Featured Publications
Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma
Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X, Perez MF, Zhao H, Mane S, Martinez FD, Ober C, Nicolae DL, Barnes KC, London SJ, Gilliland F, Weiss ST, Raby BA, Cohn L, Chupp GL. Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma. American Journal Of Respiratory And Critical Care Medicine 2015, 191: 1116-1125. PMID: 25763605, PMCID: PMC4451618, DOI: 10.1164/rccm.201408-1440oc.Peer-Reviewed Original ResearchConceptsHistory of intubationNitric oxide levelsOxide levelsClinical phenotypeMost subjectsHigher bronchodilator responseNormal lung functionBlood of patientsCohort of childrenLogistic regression analysisSputum gene expressionBlood of childrenAirway transcriptomeMilder asthmaPathophysiologic heterogeneityPrebronchodilator FEV1Steroid requirementsLung functionBronchodilator responseGene expressionPhenotype of diseaseAsthmaBlood samplesGene signatureIntubation
2022
Emerging insights in sarcoidosis: moving forward through reverse translational research
Liu A, Sharma L, Yan X, Dela Cruz CS, Herzog EL, Ryu C. Emerging insights in sarcoidosis: moving forward through reverse translational research. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2022, 322: l518-l525. PMID: 35196896, PMCID: PMC8957321, DOI: 10.1152/ajplung.00266.2021.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTranslational researchFibrotic lung diseasePulmonary granuloma formationReverse translational researchChronic granulomatous diseaseImmunopathogenic mechanismsLung diseaseUnknown etiologyGranulomatous diseaseGranuloma formationSarcoidosis researchStage IVDisease pathogenesisClinical phenotypeSarcoidosisClinical interventionsDisease model developmentFibrogenesisSignificant proportionFundamental mediatorDiseaseFurther investigationInvestigative effortsHypothesis-driven researchMorbidity
2020
A Network of Sputum MicroRNAs is Associated with Neutrophilic Airway Inflammation in Asthma
Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, Grant N, Liu Q, Fry R, Rager J, Cohn L, Alexis N, Chupp GL. A Network of Sputum MicroRNAs is Associated with Neutrophilic Airway Inflammation in Asthma. American Journal Of Respiratory And Critical Care Medicine 2020, 0: 51-64. PMID: 32255668, PMCID: PMC7328332, DOI: 10.1164/rccm.201912-2360oc.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulum stressAirway inflammationNeutrophil countClinical featuresT-helper cell type 17Neutrophilic airway inflammationReticulum stressSputum of subjectsLung function impairmentHistory of hospitalizationNumber of neutrophilsPeripheral blood neutrophilsSputum of patientsMicroRNA expressionAsthma severityTh17 pathwayFunction impairmentAirway samplesMicroRNA networkBlood neutrophilsOzone exposureAsthmaSputumCellular sourceClinical phenotype
2016
Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma
Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X, Perez MF, Zhao H, Mane S, Martinez FD, Ober C, Nicolae DL, Barnes KC, London SJ, Gilliland F, Weiss ST, Raby BA, Cohn L, Chupp GL. Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma. Annals Of The American Thoracic Society 2016, 13 Suppl 1: s104-5. PMID: 27027945, PMCID: PMC5015745, DOI: 10.1513/annalsats.201510-681mg.Peer-Reviewed Original ResearchNitric oxide levelsOxide levelsHigher bronchodilator responseHistory of intubationNormal lung functionClusters of patientsCommon transcriptomic signaturesHigh ratePrebronchodilator FEV1Severe asthmaSteroid requirementsInflammatory characteristicsLung functionBronchodilator responseControl subjectsAsthmaHeterogeneous diseaseClinical phenotypeGene signaturePhysiologic characteristicsWhole bloodTranscriptomic signaturesCluster 1DiseaseHospitalization