Featured Publications
Computational and Statistical Methods for Single-Cell RNA Sequencing Data
Wang Z, Yan X. Computational and Statistical Methods for Single-Cell RNA Sequencing Data. Springer Handbooks Of Computational Statistics 2022, 3-35. DOI: 10.1007/978-3-662-65902-1_1.ChaptersSingle-cell RNA sequencing technologySingle-cell RNA sequencing dataRNA sequencing technologyPhenotype of interestRNA sequencing dataDifferential expression analysisScRNA-seq dataStatistical methodsSequencing technologiesExpression analysisDropout imputationSequencing dataSeq dataDroplet-based technologiesDropout eventsDisease pathogenesisPopulation composition changesData normalizationHigh noise levelsPhenotypeNoise levelTherapeuticsComposition changesG2S3: A gene graph-based imputation method for single-cell RNA sequencing data
Wu W, Liu Y, Dai Q, Yan X, Wang Z. G2S3: A gene graph-based imputation method for single-cell RNA sequencing data. PLOS Computational Biology 2021, 17: e1009029. PMID: 34003861, PMCID: PMC8189489, DOI: 10.1371/journal.pcbi.1009029.Peer-Reviewed Original ResearchConceptsSingle-cell transcriptomic datasetsTranscriptomic datasetsGene expressionSingle-cell RNA sequencing technologySingle-cell transcriptomic studiesSingle-cell RNA sequencing dataRNA sequencing technologyRNA sequencing dataSingle-cell resolutionGene expression profilesAdjacent genesTranscriptomic studiesSequencing technologiesSequencing dataExpression profilesGene graphDownstream analysisGenesCell trajectoriesDropout eventsCell subtypesExpressionHigh data sparsityCells
2023
Correction: iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects
Liu Y, Zhao J, Adams T, Wang N, Schupp J, Wu W, McDonough J, Chupp G, Kaminski N, Wang Z, Yan X. Correction: iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects. BMC Bioinformatics 2023, 24: 394. PMID: 37858060, PMCID: PMC10588114, DOI: 10.1186/s12859-023-05523-6.Peer-Reviewed Original Research
2021
Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung
Schupp JC, Adams TS, Cosme C, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, Meyer KB, Nawijn MC, Teichmann SA, Banovich NE, Kropski JA, Niklason LE, Pe’er D, Yan X, Homer RJ, Rosas IO, Kaminski N. Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 2021, 144: 286-302. PMID: 34030460, PMCID: PMC8300155, DOI: 10.1161/circulationaha.120.052318.Peer-Reviewed Original ResearchConceptsDifferential expression analysisPrimary lung endothelial cellsLung endothelial cellsCell typesMarker genesExpression analysisSingle-cell RNA sequencing dataCross-species analysisVenous endothelial cellsEndothelial marker genesSingle-cell atlasMarker gene setsRNA sequencing dataEndothelial cellsSubsequent differential expression analysisDifferent lung cell typesResident cell typesLung cell typesCellular diversityEndothelial cell typesCapillary endothelial cellsHuman lung endothelial cellsPhenotypic diversityEndothelial diversityIndistinguishable populations