Size Exclusion Chromatography Coupled with Light Scattering: Application to Study Proteins and Protein Complexes

Size Exclusion Chromatography (SEC) Coupled with Light Scattering (LS)

- Derivation of Molecular Weight from LS experiment
- Experimental Set Up for SEC/LS "in-line"
- Evaluation of the SEC/LS System Results for Standard Proteins Sample Requirements
- Applications of SEC/LS to study protein complexes
- Conclusions

Size Exclusion Chromatography (SEC) Coupled with Light Scattering (LS)

- Derivation of Molecular Weight from LS experiment
- Experimental Set Up for SEC/LS "in-line"
- Evaluation of the SEC/LS System Results for Standard Proteins Sample Requirements
- Applications of SEC/LS to study protein complexes
- Conclusions

Light Scattering Experiments

Static Light Scattering Experiments

Debye-Zimm formalism for $R(\Theta)$, the excess intensity of scattered light at an angle Θ

$$\frac{K^*c}{R(\theta)} = \frac{1}{MwP(\theta)} + 2A_2c$$

- c is the sample concentration (g/ml)
 M_w is the weight-average molecular weight (molar mass)
- A_2 is the second virial coefficient (ml-mol/g²)
- K* is an optical parameter equal to $4\pi^2 n^2 (dn/dc)^2 / (\lambda_0^4 N_A)$
- n is the solvent refractive index and dn/dc is the refractive index increment
- N_A is Avogadro's number
- λ_0 is the wavelength of the scattered light in vacuum (cm)
- $P(\theta)$ is the form factor (describes angular dependence of scattered light)

Static Light Scattering Experiments

at low concentrations c < 0.1 mg/mL

 $2A_2cMw << 1$

thus, the second virial coefficient term $(2A_2c)$ can be neglected

$$\frac{K^*c}{R(\theta)} = \frac{1}{M_w P(\theta)} + 2A_2 c \longrightarrow \frac{K^*c}{R(\theta)} = \frac{1}{M_w P(\theta)}$$

expansion of $P(\Theta)$ to the first order gives

 $1/P(\Theta) = 1 + (16\pi^2/3\lambda^2) < r_g^2 > \sin^2(\Theta/2) + \dots$

Static Light Scattering Experiments

$$\frac{K^*c}{R(\theta)} = \frac{1}{M_w} (1 + (16\pi^2/3\lambda^2) < r_g^2 > \sin^2(\frac{\theta}{2}))$$

Using a multi angle instrument construct a plot of

$$\frac{K^*c}{R(\theta)} \quad \text{against} \quad \sin^2(\frac{\theta}{2})$$

From intercept --- Derived MW

Zimm Plot Ovalbumin (43 kDa)

At low concentrations

From intercept — Derived MW

weight-average MW

fractionate samples

Size Exclusion Chromatography (SEC) Coupled with Light Scattering (LS)

- Derivation of Molecular Weight from LS experiment
- Experimental Set Up for SEC/LS "in-line"
- Evaluation of the SEC/LS System Results for Standard Proteins Sample Requirements
- Applications of SEC/LS to study protein complexes
- Conclusions

Zimm Plot Ovalbumin (43 kDa)

Molar Mass Distribution Plot

Ovalbumin 43 kDa

Molar Mass vs. Volume

Molar Mass Distribution Plot

BSA 66 kDa

Molar Mass vs. Volume

Size Exclusion Chromatography (SEC) Coupled with Light Scattering (LS)

- Derivation of Molecular Weight from LS experiment
- Experimental Set Up for SEC/LS "in-line"
- Evaluation of the SEC/LS System

Results for Standard Proteins Sample Requirements

- Applications of SEC/LS to study protein complexes
- Conclusions

Molecular Weights Determined from "in line" analyses; static LS with SEC in line; **16 protein standards**, MW **6.5 to 475 kDa**

Protein	Oligomeric	# Pups	Pred. MW	Average	Average error
FIOLEIII	state	Runs	(KDa)	MW ± St. Dev. (kDa)	(70)
Aprotinin	monomer	2	6.5	6.8 ± 0.5	4.6
Cytochrome C	monomer	5	12.3	12.01 ± 0.57	2.4
α -Lactalbumin	monomer	2	14.2	14.32 ± 0.01	0.9
Myoglobin	monomer	3	17.0	14.19 ± 0.91	16
βLactglobulin	monomer	2	18.3	20.06 ± 0.33	9.7
Tripsin inhibitor	monomer	1	20.0	20.50	2.3
Carbonic anhydrase	monomer	4	29.0	29.22 ± 0.20	0.8
Ovalbumin	monomer	10	42.8	42.52 ± 0.68	1.4
BSA (monomer)	monomer	5	66.4	66.41 ± 1.00	1.2
Transferrin	monomer	2	75.2	76.92 ± 0.98	2.3
Enolase (yeast)	dimer	3	93.3	80.74 ± 1.18	13
Enolase (rabbit)	dimer	4	93.7	86.44 ± 1.90	7.8
BSA (dimer)	dimer	5	132.9	137.10 ± 3.93	3.2
Alc. dehydrogenase	tetramer	4	147.4	144.02 ± 0.86	2.4
Aldolase (rabbit)	tetramer	2	156.8	153.7 ± 1.91	1.1
Apo-ferritin	24 [×] monomer	2	475.9	470.3 ± 2.62	1.2
	2.3				

Buffer: 20 mM HEPES, 150 mM KCI, 1 mM EDTA, pH=8.0; column: Superdex 200 or Superdex 75

Correlation between the amount of protein analyzed and the accuracy of MW determination

Protein	Amount loaded (µg)	# Runs	Pred. MW (kDa)	Avrg. MW (kDa)	SD (kDa)	Avrg. error (%)	Range of accuracy (%)
Ovalbumin	150	4	42.8	42.4	0.3	0.9	0.2 to 1.6
	100	7	42.8	42.3	0.8	1.2	0.2 to 2.4
	45-50	4	42.8	41.6	1	2.8	0.5 to 5.8
	6-10	5	42.8	42.9	2	0.2	1.4 to 4.5
Transferrin	100	3	75.2	76.5	1	1.7	0.7 to 3.2
	8	5	75.2	76.3	2	1.5	0.3 to 5.2

column: TSK GEL G3000_{SWXL} [TosoHaas], buffer: 20 mM phosphate, 150 mM NaCl, pH=7.5

Sample Requirements for Proteins

Column	Optimal amount of protein µg [10 ⁻⁶ g]						
	MM >200 kDa	MM 40-200 kDa	MM 10-40 kDa	MM <10 kDa			
Superose 6 HR 10/30	50	50-100	Not suitable	Not suitable			
Superdex 200 HR 10/30	50	50-100	100-200	Not suitable			
Superdex 75 HR 10/30	Not suitable	50-100	100-200	Not suitable			
Superdex peptide HR 10/30	Not suitable	Not suitable	Not suitable	400-800			

Size Exclusion Chromatography (SEC) Coupled with Light Scattering (LS)

- Derivation of Molecular Weight from LS experiment
- Experimental Set Up for SEC/LS "in-line"
- Evaluation of the SEC/LS System Results for Standard Proteins Sample Requirements
- Applications of SEC/LS to study protein complexes
- Conclusions

Applications of SEC/LS to study protein complexes

- Determination of the oligomeric state of mutant vs. wild type protein
- *Mixtures of non-interacting proteins*
- Mixtures of interacting protein- detection of ligand driven protein complexes
- Determination of oligomeric state of membrane proteins solubilized in detergents

Determination of the oligomeric state of mutant vs. wild type protein

Example:

protein 12 kDa (WT protein exists as a trimer)

Three mutants and WT protein were analyzed.

Mixtures of non-interacting proteins

Example:

BSA monomer -

Yeast Enolase -

66 kDa protein

93 kDa dimer (2x46kDa)

Analysis of co-eluting protein mixture

Mixtures of interacting proteindetection of ligand driven protein oligomerization

Example:

protein 27 kDa (protein exists as a mixture of monomer and dimer)

ligand 7 kDa

Ligand binding shifts the protein into dimeric form

Analysis of interacting proteins

Complex: (2*27)+7=61 kDa measured MW=59 kDa

Determination of the oligomeric state of modified protein

Data Analysis:

Use "three detector method"

Use ASTRA

(knowing the amount of non-polypeptide moiety bound) use weight-average dn/dc value

Three Detector Method

Yutaro Hayashi, Hideo Matsui and Toshio Takagi

Methods Enzymol 1989;172:514-28

$$M_p = \frac{k^* (LS)(UV)}{\varepsilon (RI)^2}$$

Jie Wen, Tsutomu Arakawa and John S. Philo Anal Biochem 1996 Sep 5;240(2):155-66

$MWp = 91.39 x [(LS)*(UV)/(A*(RI^2))]$

Ova

Ald

Determination of the oligomeric state of detergent solubilized membrane protein

Data Analysis:

Use "three detector method"

Use ASTRA

use "corrected" dn/dc value as described by Habayashi (scaled RI signal such that it represents contribution only from polypeptide) Determination of the oligomeric state of detergent solubilized protein

Example:

protein

47 kDa well characterized porin

detergent

dodecyl maltoside (C12M) MW = 511 g/mol 0.5g/L i.e. 0.05% CMC = 0.008% micelle size 50-70 kDa

porin monomer = 47 kDa $MW = 149 \pm 3$ kDa trimer

Determination of the oligomeric state of detergent solubilized protein

Example:

protein

33 kDa

Detergent

dodecyl maltoside (C12M) MW = 511 g/mol

n-Dodecyl- β -D-Maltoside

0.5g/L i.e. 0.05%

CMC = 0.008% micelle size 50-70 kDa

Three Detector Method

Yutaro Hayashi, Hideo Matsui and Toshio Takagi

Methods Enzymol 1989;172:514-28

allows determination of mass of detergent/lipids bound to a polypeptide

$$\left(\frac{dn}{dc}\right)_{app} = k_2 A \frac{(RI)}{(UV)}$$

$$\left(\frac{dn}{dc}\right)_{app} = \left(\frac{dn}{dc}\right)_{pp} + \delta \left(\frac{dn}{dc}\right)_{d+l} = K \frac{(RI)}{\varepsilon(UV)}$$

 δ is mass of detergent and/or lipids per 1 gram of polypeptide Assumption : detergent does not produce any signal in UV

 δ is mass of detergent and/or lipids per 1 gram of polypeptide

Conclusions

SEC coupled with Static LS/RI/UV

- fast and accurate determination of molecular weight (MW) of macromolecules in solution
- single SEC/LS measurement should be sufficient to estimate a MW with a precession of ± 5%
- SEC/LS suitable for detection and characterization of non-interacting and interacting systems
- SEC/LS/UV/RI analysis can determine oligomeric state of modified proteins including detergent solubilized membrane proteins

Ken Williams

Director of HHMI Biopolymer & W.M. Keck Biotechnology Resource Laboratory

NIH

Users of SEC/LS Service