BioProcess International™ Analytical and Quality Summit

Protein Characterization by Static Light Scattering

Ewa Folta-Stogniew Yale University

Workshop:

"Oligomerization and High Molecular Weight Species Determination"

- Light Scattering Technologies
 - Static and dynamic light scattering
 - Parameters derived from SLS and DLS measurements
- Detection and differentiation between low order oligomers and high molecular weight aggregates
- Flow Mode Light Scattering Applications
 - Molar mass distributions and differences in populations
 - Morphology of aggregates from light scattering measurements (static and dynamic)
 - Determination of dimerization constant from SEC-LS measurements

Light Scattering Experiments

• Static (classical)

time-averaged intensity of scattered light

Dynamic (quasielastic)

fluctuation of intensity of scattered light with time

Measurements:

- batch mode
- "in-line" mode combined with a fractionation step,

i.e. chromatography, mainly Size Exclusion Chromatography, Flow Field Fractionation

Light Scattering Experiments

Static (classical)

time-averaged intensity of scattered light

Parameters derived:

- Molar Mass (weight-average) accuracy ~5%
- (<rg²>^{1/2}) root mean square radii

for $(< r_a^2 > 1/2) > (\lambda / 20) \sim 15$ nm

A₂ second virial coefficient

Rayleigh-Debye-Zimm formalism

 $\frac{K^*c}{R(\theta)} = \frac{1}{MwP(\theta)} + 2A_2c$

 A_2 $P(\Theta)$

Κ

Rayyleigh ratio (excess $R(\Theta)$ scattered light) sample concentration (g/ml) С weight-average molecular Mw weight (molar mass) second virial coefficient (ml-mol/g2) form factor (angular dependence) optical constant [4π2n2 (dn/dc)2 /(λo4NA)]

Dynamic (quasielastic) •

fluctuation of intensity of scattered light with time

Parameters derived:

- D_{T} translation diffusion coefficient ٠
- R_b hydrodynamic radius (Stokes radius) • Uncertainty of ~10% for monodisperse sample

Stokes-Einstein

$$D_T = \frac{kT}{6\pi\eta R_h}$$

Rh	hydrodynamic ra	hydrodynamic radius			
η	solvent viscosity				
	DT	translational diffusion coefficient			
	k	Boltzmann constant			
	Т	temperature			

Light Scattering Experiments

Determination of Molar Mass and second virial coefficient from a batch static LS experiment

BSA 66 kDa

Delay time (sec.)

Batch Mode Static MALLS experiment Monomer 14 kDa

Angular dependence of scattered light clearly indicates presence of aggregates

Missing information: how much and what size?

Ovalbumin 43 kDa

88% monomer

8% dimer

1.5% trimer

3% aggregates < 1MDa

0.4% 1-100 MDa

Three Detector monitoring

Molar mass distribution for multiple analyses

Ovalbumin 43 kDa

automated template processing of five data sets

Determination of Weight Fractions

Determination of Weight Fractions

Cumulative Molar Mass

Ovalbumin 43 kDa

Morphology of aggregates from angular dependence of LS signal;

size determination- Rg

Inferring conformational information from the relationship between molecular size (Rg) and molecular weight (Molar Mass)

$$R_g \sim M^{v}$$

log(R_g) versus log(MM)

Slope = v

For	ν
Sphere	0.33
Coil	0.5
Rod	1

Rollings, J.E. (1992) in *"Laser Light Scattering in Biochemistry",* Eds. S.E. Harding, D. B. Sattelle and V. A. Bloomfield; p. 275-293

Shape analysis: log(Rg) versus log(MM)

Aggregates of Ovalbumin vs. "amyloid-type" fibers

1

Rod

Amyloids v = 0.8

Coil/Rod

^B Rizos, A. K., Spandidos, D. A., and Krambovitis, E., (2003) Int. J. Med., 12, 559-563

Shape analysis:

shape factor $\rho = R_{g}/R_{h}$

 $\log(R_{q})$ versus $\log(MM)$ Slope = V

$$\rho = R_g/R_h = 1.84$$
 Rod
Amyloids $v = 0.8$ Coil/Rod

v = 0.8

TABLE 1 Summary of scaling exponents and average P-ratio values a^{a}

	γ_c	$\eta_{\rm c}$	Avg <i>ρ</i> -ratio	$\gamma_{\rm m}$ (v)	η_{m}
aCgn (a-chymotrypsinogen A)	-0.3 ± 0.1	-0.27 ± 0.07	1.65 ± 0.1	0.74 ± 0.16	0.64 ± 0.12
bG-CSF (bovine granulocyte-colony stimulating factor)	-1.13 ± 0.34	-1.25 ± 0.34	1.76 ± 0.13	0.74 ± 0.15	0.8 ± 0.4

а Weiss W F, IV, Hodgdon T. K., Kaler E. W., Lenhoff A. M., and Roberts C. J. (2007) Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth. Biophysical Journal 93: 4392-4403

Cryo-TEM micrograph of aCgn samples ($c_0 = 1 \text{ mg/mL}$) at m = 0.05

Weiss W F, IV, Hodgdon T. K., Kaler E. W., Lenhoff A. M., and Roberts C. J. (2007) Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth. Biophysical Journal 93: 4392-4403

Determination of dimerization constant from SEC-LS measurements

SecA protein

WT monomer = 102 kDa

DS8 deletion mutant monomer = 101 kDa

D11 deletion mutant monomer = 100 kDa

SecA protein

WT monomer = 102 kDa

DS8 deletion mutant monomer = 101 kDa

D11 deletion mutant monomer = 100 kDa

Low salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, **100 mM KCI**

10 mM Tris pH 7.5, 5 mM Mg2+, 300 mM KCI

High salt buffer:

D11 deletion mutant mono= 101 kDa

High salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 300 mM KCI,

D11 deletion mutant mono= 101 kDa

Low salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 100 mM KCI,

WTmonomer = 102 kDaDS8 deletion mutantmonomer = 101 kDaD11 deletion mutantmonomer = 100 kDa

Low salt buffer: 100 mM KCI

High salt buffer: 300 mM KCl

Thermodynamic linkage for SecA dimerization

Protein	Low Salt 100 mM KCl		High Salt 300 mM KCl		
	Kd [M]	ΔG dimer (kcal/mol)	Kd [M]	ΔG dimer (kcal/mol)	
WТ	<1x10 ⁻⁹	-12.3	2.2±0.2x10 ⁻⁶	-7.7	
DS8	7±1x10 ⁻⁸	-9.7	2.41±0.05x10 ⁻⁵	-6.3	
D11	3.5±0.2x10 ⁻⁶	-7.4	>2.4x10 ⁻⁴	-4.9	

Static LS

- fast and accurate determination of molar masses (weight average)
 - glycosylated protein, conjugated with PEG, protein-lipids-detergent complexes, protein-nucleic acid complexes
- accuracy of ± 5% in molar mass determination
- easy to implement, fully automated (data collection and data analysis)
- highly reproducible (no operator's bias)
- SEC/MALS excellent in detecting and quantifying population with various oligomeric state in protein
- can be used to determine association constant (concentration gradient measurements)

Combined data about MM, Rg and Rh - shape information (multiangle static and dynamic LS)

- via frictional ratio (shape factor) R_h/R_s
- via shape factor v, from log(R_a) vs. log(MM) plot
- via shape factor $\rho,$ from ${\rm R_g/R_h}$ ratio

Ken Williams Director of W.M. Keck Biotechnology Resource Laboratory at Yale University School of Medicine

NIH

Users of SEC/LS Service

http://info.med.yale.edu/wmkeck/biophysics

Ewa.Folta-Stogniew@yale.edu