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Static   LS
• Theory
• SEC/LS “in-line” Set Up
• Results for Standards
• Sample Requirements
• Applications

Dynamic  LS
• Theory
• Results for Standards
• Batch mode vs. SEC/LS

“in-line” measurements

Static and  Dynamic LS
Experimental Set-Up

Parameters derived

Static vs. Dynamic LS Measurements



Light Scattering Experiments
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• Static  (classical)

time-averaged
intensity of 
scattered light

• Dynamic 
(quasielastic)
fluctuation  of  
intensity of scattered
light  with time

Light Scattering Experiments

Parameters derived:

•      MW   (weight-average)

•      (<rg
2>1/2)  root mean 

square  radii  for 
(<rg

2>1/2)> (λ/ 20) ~ 30 nm

Parameters derived:

•      DT      translation diffusion
     coefficient

•      Rh     hydrodynamic radius
    (Stokes radius)



• Static  (classical)

time-averaged
intensity of 
scattered light

• Dynamic 
(quasielastic)
fluctuation  of  
intensity of scattered
light  with time

Light Scattering Experiments

Measurements:
•      batch mode

•     “in-line” mode



Static Light Scattering

•   Theory
•   SEC/LS “in-line” Set Up
•   Results for Standards
•   Sample Requirements
•   Applications



Static Light Scattering Experiments

Debye-Zimm formalism for R(�), the excess intensity of scattered light
at an angle �

c   is the sample concentration (g/ml)
Mw  is the weight-average molecular weight (molar mass)
A2  is the second virial coefficient (ml-mol/g2)
K* is an optical parameter equal to 4π2n2 (dn/dc)2 /(λ0

4NA)
n  is the solvent refractive index and dn/dc is the refractive index 

increment
NA is Avogadro’s number
λ0 is the wavelength of the scattered light in vacuum (cm)

is the form factor (describes angular dependence of scattered light)
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Static Light Scattering Experiments
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Zimm Plot  Ovalbumin (43 kDa)

90° & AUX detectors
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Volume      :  16.300 mL

Conc.   :  (0.173 ± 0.000) mg/mL

Mw     (42.79 ± 0.03) x103 g/mol
Radius  :     0.0 ± 0.0 nm
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Static Light Scattering

•   Theory

•   SEC/LS “in-line” Set Up
•   Results for Standards
•   Sample Requirements
•   Applications
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Zimm Plot  Ovalbumin (43 kDa)

90° & AUX detectors
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Molar Mass Distribution  Plot
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Static Light Scattering

•   Theory
•   SEC/LS “in-line” Set Up

•   Results for Standards
•   Sample Requirements
•   Applications



Buffer:   20 mM HEPES, 150 mM KCl, 1 mM EDTA, pH=8.0;  column:  Superdex 200   or    Superdex 75

M olecu lar W eights D eterm in ed  from  "in  line"
analyses;      s tatic  LS  w ith  S EC  in  line

Protein O ligo m eric
sta te

#
R uns

Pred . M W
(kD a)a

A verag e

M W  ± S t. D e v. (kD a)

A verage error
(%)

Aprotin in  mono mer 2 6 .5 6 .8  ± 0 .5 4 .6

C ytochrome C mono m er 5 12 .3 12 .01 ± 0 .57 2 .4

� -Lactalbumin mono m er 2 14 .2 14 .32 ± 0 .01 0 .9

M yoglobin mono m er 3 17 .0 14 .19 ± 0 .91 16

� -Lactglobulin mono m er 2 18 .3 20 .06 ± 0 .33 9 .7

T ripsin  inhibito r mono m er 1 20 .0 20.50 2 .3

C arbonic anhydrase mono m er 4 29 .0 29 .22 ± 0 .20 0 .8

O valbumin mono m er 10 42.8 42 .52 ± 0 .68 1 .4

BSA (mono mer) mono m er 5 66 .4 66 .41 ± 1 .00 1 .2

T ransferrin mono m er 2 75 .2 76 .92 ± 0 .98 2 .3

Eno lase  (yeast) d imer 3 93 .3 80 .74 ± 1 .18 13

Eno lase  (rabbit) d imer 4 93 .7 86 .44 ± 1 .90 7 .8

BSA (d imer) d imer 5 132.9 137.10 ± 3 .93 3 .2

A lc. dehydrogenase te tramer 4 147.4 144.02 ± 0 .86 2 .4

A ldolase  (rabbit) te tramer 2 156.8 153.7  ± 1 .91 1 .1

Apo-ferritin 24 x

m onom er
2 475.9 470.3  ±  2 .62 1.2

                                                                                        M edian error:   2.3



Correlation between the amount of
protein analyzed and the accuracy of

MW determination

column: TSK GEL G3000SWXL [TosoHaas], buffer: 20 mM phosphate, 150 mM NaCl, pH=7.5

Protein
Amount
loaded

(�g)

#
Runs

Pred.
MW

(kDa) 

Avrg.
MW
(kDa)

SD
(kDa)

Avrg.
error
(%) 

Range of
accuracy

(%)

Ovalbumin

150 4 42.8 42.4 0.3 0.9 0.2 to 1.6

100 7 42.8 42.3 0.8 1.2 0.2 to 2.4

45-50 4 42.8 41.6 1 2.8 0.5 to 5.8

6-10 5 42.8 42.9 2 0.2 1.4 to 4.5

Transferrin 100 3 75.2 76.5 1 1.7 0.7 to 3.2

8 5 75.2 76.3 2 1.5 0.3 to 5.2



Static Light Scattering

•   Theory
•   SEC/LS “in-line” Set Up
•   Results for Standards

•   Sample Requirements
•   Applications



Sample requirements for proteins.

Optimal amount of protein

 
   Column for expected 

MW >40 kDa

for expected

MW   10 - 40 kDa

for expected 

MW<10 kDa

Total
volume of
the eluting

peak

 Superose 6
 (Pharmacia) 100 µg N/A N/A ~ 2mL

 Superdex 200
 (Pharmacia) 100 µg 200 - 300 µg N/A ~ 2mL

 Superdex 75
 (Pharmacia) 50 µg 100 - 200 µg 400 µg ~ 1mL



Static Light Scattering

•   Theory
•   SEC/LS “in-line” Set Up
•   Results for Standards
•   Sample Requirements

•   Applications



SEC/LS Applications
•  Unusual elution positions
•  Mixtures of non-interacting    

proteins
•  Mixtures of interacting 

protein- detection of protein 
complexes

•  Determination of the oligomeric 
state of mutant vs. wild type protein



Please note the convention:

All the proteins are referred
by MW of their monomeric
forms



Unusual elution positions

Example:

BSA monomer -      66 kDa protein

Yeast Enolase -       93 kDa dimer 
(2x46kDa)



Enolase (Yeast) 46 kDa
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Mixtures of non-interacting    
proteins
Example:

BSA monomer -      66 kDa protein

Yeast Enolase -       93 kDa dimer 
(2x46kDa)
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Analysis of interacting proteins

Example:

protein 27 kDa   (protein exists as a
mixture of monomer and dimer)

ligand   7 kDa

Ligand binding shifts the protein into
dimeric form



Analysis of interacting proteins
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Determination of the oligomeric 
state of mutant vs. wild type protein

Example:

protein 12 kDa   (WT protein exists as a trimer)

Three mutans and WT protein were analyzed.

There are significant differences in elution
positions from SEC, however, all proteins were
found to be trimeric forms- please note the
abnormal elution position for each of the
proteins.
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Dynamic Light Scattering



• Static  (classical)

time-averaged
intensity of 
scattered light

• Dynamic 
(quasielastic)
fluctuation  of  
intensity of scattered
light  with time

Light Scattering Experiments

Parameters derived:

•      MW

•      (<rg
2>1/2)  root mean 

square  radii for (<rg
2>1/2)> (λ/ 20)

~ 30 nm

Parameters derived:

•      DT      translation diffusion
     coefficient

•      Rh     hydrodynamic radius
    (Stokes radius)



Dynamic Light Scattering

•   Theory
•   Results for Standards

•   Batch mode vs. SEC/LS “in-line”   measurements



Dynamic Light Scattering Experiments

fluctuation of scattered light intensity with time

comparison of scattering intensity at various time
intervals (µsec) with the initial (t=0 sec) intensity

autocorrelator

MODEL:  dilute system of spherical molecules

constructing an autocorrelation function  g(2)(τ) = f (τ)

calculating the diffusion coefficient, D

H
T R

kTD
πη6

= Stokes-Einstein equation



Dynamic Light Scattering Experiments

Autocorrelation function
Ovalbumin  43 kDa

Intensity Autocorrelation



Dynamic Light Scattering Experiments

R=2.9 ± 0.2 nm       MW(R) = 40 kDa

Ovalbumin  43 kDa

MW calculated from the calibration curve

Size distribution



Dynamic Light Scattering Experiments

R=2.7 ± 0.4 nm       MW(R) = 33 kDa

Carbonic Anhydrase  29 kDa

Size distribution



Dynamic Light Scattering

•   Theory

•   Results for Standards
•   Batch mode vs. SEC/LS “in-line”   measurements



Hydrodynamic Radiuses and Molecular Weights
Determined from DLS batch-mode analyses

Protein 
 

Oligomeric 
state 

 
# Runs

 
Radius ± SD 

(nm) 
 

 
Averag
e MW 
(kDa) 

 
Predicte

d MW 
(kDa) 

 
Avrg. 
error 
(%) 

Aprotinin  monomer 15  1.64 ± .02 10.7 6.5 65 

Cytochrome C monomer 20  1.97 ± .05 16.6 12.3 35 

α-Lactalbumin monomer 25  2.09 ± .07  19.1 14.2 34 

Myoglobin monomer 25  2.27 ± .04 23.0 17.0 35 

β-Lactglobulin monomer 20  2.85 ± .05 38.8 18.3 111 

Trypsin inhibitor monomer 20  2.53 ± .05 29.4 20.0 47 

Carbonic anhydrase monomer 20  2.70 ± .03 34.7 29.0 19 

Ovalbumin monomer 30  3.21 ± .06 51.7 42.8 20 

BSA (monomer) monomer 20  3.97 ± .06 85.3 66.4 28 

Transferrin monomer 30  4.04 ± .13 88.5  75.2 18 

Enolase (yeast) dimer 25  3.78 ± .04 75.4 93.3 19 

Alc. dehydrogenase tetramer 20  4.52 ± .29 116.2 147.4 21 

Aldolase (rabbit) tetramer 25  5.70 ± .69 217.9 156.8 39 

Apo-ferritin 24 x 

monomer 
25  7.86 ± .21 420.4 475.9 12 

                                                 Median:   31  
 



Results obtained in “batch-mode” for
polydisperse samples

In “batch-mode” the DLS experiment is able to
detect that the sample is POLYDISPERSE
(i.e. the sample is not homogeneous in
respect to oligomeric state); it cannot however
discriminate what oligomeric form are present

Example:

BSA : mixture of monomer, dimers



Dynamic Light Scattering Experiments

R=4.0 ± 0.6 nm       MW(R) = 84 kDa

BSA  66 kDa

Size distribution



Dynamic Light Scattering

•   Theory

•   Results for Standards

•   Batch mode vs. SEC/LS “in-line”

measurements
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Results obtained in “SEC/LS” mode
for polydisperse samples

In “SEC/LS” mode, the SEC serves as a
fractionation step enabling determination of
oligomeric state for each of the oligomeric
forms that are present in the sample

Example:

BSA : mixture of monomer, dimers



Molar Mass Distribution  Plot
BSA  66 kDa



Results obtained in “SEC/LS” mode
for standard proteins;  data are

reported for the major eluting peak



Hydrodynamic Radiuses and Molecular Weights
Determined from “in-line” DLS analysis

  
Protein 

 
Oligomeric 

state 

# 
Runs

Radius    
± SD 
(nm)  

Average  
MW 

(kDa) 

Predicted 
MW (kDa)

Average 
error 
(%)  

Aprotinin  monomer 3 1.35 ± .06 6.8 6.5 4.9 

Cytochrome C monomer 3 1.77 ± .12 12.8 12.3 4.3 

α-Lactalbumin monomer 3 1.91 ± .08 15.3 14.2 7.8 

Myoglobin monomer 3 2.12 ± .07 19.5 17.0 14.4 

β-Lactglobulin monomer 3 2.64 ± .13 32.7 18.3 78.8 

Trypsin inhibitor monomer 3 2.47 ± .08 28.0 20.0 40.0 

Carbonic anhydrase monomer 3 2.35 ± .16 25.0 29.0 14.0 

Ovalbumin monomer 3 2.98 ± .02 43.5 42.8 1.6 

BSA (monomer) monomer 3 3.56 ± .01 65.8 66.4 0.9 

Transferrin monomer 3 4.02 ± .06 87.1 75.2 15.9 

Enolase (yeast) dimer 3 3.57 ± .02 66.0 93.3 29.3 

Enolase (rabbit) dimer 3 3.65 ± .10 69.7 93.7 25.6 

BSA (dimer) dimer 3 4.68 ± .21 125.1 132.9 5.9 

Alc. dehydrogenase tetramer 3 4.50 ± .10 113.8 147.4 22.8 

Aldolase (rabbit) tetramer 3 4.77 ± .06 130.5 156.8 16.8 

                                                     Median: 20.0  



Hydrodynamic Radiuses and Molecular Weights
Determined from “in-line” DLS analysis

  
Protein 

 
Oligomeric 

state 

# 
Runs

Radius    
± SD 
(nm)  

Average  
MW 

(kDa) 

Predicted 
MW (kDa)

Average 
error 
(%)  

Aprotinin  monomer 3 1.35 ± .06 6.8 6.5 4.9 

Cytochrome C monomer 3 1.77 ± .12 12.8 12.3 4.3 

α-Lactalbumin monomer 3 1.91 ± .08 15.3 14.2 7.8 

Myoglobin monomer 3 2.12 ± .07 19.5 17.0 14.4 

β-Lactglobulin monomer 3 2.64 ± .13 32.7 18.3  

Trypsin inhibitor monomer 3 2.47 ± .08 28.0 20.0 40.0 

Carbonic anhydrase monomer 3 2.35 ± .16 25.0 29.0 14.0 

Ovalbumin monomer 3 2.98 ± .02 43.5 42.8 1.6 

BSA (monomer) monomer 3 3.56 ± .01 65.8 66.4 0.9 

Transferrin monomer 3 4.02 ± .06 87.1 75.2 15.9 

Enolase (yeast) dimer 3 3.57 ± .02 66.0 93.3  

Enolase (rabbit) dimer 3 3.65 ± .10 69.7 93.7  

BSA (dimer) dimer 3 4.68 ± .21 125.1 132.9 5.9 

Alc. dehydrogenase tetramer 3 4.50 ± .10 113.8 147.4 22.8 

Aldolase (rabbit) tetramer 3 4.77 ± .06 130.5 156.8 16.8 

                                                     Median: 10.9  
 



Conclusions



Static and  Dynamic LSStatic   LS
• fast and accurate determination of molecular weight

(MW) of macromolecules in solution
• single SEC/LS measurement should be sufficient to

estimate a MW with a precession of ± 5%
• SEC/LS suitable for characterization of non-interacting

and interacting systems

Dynamic  LS
• in batch mode, very fast evaluation of sample polydispersity
• fast and accurate determination of hydrodynamic radius in

solution
• MW can be estimated (with a precession of ~10-20% for

SEC/LS set-up)



Ken Williams
Director of  HHMI Biopolymer & W.M. Keck Biotechnology Resource
Laboratory

NIH

Thomas Mozdzer

Users of SEC/LS Service

Wyatt Technology             Protein Solutions
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