Application of Light Scattering in a Core Facility Setting

Ewa Folta-Stogniew Yale University

Biophysics Resource of Keck Laboratory: Yale School of Medicine

Mission: quantitative characterization of interactions between biomolecules using in solution biophysical methods

Common questions:

- how tight is the binding ? (binding affinity: K_d, K_a)
- how many of each molecule are in the complex (stoichiometry)
- how fast does the complex form? (kinetics)
- is the binding event enthalpy or entropy-driven? (thermodynamics)

List of technologies:

- Size Exclusion Chromatography coupled with Light Scattering (SEC/LS)
- Dynamic Light Scattering (DLS)
- Isothermal MicroCalorimeter (ITC)
- Spectrofluorometer
- Stopped-Flow Spectrofluorometer
- Surface Plasmon Resonance (SPR) Sensor [BiaCore Biosensor; T100]
- Composition Gradient Static Light Scattering (CGSLS)
- Asymmetric flow Field-Flow Fractionation (AFFF)

http://info.med.yale.edu/wmkeck/biophysics/

Biophysics Resource of Keck Laboratory: Yale School of Medicine

Mission: quantitative characterization of interactions between biomolecules using in solution biophysical methods

Common questions:

- how tight is the binding ? (binding affinity: K_d, K_a)
- how many of each molecule are in the complex (stoichiometry)
- how fast does the complex form? (kinetics)
- is the binding event enthalpy or entropy-driven? (thermodynamics)

List of technologies:

- Size Exclusion Chromatography coupled with Light Scattering (SEC/LS)
- Dynamic Light Scattering (DLS)
- Isothermal MicroCalorimeter (ITC)
- Spectrofluorometer
- Stopped-Flow Spectrofluorometer
- Surface Plasmon Resonance (SPR) Sensor [BiaCore Biosensor; T100]
- Composition Gradient Static Light Scattering (CGSLS)
- Asymmetric flow Field-Flow Fractionation (AFFF)

http://info.med.yale.edu/wmkeck/biophysics/

Typical SEC(AFFF); MALLS system

BSA

SEC/LS results: Molar Mass Distribution Plot

Is that ALL?

SEC/LS results: Molar Mass Distribution Plot

BSA Monomer: 66 kDa

The streptococcal C1 bacteriophage lysin, PlyC,

Holoenzyme is a multimeric protein:

50.3 kDa, "catalytic" subunitExt. coeff. $A^{0.1\%}_{280} = 2.2$ 8.0 kDa, "binding" subunitExt. coeff. $A^{0.1\%}_{280} = 0.3$

SEC/LS MW= 114.0 0.4 kDa

PlyC 1 big+8 small predicted MW = 114.3 kDa

SEC/LS accuracy ~3 % , i.e. ~ 3kDa for PlyC

Nelson D, Schuch R., Chahales P., Zhu S., and Fischetti V. A. (2006) PlyC: A multimeric bacteriophage lysin. Proceedings of the National Academy of Sciences 103: 10765-10770

"on-line" determination of extinction coefficient a from UV/RI ratio

Evaluated models:

1 big+8 small	MW=	PlyC	model (1+8)
2 big+2 small	MW=	PlyC_bis	model (2+2)

Octameric PlyCB. The eight PlyCB subunits arranged in a ring as observed in the crystal structure of PlyC.

9861					
0001	Protein	Ext. coeff. Est.	UV/RI ratio		residual
			observed	computed	^2
	Аро	1.026	1.279	1.271	0.000
	BAM	1.788	2.147	2.215	0.005
I	BSA	0.700	0.821	0.867	0.002
,	CA	1.737	2.273	2.152	0.015
·	OVA	0.730	0.919	0.904	0.000
	Ti	0.928	1.070	1.150	0.006
	PlyC (1+8)	1.204	1.600	1.491	0.012
	PlyC_bis (2+2)	2.000	1.600	2.478	0.770

^a Philo J S, Aoki K. H., Arakawa T., Narhi L. O., and Wen J. (1996) Dimerization of the Extracellular Domain of the Erythropoietin (EPO) Receptor by EPO: One High-Affinity and One Low-Affinity Interaction. *Biochemistry* **35**: 1681-1691

Nelson D, Schuch R., Chahales P., Zhu S., and Fischetti V. A. (2006) PlyC: A multimeric bacteriophage lysin. Proceedings of the National Academy of Sciences 103; 10765-10770

Dimerization of FIR

FIR: human *c-myc* FarUpStream Element (FUSE) Binding Protein (FBP) Interacting Repressor (FIR) FIR protein fragment: first two RRM domains

FIR: 23.4 kDa monomer; seen as a dimer in the X-ray structure

Crichlow G V, Zhou H., Hsiao H. H., Frederick K. B., Debrosse M., Yang Y., Folta-Stogniew E. J., Chung H. J., Fan C., De la Cruz E. M., Levens D., Lolis E., and Braddock D. (2008) Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. *EMBO J* 27: 277-289

Dimerization of FIR depends on DNA binding event

FIR protein: 23 kDa monomer ssDNA fragment upstream of the P1 promoter, known as FUSE; 8 kDa FIR+DNA complex; task: determine stoichiometry of the FIR+DNA complex in solution

55 -		¥		▼	
35 -	▼		\bigtriangledown	FIR alone FIR+DNA	
₹	\forall		\forall	\forall	
0	30	60	90	120	150
		[FIR]	(µM)		

FIR-DNA complexes	MW (kDa)
FIR+DNA (2:1) complex	54.7
FIR+DNA (2:2) complex	62.8
Observed MW	57.7

Concentration dependent measurements reveal that in solution the dimerization is driven by DNA binding

Crichlow, G. V., Zhou, H., Hsiao, H-h., Frederick, K. B.,, Debrosse, M., Yuande Yang, Y., Folta-Stogniew, E. J., Chung, H-J., Chengpeng Fan, C., De La Cruz, E., Levens, D., Lolis, E., and Braddock, D. (2008) "Dimerization of FIR upon FUSE binding suggests a mechanism of c-myc inhibition", *EMBO J* 27: 277-289

Dimerization of FIR depends on DNA binding event

FIR protein: 23 kDa monomer; seen as a dimer in X-ray structure
ssDNA fragment upstream of the P1 promoter, known as FUSE; 8 kDa
FIR+DNA complex; task: determine stoichiometry of the FIR+DNA complex in solution

Crichlow, G. V., Zhou, H., Hsiao, H-h., Frederick, K. B.,, Debrosse, M., Yuande Yang, Y., Folta-Stogniew, E. J., Chung, H-J., Chengpeng Fan, C., De La Cruz, E., Levens, D., Lolis, E., and Braddock, D. (2008) "Dimerization of FIR upon FUSE binding suggests a mechanism of c-myc inhibition", EMBO J 27: 277-289

KtrAB ion transporter:

complex of KtrB membrane protein and KtrA RCK domain (regulating and conductance of K⁺)

KtrB: integral membrane protein isolated in the presence of detergent (DDM) as a polypeptide:detergent(lipid) complex

Protein	Polypeptide [kDa]	Oligomeric state	Full complex [kDa]	Grams of detergent/lipids per gram of polypeptide
KtrB (monomer 49kDa)	98	dimer	238	1.4

KtrAB ion transporter:

complex of KtrB membrane protein and KtrA RCK domain (regulating and conductance of K⁺)

KtrA RCK domain : basic assembly dimer, higher order oligomers: tetramer or octamer

KtrAB ion transporter

(8:2) model polypeptide = 228 kDa

(8:4) model polypeptide = 325 kDa

dimer:octamer KtrB:KtrA	complex	Elution volume (ml)	Total mass of complex (kDa)	Poly- peptide (kDa)	lipids (kDa)
0.4	8:2	14.23	486	228	256
0.9	8:2	14.05	521	240	281
2.2	8:4	13.99	552	302	261
3.7	8:4	13.91	560	299	251

Elution volume (ml)

dimer:octamer KtrB:KtrA	Excess KtrB	Elution volume	8:2 model (228 kDa)		correct 8:4 model (325 kDa) model ?		correct model ?	
	dimer?	(ml)	computed MW for complex (kDa)	difference from model (kDa)	·	computed MW for complex (kDa)	difference from model (kDa)	
0.4		14.23	228	0	Yes	250	-75	
0.9		14.05	240	12	Yes	264	-61	
2.2	Yes	13.99	274	46		302	-24	Yes
3.7	Yes	13.91	271	43		299	-27	Yes

Effects of detergent on oligomeric state of KtrA RCK domain

Input:

• SEC/LS analyses at several eluting concentrations

Results:

Determination of dimerization constant

Nucleobindin 1 (NUCB1) is a widely expressed multidomain calcium-binding protein whose precise physiological and biochemical functions are not well understood;

soluble form of NUCB1 (*sNUCB1*) ;

Monomer 51 kDa

Nucleobindin 1 (NUCB1) is a widely expressed multidomain calcium-binding protein whose precise physiological and biochemical functions are not well understood;

soluble form of NUCB1 (sNUCB1);

Monomer 51 kDa

Nucleobindin 1 (NUCB1) is a widely expressed multidomain calcium-binding protein whose precise physiological and biochemical functions are not well understood;

soluble form of NUCB1 (*sNUCB1*); N

protein conc (M)	Mw (kDa)
1.27E-08	55.3
2.63E-08	65.26
3.06E-08	53.93
4.67E-08	63.67
6.89E-08	69.29
7.06E-08	63.65
1.52E-07	73
1.61E-07	74.32
4.10E-06	97.84
7.88E-06	99.16
1.26E-05	99.97
2.00E-05	100.6
1.58E-06	95.04
3.15E-07	75.95
2.43E-06	95.68
7.75E-07	90.23

2M = D

$$M_{w} = f_{m}M_{m} + f_{d}M_{d} = M_{m}(2 - f_{m})$$
$$K_{a} = \frac{[D]}{[M]^{2}} = \frac{(1 - f_{m})}{2(f_{m})^{2}c_{t}} \qquad f_{m} = \frac{-1 + \sqrt{1 + 8K_{a}c_{t}}}{4K_{a}c_{t}}$$

Kapoor N, Gupta R., Menon S. T., Folta-Stogniew E., Raleigh D. P., and Sakmar T. P. (2010) Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. *J.Biol.Chem.* **285**; 31647-31660

protein conc (M)	Mw (kDa)
1.27E-08	55.3
2.63E-08	65.26
3.06E-08	53.93
4.67E-08	63.67
6.89E-08	69.29
7.06E-08	63.65
1.52E-07	73
1.61E-07	74.32
4.10E-06	97.84
7.88E-06	99.16
1.26E-05	99.97
2.00E-05	100.6
1.58E-06	95.04
3.15E-07	75.95
2.43E-06	95.68
7.75E-07	90.23

2M = D

$$M_{w} = f_{m}M_{m} + f_{d}M_{d} = M_{m}(2 - f_{m})$$

 $K_{a} = \frac{[D]}{[M]^{2}} = \frac{(1 - f_{m})}{2(f_{m})^{2}c_{t}} \qquad f_{m} = \frac{-1 - f_{m}}{2(f_{m})^{2}c_{t}}$

 $f_m = \frac{-1 + \sqrt{1 + 8K_a c_t}}{4K_a c_t}$

Kapoor N, Gupta R., Menon S. T., Folta-Stogniew E., Raleigh D. P., and Sakmar T. P. (2010) Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. *J.Biol.Chem.* **285**; 31647-31660

Samples		Oligomeric State in Solution				
		Molecular Weight (kDa) Dime		Dimerization	merization Constant	
Protein	Monomer (kDa)	AUC	SEC/MALLS	AUC	SEC/MALLS	
sNUCB1-Ca2⁺	51	98.9 ± 0.41	99 ± 1*		0.26 ± 0.03 μM	
sNUCB1(W333Ter)-Ca2⁺	37	35.2 ± 0.05	37± 2			

*Average from four SEC/MALLS analyses ± StDev

sNUCB1(W333Ter)-Ca2+truncation mutant, which lacks the lucine zipper domain

Kapoor N, Gupta R., Menon S. T., Folta-Stogniew E., Raleigh D. P., and Sakmar T. P. (2010) Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. *J.Biol.Chem.* **285**; 31647-31660

Samples	Oligomeric State in Solution				Shape Analysis		
		Molecular Weight (kDa)		Dimerization Constant			
Protein	Monomer	AUC	SEC/MALLS	AUC	SEC/MALLS	Rh (DLS)	f/fo
	(kDa)						
sNUCB1-Ca2⁺	51	98.9 ± 0.41	99±1*		0.26 ± 0.03 μM	6.2 ± 0.1	2.03
sNUCB1(W333Ter)-Ca2⁺	37	35.2 ± 0.05	37± 2			3.0 ± 0.1	1.59

*Average from four SEC/MALLS analyses ± StDev

sNUCB1(W333Ter)-Ca2+truncation mutant, which lacks the lucine zipper domain

Kapoor N, Gupta R., Menon S. T., Folta-Stogniew E., Raleigh D. P., and Sakmar T. P. (2010) Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. *J.Biol.Chem.* **285**; 31647-31660

SecA protein (nanomotor promotes protein translocation in eubacteria)

conflicting reports about whether SecA functions as a monomer or dimer

WTmonomer =102 kDaDS8 deletion mutantmonomer =101 kDaD11 deletion mutantmonomer =100 kDa

1 2 3 4 5 6 7 8 9 10 11 Met Leu IIe Lys Leu Leu Thr Lys Val Phe Gly

The two subunits in the crystal structure of *B. subtilis* SecA The first nine residues of each subunit are shown in *yellow* and *blue*^a.

SecA protein

WT monomer = 102 kDa

DS8 deletion mutant monomer = 101 kDa

D11 deletion mutant monomer = 100 kDa

Low salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 100 mM KCI

High salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 300 mM KCl

D11 deletion mutant mono= 101 kDa

High salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, **300 mM KCI**,

D11 deletion mutant mono= 101 kDa

Low salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 100 mM KCI,

D11 deletion mutant mono= 101 kDa

Low salt buffer:

10 mM Tris pH 7.5, 5 mM Mg2+, 100 mM KCI,

High salt buffer: 300 mM KCl

Thermodynamic linkage for SecA dimerization from SEC/MALLS

Protein	Low salt (100 mM)	High salt (3	00 mM)
	К _а [М]	ΔG dimer (kcal/mol)	К _а [М]	∆G dimer (kcal/mol)
wt	<1x10 ⁻⁹	-12.3	2.2±0.2x10 ⁻⁶	-7.7
DS8	7±1x10 ⁻⁸	-9.7	2.41±0.05x10 ⁵	-6.3
D11	3.5±0.2x10 ⁻⁶	-7.4	>2.4x10 ⁻⁴	-4.9

Das S, Stivison E, Folta-Stogniew E, Oliver D. (2008) "Re-examination of the Role of the Amino-Terminus of SecA in Promoting Its Dimerization and Functional State", J Bacteriol. (2008) 190;7302-7307.

Thermodynamic linkage for SecA dimerization from SEC/MALLS

Protein	Low salt (100 mM)		High salt (300 mM)		
	К _а [М]	ΔG dimer (kcal/mol)	К _а [М]	∆G dimer (kcal/mol)	
wT	<1x10 ⁻⁹	-12.3	2.2±0.2x10 ⁻⁶	-7.7	
DS8	7±1x10 ⁻⁸	-9.7	2.41±0.05x10 ⁵	-6.3	
D11	3.5±0.2x10 ⁻⁶	-7.4	>2.4x10 ⁻⁴	-4.9	

Why no AUC data?

Das S, Stivison E, Folta-Stogniew E, Oliver D. (2008) "Re-examination of the Role of the Amino-Terminus of SecA in Promoting Its Dimerization and Functional State", J Bacteriol. (2008) 190;7302-7307.

SecA protein (nanomotor promotes protein translocation in eubacteria)

conflicting reports about whether SecA functions as a monomer or dimer

SecA protein (nanomotor promotes protein translocation in eubacteria)

conflicting reports about whether SecA functions as a monomer or dimer

WTmonomer =102 kDaDS8 deletion mutantmonomer =101 kDaD11 deletion mutantmonomer =100 kDa

1 2 3 4 5 6 7 8 9 10 11 Met Leu IIe Lys Leu Leu Thr Lys Val Phe Gly

The two subunits in the crystal structure of *B. subtilis* SecA The first nine residues of each subunit are shown in *yellow* and *blue*^a.

SecA protein (nanomotor promotes protein translocation in eubacteria)

conflicting reports about whether SecA functions as a monomer or dimer

SecA protein (nanomotor promotes protein translocation in eubacteria)

conflicting reports about whether SecA functions as a monomer or dimer

Extracellular ligand binding domain (LBD) of the metabotropic glutamate

mGluR LBD is a homodimer with a glutamate binding pocket in each subunit

expressed in HEK293S cells; yields ~ 25 ug from a single preparation

extracellular ligand-binding domain (LBD), which acts as a detector of glutamate.

WTmonomer = 59kDadimeric in solutionmutantmonomer = 59kDadestabilized dimer?

Extracellular ligand binding domain (LBD) of the metabotropic glutamate

WT	monomer = 59kDa	dimeric in solution	
mutant	monomer = 59kDa	destabilized dimer?	

Extracellular ligand binding domain (LBD) of the metabotropic glutamate

in solution

WT	monomer =	59kDa	dimeric	in	solutio
mutant	monomer =	59kDa	destabilized dimer?		

Extracellular ligand binding domain (LBD) of the metabotropic glutamate

WTmonomer = 59kDamutantmonomer = 59kDa

dimeric in solution destabilized dimer?

Extracellular ligand binding domain (LBD) of the metabotropic glutamate

WT

monomer = 59kDa

mutant monomer = 59kDa

destabilized dimer?

dimeric in solution

Concentration range accessible on an analytical SEC/LS system

~1 μ g/ml to ~10 mg/ml

Size Exclusion Chromatography coupled with Light Scattering

- Fast and accurate determination of molar masses (weight average) in solution
- Can be used at wide range of protein concentrations from ~ 1µg/ml to >10mg/ml (correction for non-ideality)
- The SEC-UV/RI/LS (static and dynamic) data are very information rich and can be utilized to learn much more about the sample than "just" determination of Mw
 - Determination of stoichiometry of protein complexes:
 - protein-nucleic acid complexes
 - membrane protein in complexes with lipids and detergents
 - Provide information about shape (frictional ratio, f/fo)
 - Determination of dimerization constant

Ken Williams

Director of W.M. Keck Biotechnology Resource Laboratory at Yale University School of Medicine

NIH

Users of the Biophysics Resource and SEC/LS Service

Services provided by the Biophysics Resource contributed to > **60 publications** (>30 from Yale)

Light Scattering Services contributed to > 45 publications

Full list at: http://info.med.yale.edu/wmkeck/biophysics/publications_biophysics_resource.pdf

http://info.med.yale.edu/wmkeck/biophysics

Ewa.Folta-Stogniew@yale.edu

Thank you all very much for your generosity

you have collectively contributed

\$85.04 and 20 Euro pennies

for

