icons: for 30 fps, they are* ¹/₂*, 1, 2, 3 secs. then double that for 15 fps Note: the manual's description (pg. 98) is false and therefore is basically useless.*
 - ii) # of positions explain using SL1 & 2 for ZP, or for quick NTA reconnaissance analyses.
 - iii) # of cycles explain when to increase to 2 or more (i.e., for on-screen particle counts < 100).
 - iv) Size vs. Zeta Pot explain when to increase to 2 or more (i.e., for on-screen particle counts < 100).
 - v) Laser selection and mode selection -show the buttons ... important for fluorescence SOPs

30) Running f-NTA measurements - Manual pages 200-218

- a) Switching between scatter and fluorescence manually.
- b) Switching between the two by loading SOP's
- c) Teach necessity of setting focus manually in Admin Mode (and setting Min Bright < 20 for SOPs)

d) Explain & demonstrate the low bleach option using labelled beads

Offer the "f-NTA low-bleach cheat sheet" as a separate, detailed Quick Guide for using f-NTA.

e) Spend a few minutes pointing out our sample prep labeling SOPs (manual pages 219-224)

31) Running zeta measurements

- a) Check conductivity of your sample by clicking "update conductivity" in the lower left corner of the "Cell Check" window.
 - For sample conductivity < 2000uS, use Continuous Current mode (select appropriate SOP icon)
 - For sample conductivity > 2000uS, use Pulsed Current mode (select appropriate SOP icon)
 - If your sample is in 1x PBS the conductivity will be too high, so dilute buffer at least 3x
 - to get salinity so that conductivity < 2000uS, you will need to dilute PBS by 20x with water.
- b) Always run zeta measurements last ZP passes a charge through your sample and, which can change the apparent particle size; i.e., this electro-chemical experiment slightly *cooks* biological particles
- c) Always make sure the sample cell is clean the cell ZP calibration (AutoAlignment) depends on it.

32) **Data output** – *show the file types created (incl. FCS) and show file structure of histogram *.txt files.*

- 33) Removing and servicing the Sample Cell acquaint users with our Instructional YouTube videos.
- a) Review the video for removing cell, *then demonstrate it*. https://www.youtube.com/watch?v=Fl1ycEq6Fkg&list=PL_sY_BH4vS4BddT2eSAW3b2cKGKTzjsU8&index=6
- **b**) Review the video for cleaning the sample cell, *then demonstrate it*. https://www.youtube.com/watch?v=LmzrKtsiXmY&list=PL_sY_BH4vS4BddT2eSAW3b2cKGKTzjsU8&index=4

34) Trouble Shooting

- a) Identifying and **removing air bubbles**: *review the video then demonstrate*. <u>https://www.youtube.com/watch?v=2lat7fGSBHU&list=PL_sY_BH4vS4BddT2eSAW3b2cKGKTzjsU8&index=14</u>
- If bubbles stubbornly remain, then clean the sample chamber.

b) Manual focusing

- *i)* Go into Admin Mode (06charly13) then click the Alignment tab (*located far left of the screen*) ... *per figure at right*.
- ii) Un-check button "Synchronously", this decouples the Lens movement from Laser positioning
- iii) Adjust only the lens positions (buttons located @ left with the **eyeball** icon). Do NOT adjust the laser buttons!
- iv) Click the button "Focussed Position Save Calibration" (*ignore the gem quality typo*), this sets your new focus position.
- *v*) Re-check the button Synchronously *you're now ready*

- a) If a user just ran 10 EV samples, clean sample cell per section 14
- b) After cleaning the cell, run water through the sample cell w. Pump 1, for > 15 seconds
- c) Then flush the cell twice with water from a 3-5 ml syringe
- d) If the system will be used within the next 1-5 days, then the system can be left as is (wet)
- e) If the system won't be used for a while, you can blow the cell clean with air, but you MUST ensure that the sample cell is clean, otherwise any organics pasted to the cell walls will dry into a hard crust!
- f) Do NOT leave the sample cell with any sample material in it, nor with PBS in it ... this is bad practice
- g) Turn OFF the ZetaView software, then turn OFF the blue instrument box (switch @ backside)

** Clean the connections to the sample cell once a week, or sooner if needed, to remove buffer from pins