Immune reconstitution inflammatory syndromes in HIV-infected patients:

Does HAART hurt?

Kristina Crothers, MD
Section of Pulmonary and Critical Care Medicine
Yale University School of Medicine
New Haven, CT
Kristina Crothers

(1) The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

 No relationships to disclose.

(2) The following personal financial relationships with tobacco industry entities existed during the past 12 months:

 No relationships to disclose.
Immune Reconstitution Inflammatory Syndrome (IRIS)

- Definition
- Epidemiology
- Clinical presentation
- Risk factors and pathogenesis
- Management and outcomes
IRIS: Immune reconstitution inflammatory syndrome

- **Synonyms**
 - Immune restoration disease
 - Immune reconstitution syndrome

- **Occurs in non-HIV as well**
 - BMT, chemotherapy
 - *M. tuberculosis*, leprosy

- **1st described in HIV+ patients with atypical MAC after zidovudine**
IRIS
General definition

• Paradoxical clinical worsening related to recovery of the immune system following immunosuppresion

• Can be due to
 – Subclinical opportunistic pathogen
 – Previously known pathogen on treatment

• Controversial whether degree of response to HAART is part of definition

Types of IRIS

• “Unmasking”
 – Clinical worsening due to a previously undiagnosed subclinical opportunistic pathogen

• “Paradoxical”
 – Clinical worsening due to a previously known opportunistic pathogen responding to therapy

• Both require adequate response to HAART

Categories of IRIS

- Infectious
- Sarcoid-like
- Autoimmune
 - Polymyositis, lupus, rheumatoid arthritis, Grave’s disease, Guillan-Barre syndrome
- Other (case reports)
 - Tumor-related (Kaposi’s sarcoma)
 - Interstitial pneumonitis

Infectious causes of IRIS

- **Mycobacterial**
 - Tuberculosis, MAI

- **Fungal**
 - *P. jirovecii*, Cryptococcus, Histoplasma

- **Viral**
 - CMV (pneumonitis reported)
 - Hepatitis B+C
 - Herpes, PML

- **Parasitic: Rare reports**
Immune Reconstitution
Inflammatory Syndrome (IRIS)

- Definition
- Epidemiology
- Clinical presentation
- Risk factors and pathogenesis
- Management and outcomes
Incidence of IRIS

- Retrospective studies
- 15-25% of all patients on HAART
- 15-45% of patients with underlying OI

Proportion of patients with IRIS according to OI

Prospective incidence of IRIS

- 1st prospective study from South Africa
- 423 HAART-naïve patients
 - 6-month f/u after HAART initiation

- IRIS diagnosed in 10.4% of patients
 - 25.1 cases per 100 person-years
 - 80% attributed to “unmasking” IRIS
 - 20% attributed to “paradoxical” IRIS

IRIS diagnoses by disease

Immune Reconstitution Inflammatory Syndrome (IRIS)

- Definition
- Epidemiology
- Clinical presentation
- Risk factors and pathogenesis
- Management and outcomes
Timing of IRIS

Early (<12 weeks) vs. Late (>12 weeks)

South Africa:
- Median onset of 48 days
- 75% of cases within 90 days of HAART
- Follow-up limited to 6 months

IRIS
Mycobacterium tuberculosis

- Majority with known antecedent TB
- Typical presentation
 - Fever
 - Thoracic, cervical lymphadenopathy (71%)
 - Pulmonary infiltrates (28%)
 - Worsening in areas of prior disease (50%) or new manifestations

IRIS
Mycobacterium tuberculosis

• Less commonly
 – Cerebritis
 – Pleural effusions
 – Hepatosplenomegaly
 – Hypercalcemia

• Time course
 – 1st 2 months, usually in 1st 2-3 weeks

• Histology
 – Tissue necrosis and granulomatous inflammation

IRIS
Mycobacterium avium intracellulare

- Majority without prior known infection
- Typical presentation
 - Fever, painful lymphadenitis (often cervical or abdominal)
- Pulmonary disease (19%)
 - Infiltrates or inflammatory masses, endobronchial lesions

IRIS
Mycobacterium avium intracellulare

- **Time course**
 - Usually within 12 weeks of HAART

- **Findings**
 - Granulomatous inflammation
 - Tissue cultures but not blood cultures usually positive for MAC (atypical)

IRIS

Cryptococcus

• Presentation
 – Meningitis (most common), typically early
 – Lymphadenitis (~10% of cases), often later
 – Lung nodules, necrotizing pneumonia
 – Hypercalcemia may be seen

• Biopsy of nodes, tissue in later cases
 – Cryptococcus and granulomas
 – Cultures sterile

Shelburne et al. CID 2005:40;1049-52.
IRIS

Pneumocystis jirovecii

- Worsening respiratory failure in 5-30d
- 1 day to 5 weeks after HAART
- Findings
 - Fever, increasing hypoxia
 - CXR – alveolar opacities
 - Biopsy – non-specific inflammation, intense CD4+, CD8+ T-cell infiltration (n=1)
 - BAL – increased lymphocytes, high CD4/CD8 ratio

PCP and IRIS

Initial CXR

Follow-up CXR

PCP treatment for 18 days
5 days of HAART
Potential risk factors

- Stopping steroids prior to HAART
- Severe PCP on presentation (pO2 < 70)
- Marked decrease in HIV viral load
- Close proximity of HAART to PCP treatment

IRIS and sarcoid

• Sarcoidosis considered rare in HIV due to depletion of CD4+ T-cells

• Sarcoid or sarcoid-like disorder reported following start of HAART
 – May be delayed by months to years

• General presentation and findings similar in HIV+ as in HIV-

Foulon et al. CID 2004;38:418-25.
Sarcoid in HIV: Late-phase IRIS?

- HIV infection present for years
 - Average of 92 months
- HAART duration >1 year
- Most patients have higher CD4 and suppressed HIV viral load
 - CD4 >200 in 74% of cases reported
 - Median CD4 >400
 - Median HIV viral load 466 copies/mL

Foulon et al. CID 2004;38:418-25
Immune Reconstitution Inflammatory Syndrome (IRIS)

- Definition
- Epidemiology
- Clinical presentation
- Risk factors and pathogenesis
- Management and outcomes
Potential risk factors for IRIS

• **Baseline factors**
 - Initial CD4 < 50 cells
 - Higher baseline HIV viral load
 - Active OI at time of initiating HAART
 - Initiation of HAART in close proximity to OI

• **Less consistently**
 - Decreased baseline CD4/CD8 cell ratio
 - Younger age

Potential risk factors for IRIS

• **Response to therapy**
 – Rapid fall in HIV viral load in 1st 12 weeks
 – Rapidity of rise in CD4 cell count
 – Magnitude of CD4 cell count increase

• **Not consistent in all studies**

Theories regarding pathogenesis

1. Normal response to high antigen burden
2. Exaggerated response by recovering immune system
3. Excessive pro-inflammatory cytokines
4. Deficiency in immune regulatory cytokines

Host and pathogen factors

- **Antigenic stimulus for IRIS**
 - Mycobacteria, viruses, parasites, tumors
 - Viable vs. nonviable organisms

- **Genetic predisposition** (cases of TB, HSV)
 - Polymorphisms in MHC complex and cytokine genes - clearance of organisms, dysregulated inflammatory responses

- **Duration since initiation of HAART**

CD4 cell recovery in HAART responders

Initial release of memory CD4 cells from lymphoid tissue

2nd phase: thymus-dependent expansion of naïve CD4 cells

Immune Reconstitution Inflammatory Syndrome (IRIS)

- Definition
- Epidemiology
- Clinical presentation
- Risk factors and pathogenesis
- Management and outcomes
IRIS: A diagnosis of exclusion

Differential diagnosis

• Worsening of initial diagnosis
 – Drug resistance
 – Inadequate drug levels – malabsorption, wrong dosing, non-adherence

• Secondary process
 – Infectious vs. non-infectious
 – Drug reaction
Differentiating IRIS from OI

Early IRIS

- Initial clinical improvement from OI
- CD4 and virologic response to HAART
- Atypical manifestations of OI

Failure of HAART

- Poor CD4 and virologic response to HAART
- Typical manifestations of OI

Late IRIS

- CD4 and virologic response to HAART
- Atypical manifestations of OI

Failure of HAART

- Poor CD4 and virologic response to HAART
- Typical manifestations of OI

Incomplete immune recovery

- Persistent immune defects to specific OI’s

IRIS: Management

• In most cases HAART can be continued
• No randomized clinical trials to guide use of steroids, other anti-inflammatory agents
• OI guidelines
 – “…adding nonsteroidal anti-inflammatory agents or corticosteroids to alleviate the inflammatory reaction is appropriate”
• Particularly of concern in CNS disease or if lesions are life-threatening

IRIS Management

- Non-steroidal anti-inflammatory drugs
- Leukotriene inhibitors - case reports
 - “urticarial IRIS”
 - IRIS associated with TB and syphilis
 - Role of leukotrienes in pathogenesis

When should HAART be initiated?

- Risk of new OIs
- Morbidity
- Mortality

Delayed HAART

- Multiple toxic drugs
- Drug interactions
- Adherence
- IRIS

Early HAART
Timing of HAART

• TB: If CD4 <350, recommended to wait 4-8 wks on therapy prior to HAART
 – Decrease severity of paradoxical reactions
 – Improve adherence
 – Evaluate and manage side effects

• Await response to OI rx before HAART in MAC, PCP, cryptococcal meningitis

Benson et al. MMWR 2004;53:1-112
When should HAART be initiated?

O1 screening, such as sputum smears for TB; need to await culture results?

Prophylactic anti-inflammatorys?

Approach dependent on O1, region, genetic predisposition?

Delayed HAART Early HAART
IRIS Outcomes

Deaths reported with IRIS from TB, cryptococcus
- CNS disease
- Disseminated disease

Park et al. AIDS 2006;20:2390-2392.
IRIS
Outcomes

• Prospective study from S. Africa
• Most IRIS cases were mild
 – HAART discontinued in 3 patients (7%)
 – Corticosteroids in 4 patients (9%)
 – Hospitalization in 12 patients (27%)
 – 2 deaths attributed to IRIS

IRIS: Summary

• Diagnosis of exclusion
• Can occur days to months after HAART
• Infectious IRIS most common (TB)
 – Sarcoid, autoimmune diseases
• Potential risk factors:
 – Low baseline CD4, active OI
 – Initiation of HAART in close proximity to OI
 – Rapid response to HAART (viral load, CD4)
IRIS: Summary

• **Treatment**
 – Targeted at the underlying infection
 – Steroids, anti-inflammatory agents
 – Current recommendation to await response to OI treatment prior to HAART

• **Outcome generally good**
 – Limited morbidity
 – Rare mortality reported (CNS disease)