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Abstract

Rationale: Despite shared environmental exposures, idiopathic
pulmonary fibrosis (IPF) and chronic obstructive pulmonary
disease are usually studied in isolation, and the presence of shared
molecular mechanisms is unknown.

Objectives: We applied an integrative genomic approach to identify
convergent transcriptomic pathways in emphysema and IPF.

Methods: We defined the transcriptional repertoire of chronic
obstructive pulmonary disease, IPF, or normal histology lungs using
RNA-seq (n =87).

Measurements and Main Results: Genes increased in both
emphysema and IPF relative to control were enriched for the
p53/hypoxia pathway, a finding confirmed in an independent cohort
using both gene expression arrays and the nCounter Analysis System
(n = 193). Immunohistochemistry confirmed overexpression of
HIF1A, MDM2, and NFKBIB members of this pathway in tissues from

Chronic lung diseases affect a significant
portion of the population and account
for more than 100,000 deaths a year (1).
Although most of these deaths can

be attributed to chronic obstructive
pulmonary disease (COPD), the major
smoking-induced lung disease, more than
15,000 deaths a year can be attributed to

patients with emphysema or IPF. Using reads aligned across splice
junctions, we determined that alternative splicing of p53/hypoxia
pathway-associated molecules NUMB and PDGFA occurred more
frequently in IPF or emphysema compared with control and validated
these findings by quantitative polymerase chain reaction and the
nCounter Analysis System on an independent sample set (n = 193).
Finally, by integrating parallel microRNA and mRNA-Seq data on the
same samples, we identified MIR96 as a key novel regulatory hub in
the p53/hypoxia gene-expression network and confirmed that
modulation of MIR96 in vitro recapitulates the disease-associated
gene-expression network.

Conclusions: Our results suggest convergent transcriptional
regulatory hubs in diseases as varied phenotypically as chronic
obstructive pulmonary disease and IPF and suggest that these hubs
may represent shared key responses of the lung to environmental
stresses.
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idiopathic pulmonary fibrosis (IPF), a
relentless, nearly always fatal fibrotic lung
disease also associated with smoking (2).
COPD, defined by the Global Initiative for
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At a Glance Commentary

Scientific Knowledge on the
Subject: Although idiopathic
pulmonary fibrosis and chronic
obstructive pulmonary disease share
risk factors, such as cigarette smoking,
overlapping disease pathogenesis
mechanisms have yet to be described.

What This Study Adds to the
Field: We show that chronic
obstructive pulmonary disease and
idiopathic pulmonary fibrosis share
transcriptional mRNA-microRNA
hypoxia/p53 regulation and alternative
splicing of p53/hypoxia-associated

genes NUMB and PDGFA.

Chronic Obstructive Lung Disease as a disease
state characterized by exposure to a noxious
agent (which is almost entirely cigarette smoke
in the United States) resulting in airflow
limitation that is not fully reversible (3), is
thought to result from recruitment of
inflammatory cells in response cigarette
smoke. A subset of patients sustain destruction
of lung elastin and other extracellular matrix
proteins, death of alveolar cells by apoptosis,
or repair failure that leads to airspace
enlargement characteristic of emphysema.
Often contrasted with emphysema, IPF

is characterized by the findings of usual
interstitial pneumonia, including the
interposition of patchy foci of active fibroblast
proliferation associated with minimal
inflammation, extracellular matrix deposition,
and abnormal alveolar remodeling (2).

In recent years there has been significant
progress in understanding of the molecular
mechanisms that underlie the lung response to

injury and lead to fibrosis or emphysema in
animal models of disease, but there is still little
understanding of the molecular mechanisms
that lead to the abnormal lung phenotype in
both diseases in humans.

The emergence of high throughput
transcript technologies allows investigators
to glean mechanisms from diseased human
tissues. In chronic lung disease, there
have been only a few high-throughput
gene expression microarray studies of
COPD (4-7) or IPF (8-11) and studies of
miRNA expression in COPD (12, 13) or
IPF (14, 15). Despite common risk factors,
evidence that parallel pathways may be
activated and suggestions that direct
comparisons of the diseases may be
mechanistically informative (16), there
has been no effort to determine whether
convergent molecular pathways could be
identified in IPF and COPD. Thus, in
this study we examined IPF, COPD, and
normal lungs in parallel, aiming to
provide an unbiased description of the
transcriptional repertoire of the lung and its
response to chronic injury and to identify
convergent transcriptional regulatory
networks in COPD and IPF using
integrative genomic approaches.

Accordingly, we performed mRNA-Seq
and mRNA and miRNA profiling using
microarrays on 89 lung tissue samples
representing IPF, COPD, and control from
subjects obtained through the NHLBI Lung
Tissue Research Consortium (LTRC) as part
of the Lung Genomic Research Consortium
(LGRC). With the objective of identifying
convergent disease-associated alterations
in gene expression and splicing, we
characterized the lung transcriptome and
identified molecular alterations shared by both
chronic lung diseases. The p53/hypoxia
pathway was up-regulated in both COPD and

IPF compared with normal histology controls,
a finding we validated in an independent
cohort of samples and localized to the
epithelial layer by immunohistochemistry.
In addition, we identified both miRNAs and
alterative splicing events related to the
p53/hypoxia pathway. Our work provides
the first RNA-seq study of the adult human
lung transcriptional repertoire in health or
response to chronic injury as represented
by COPD and IPF together. It also
represents the first time that common
genome scale transcript alteration
alterations have been identified between
IPF and COPD. Our approach (Figure 1)
and findings provide insights into
convergent mechanisms that underlie

both diseases and highlight a relatively
unrecognized central role of the
p53/hypoxia pathway in both diseases.

Methods

Patient Population

Lung tissue samples were obtained from
the NHLBI funded LTRC as previously
described (17). We evaluated the initial 89
samples for potential field of cancerization
effects, because some samples were
collected from areas adjacent to cancer.
This evaluation included mining for
abnormal gene fusions and cytogenetic
abnormalities in the lung and blood allele
balance. Two control samples contained
between 12% and 25% abnormal cells by
allele balance via the Illumina (San Diego,
CA) Infinium assay and were thus removed
from further analysis. Remaining were

n =19 subjects with COPD with predominant
emphysema phenotype, n=17 subjects

with COPD without predominant
emphysema phenotype (suspected airways
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Sample Collection and Initial Processing

1. Samples collected from LTRC*
2. RNA Isolations
3. mRNA Library Prep
4. lllumina RNA-seq (75 nt paired end)

5. Defining the Transcriptome:
Transcript Expressed?

Yes No
Removed
from further
analysis
6a. 6b
Differential Alternative
Expression Splicing

&‘ 7. Pathway Analysis ‘)

PCR

8. Pathway Validation

Expression Assays: mRNA Arrays, Nanostring, and

Localization Assays: Tissue IHC

9. Integrative Transcriptomics

mRNA/mMIRNA** network analysis

10. Hypothesis Testing

In vitro miRNA network perturbations

* LTRC: Lung Tissue Research Consortium
** microRNA expression data generated using Aligent

microRNA microarrays

Figure 1. Overview of analysis. IHC =immunohistochemistry; LTRC = Lung Tissue Research
Consortium; miRNA = microRNA; PCR = polymerase chain reaction.

disease), n = 19 subjects with IPF, n=13
subjects with COPD with intermediate
emphysema phenotype, and n =20
histologically normal tissue samples.
Seventy-five of the remaining 87
samples were selected by pathologists as
displaying the most distinct phenotypes
(Table 1). The COPD categories were
defined based on the percent emphysema:
samples that had less than 10% emphysema
and greater than 30% emphysema were
used to define the COPD airway and
emphysema phenotypes, respectively.
The interstitial lung disease (ILD) samples
were subset down to those with “IPF”
phenotype as per American Thoracic
Society criteria (18).

950

RNA Extraction

We extracted total RNA from all lung
samples using the QIAcube system
(QIAGEN Inc., Valencia, CA) with the
miRNeasy kit. RNA quality was determined
using a Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA) with a
RNA integrity number greater than 7.0 as
the criterion for acceptable quality.

mRNA-Seq

Library preparation and mRNA sequencing
was performed on each of the 89 LGRC
samples. The library preparation was

done using Illumina’s mRNA Sequencing
Sample Preparation kit starting with 1 pg

of total RNA (see the METHODS section in
the online supplement for additional
information).

mRNA and miRNA Microarray
Processing

We hybridized RNA from all LGRC samples
(Table 2) to Agilent V2 Human Whole
Genome microarrays and then quantile
normalized the data using GeneSpring
(see the METHODS section in the online
supplement for additional information).

Initial Processing of mMRNA-Seq Data
To perform initial data quality control (QC),
we used standard Illumina metrics, our own
custom perl scripts, and FastQC (Babraham
Bioinformatics, Babraham, UK). We aligned
samples that passed the QC filter to hg19 using
Tophat and completed an additional QC step
involving review of standard alignment
metrics. We generated gene level expression
estimates using Cufflinks (19).

Gene Filtering

First we log2 transformed FPKM gene
expression data from Cufflinks. Using their
“on” or “off” status and coefficient of
variance, we filtered genes. To determine
gene status we used a modified version of
the mixture model in the SCAN.UPC
Bioconductor package (see the METHODS
section in the online supplement) (20).
For a gene to be included in differential
expression analysis, it had to be classified
as “on” in at least 25% of samples out of the
two phenotypic groups being compared.
After this, the bottom 20% of genes were
filtered out based on their coefficient of
variation.

Differential Expression

We identified differentially expressed genes
with the limma package. For emphysema,
we included only samples with greater
than 30% emphysema. Out of the ILD
population, we included only samples with
pure IPF. We included only genes annotated
as “known” in Ensembl. Overall we chose
samples such that age, pack-years, smoking
status, and sex were not confounding
between the groups being compared.
Functional enrichment was tested with
Gene Set Enrichment Analysis (GSEA).

Comparing mRNA Arrays with
mRNA-Seq

Using a ¢ test in limma (same as for RNAseq
analysis) we identified disease-associated
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Table 1. Demographics of the 75 Lung Tissue Samples Used for Analysis of Differential Expression and Splicing (Figures 3 and 4)

Emphysema Airway COPD

IPF (>30% Emphysema) (<10% Emphysema) Control
Samples, n 19 19 17 20
Age 64.0+9.2 56.3 = 8.7 68.4 +10.4 62.3 = 10.0
Sex 15M,4F 10M,9F 12M,5F 11M,9F
Race 19 white 18 white, 1 African American 17 white 18 white, 2 African American
Smoking status 17 former, 2 never 18 former, 1 never 15 former (2) 1 current, 15 former, 2 never (2)
Pack-years 31 +23 (2) 48 + 27 (1) 51 +23 (2) 27 + 23 (4)
% Emphysema 1.7+226 (7) 47.5+91 23+2.0 0.8+1.3(9)

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; IPF = idiopathic pulmonary fibrosis.
These samples are a subset of Table 2. Values in parentheses are missing demographics.

changes in gene expression. Genes in
Ensembl without Agilent probes mapping
to them were excluded from analyses.
Platforms were compared by evaluating
the overlap between genes identified as
differentially expressed. Correlation
between t-statistics on the two platforms
was found using a Pearson correlation.

Immunohistochemistry

We acquired formalin-fixed paraffin-
embedded tissues from the LTRC. As
previously described (21), we performed
immunohistochemistry using mouse
monoclonal antibodies directed against
MDM2 (Millipore, Temecula, CA), HIFIA
(Stressgen, Victoria, BC, Canada), and
NFKBIB (ABD Serotec, Raleigh, NC),
and a rabbit polyclonal antibody
directed against PDGFA (Santa Cruz
Biotechnology, Santa Cruz, CA). We took
all brightfield images with an Olympus
(Billerica, MA) DP25 camera on an
Olympus CH2 microscope (21).

Integrating miRNA and mRNA Data
We integrated miRNA array and
mRNA-Seq data with MirConnX (22).
This tool combines a prior, static network
created from miRNA binding predictions
and literature validation with user
submitted data to create a transcriptomic
gene regulatory network. For each
condition-control comparison, we filtered
to only differentially expressed mRNAs. We
inspected resulting regulatory networks for
potential regulatory hubs (miRNAs with a
high number of connected mRNAs).

Identification of Alternative Splicing
Events

First, we ran Tophat (19), allowing only
known junctions. Using the junction.bed
output file, we collected the number of
reads that span splice junctions. We ran a
linear model with an interaction term,
using the RPM of reads spanning each
splice junction (see online supplement for
model). We examined switching behavior
and the structure of the significant splice

Table 2. Demographics of the 87 Lung Tissue Samples Used to Define Transcriptomic

Landscape (Figure 2)

ILD/IPF COPD Control
Samples, n 23 43 21
Age 63.5+x8.7 (1) 62.0+11.2 (7) 62.0 9.8
Sex 17 M,5F (1) 22 M, 14 F (7) 12M,9F
Race 22 white (1) 35 white, 1 African 19 white, 2 African
American (7) American

Smoking status 19 former, 33 former, 1 current, 15 former,

3 never (1) 1 never (9) 3 never (2)
Pack-years 28.7 =225 (3) 49.2 = 25.3 (10)* 27.3+226 (5
% Emphysema 1.7x2.6 (11) 24,9 + 222" 1.1=x15(4)

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; ILD = interstitial lung

disease; IPF = idiopathic pulmonary fibrosis.
Values in parentheses are missing demographics.
*Significant with P < 0.05 compared with control.

Kusko, Brothers, Tedrow, et al.: Transcriptomic Networks Underlying COPD and IPF

junctions to identify alternative splicing
between the disease and control samples.

Data Access

Genomic data (RNA-seq and Agilent
mRNA and miRNA expression arrays)
and associated clinical data are available
for download on the LGRC website
(https://www.lung-genomics.org/research/);
miRNA regulatory networks are available at
http://mirconnx.csb.pitt.edu/job_results?
job_id=example10103, http://mirconnx.csb.
pitt.edu/job_results?job_id=example10102,
and http://mirconnx.csb.pitt.edu/job_results?
job_id=example10101.

Results

Study Population from the LTRC

We acquired all lung samples from the
LTRC, which were used by the LGRC,
both supported by the NHLBI. Patient
clinical information, pulmonary functions,
demographics, imaging results, pathology,
and clinical diagnoses were available.
Tables 1-3 provide the demographics

and clinical characteristics of all research
subjects included in the different phases
of the study (Figure 1). We used 87 samples
to analyze the global lung transcriptional
repertoire (Table 2). To perform analysis of
convergent pathways, we used 75 of the
87 samples that exhibited relatively distinct
phenotypes of emphysema, COPD without
emphysema, IPF, or normal histology
controls (Table 1). The patient samples
were matched for age, smoking history, and
sex. Institutional review boards approved
all studies at participating institutions and
per LTRC protocol all patients signed
informed consent. All of the transcriptomic
results, and associated clinical data, are
available for download on the LGRC
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website (https://www.lung-genomics.
org/research/).

RNA-Sequencing Data Alignment to
the Human Genome

Each sample yielded a range of 18-46
million (average, 32 million) 75-nt
paired-end reads, and a high percentage
(average, 28 million) of these reads aligned
to the genome using conservative alignment
parameters. Specifically, 85.9 = 6.9% of
reads aligned to the genome, and

81.4 * 3.1% aligned uniquely. Of the
aligned reads, 90.3 = 4.8% were aligned as
paired ends (of which 88.7 = 3.8% were
properly paired), and 9.04 * 4.8% were
aligned as singletons. The alignment
statistics across the samples indicate that the
RNA-seq data obtained from the LTRC
tissue samples were of high quality (see
Figures E1 and E2 in the online supplement).

Identifying the Core Lung
Transcriptome in Health and Disease
To identify genes reliably expressed across
all lung tissues, we developed a method

to distinguish between genes with clear
expression signal (called “signal” or
“reliably expressed”) and genes with zero
or so few aligned reads that they could not
be distinguished from either statistical

or biologic noise (possibly occurring
because of leaky transcription) (23) or the
combination of transcription rate and
mRNA degradation in the cells (24). We
performed this analysis on each of the

87 samples (Table 2) and each sample
showed a similar number of genes in the
three categories (signal, noise, zero)
(Figure 2A). Next, we examined each gene
to see if it was “always reliably expressed,”
“never reliably expressed,” or “variably
expressed” across all 87 samples to
characterize the landscape of expression

across the lung transcriptome (Figure 2B). Of
the 24,297 experimentally known Ensembl59
genes, 7,767 were constitutively expressed
(“reliably expressed” across the 87 samples),
8,756 were never reliably expressed, and 7,774
were variably expressed.

To better understand the
transcriptional repertoire of the lung, we
looked at which genes were always reliably
expressed in each disease subtype (control,
n=20; COPD with emphysema, n=19;
IPF, n = 19; airway COPD, n=17) (Table 1)
and the overlap across all 87 samples
(Table 2). Most of the genes (77.9%) that
were always reliably expressed in each of
those subsets overlapped (Figure 2C)
and those can be considered the core
lung transcriptome. We performed gene
ontology analysis on the lists of genes
identified as always expressed across all
samples and within each phenotype, which
showed that most (76%) of the KEGG
pathways (25) that were significantly
enriched in at least one group (g < 0.05)
were shared across all five groups
(Figure 2D). The data suggest that there
is a core lung transcriptome that is
reliably expressed in the lung regardless
of disease subtypes.

Differential Expression of Genes in

IPF and Emphysema Reveals
Overexpression of the p53/Hypoxia
Pathway

Starting with 10,512 and 10,267 filtered genes
for IPF and emphysema, respectively
(intersecting genes, 9,472; union of

genes, 11,307), we identified 2,490 genes
significantly differentially expressed between
IPF and control subjects, and 337 genes
between emphysema and control subjects
(P <0.005; 55 and 53 genes expected by
chance for IPF or emphysema, respectively).
We validated the RN Aseq results using gene

Table 3. Demographics of Independent Cohort Used for Validation

expression microarrays run on the same 87
samples (Table 2). The t-statistics were
significantly correlated between RN Aseq and
gene expression microarrays (emphysema
vs. control, R=0.75, P < 0.001; IPF vs.
control, r=0.83, P < 0.001)

Importantly, the genes that
distinguished IPF or emphysema from
normal histology controls were changed
in concordant directions, even if not always
at the same magnitude (Figure 3A). The
overlap of the differentially expressed genes
common to emphysema and IPF was
significantly higher than what would
be expected by chance (214 genes,
hypergeometric P < 3.8¢”°*). The 214
genes are available in Table E1. GSEA of
IPF and emphysema differential expression
revealed shared pathways including the
KEGG p53 pathway (emphysema vs.
control, P =0.003; IPF vs. control,

P =0.003), Biocarta p53/hypoxia pathway
(emphysema vs. control, P=0.01; IPF vs.
control, P =0.026), and other biologic
processes outlined in Table E2.

Analysis of a nonoverlapping cohort
of lung tissue samples from the LTRC
(Table 3) by gene expression microarrays
confirmed that up-regulation of the
p53/hypoxia pathway characterized the
genes that distinguished emphysema or IPF
from normal histology controls. GSEA (26)
corroborated significant enrichment of
the KEGG p53 and Biocarta p53/hypoxia
leading edge from GSEA of the initial
analysis set among genes up-regulated in
emphysema or IPF tissues compared with
normal histology controls (P < 0.001)

(see Figure E3). Because cell type
differences were a concern, we used
immunohistochemistry to confirm the
location of select differentially expressed
genes in the p53 pathway in control,
emphysema, and IPF samples (n =5 for each).

ILD/IPF COPD
Samples, n 77 34
Age 64.4 + 8.7 60.6 = 9.5
Sex 54 M, 23 F 15M,19F
Race 69 white, 2 African American, 2 Asian, 33 white, 1 African American

1 other (3)
Smoking status
Pack-years
% Emphysema

24 + 18 (33)
0.9 + 1.6 (63)

2 current, 42 former, 29 never (4)

2 current, 32 former
5127
36.6 = 9.9 (21)

Control
82
63.8+11.9
35 M, 47 F

76 white, 1 Hispanic, 1 African American,
3 Asian, 1 other

1 current, 43 former, 29 never (9)

37 =32 (38)

0.6 = 0.9 (71)

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; ILD = interstitial lung disease; IPF =idiopathic pulmonary fibrosis.

Values in parentheses are missing demographics.
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The changes in expression of HIF1IA, MDM?2,
and NFKBIB were all confirmed by
immunohistochemistry, with MDM2
localizing to the airway epithelium (Figure 3C).

Overlapping Differential Splicing in
Emphysema and IPF Identifies
p53-associated NUMB and PDGFA
We have leveraged the RNA-seq data
(Table 1) to identify disease-associated
alternative splicing events using an
interaction term linear model (see METHODS
and online supplement). Our analysis best
selected genes with cassette exon skipping
or inclusion events (27). Differential
splicing analysis revealed one gene in
emphysema versus control samples and
27 genes in IPF versus control samples that
had significant changes associated with
both splice junctions and disease (g < 0.25)
compared with controls (see Table E3).
Given that the heterogeneity of
disease tissue samples and the large number
of splice junctions could leave us
underpowered to detect significant
alternative splicing, we decided to relax the
significance value (P < 0.01) to identify a
set of alternative splicing events shared in
both diseases, because these were less likely
to be affected by a change in cell type
content, given the histologic/pathologic
differences between IPF and COPD. To
identify disease-associated splicing events,
we focused on genes with splice junctions
that showed a switching in expression
associated with disease (i.e., at least one
splice junction was down-regulated with
disease and one splice junction was
up-regulated with disease). Two genes,
PDGFA and NUMB (Figures 4A and 4D),
showed significant concordant changes in
isoform proportions in both emphysema
and IPF samples compared with control.
PDGFA and NUMB are likely associated
with the p53/hypoxia pathway (see
Discussion and supplemental ResULTs).
Analysis of PDFGA showed exclusion
of an exon in both IPF and emphysema
samples compared with normal histology
controls. Specifically, whereas all
samples express both isoforms of
PDGFA, expression of one splice
junction supporting PDGFA isoform 001
increased and expression two splice
junctions supporting PDGFA isoform 002
were decreased in the disease samples
(Figure 4B). Oppositely NUMB
demonstrated preferential inclusion of an
exon among both IPF and emphysema
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samples compared with control. There was
a difference in ratios of isoform 203 and
isoform 202 (contains extra exon 9)
observed by changes in expression of one
splice junction versus two splice junctions,
respectively (Figure 4D). Although the
NUMB coverage plots was more subtle,

there is a significant change (P < 0.01) in
the proportions of these two isoforms
reflected in the ratio of reads mapping to
the genomic regions spanning exon 8 and
exon 9 in Figure 4E.

We validated these splicing events
using the nCounter gene expression analysis
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Figure 3. Convergent gene expression patterns in idiopathic pulmonary fibrosis (IPF) and emphysema.
(A) Scatter plot of fold ratios of emphysema to control (y-axis) versus fold ratio of IPF to control (x-axis).
Fold ratios for all genes are depicted in log base 2. Spots are colored in increasing shades of purple
based on concurrent directions and yellow if going to the opposite direction. (B) Heatmap of significant
shared changes in gene expression in emphysema and IPF. Red indicates relative higher expression,
blue means relative lower expression. (C) Immunohistochemistry for NFkBIB, HIF1a, and MDM2 (n=5
per group). For all three targets, greater staining intensity was observed in IPF and emphysema samples
compared with controls. For NFkBIB and HIF1«, there is no clear localization to specific lung cell
lineages in contrast to MDM2, which seems to be localized to epithelial cells and macrophages. Inset
images show staining with nonimmune control IgG (magnification X 100; scale bar = 100 wm). Black arrows
indicate epithelial cells, yellow arrows indicate macrophages, and pink arrows indicate cells in lymphoid
aggregates. CTRL = control; EMP = emphysema; HIF-1a = hypoxia-inducible factor 1-«; IPF = idiopathic
pulmonary fibrosis; MDM2 = E3 ubiquitin-protein ligase; PDGF-A = platelet-derived growth factor a.
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Figure 4. PDGFA and NUMB are differentially spliced in chronic lung disease. The structure of the two isoforms for both PDGFA and NUMB are shown
at the top of A and D, respectively. (A) Box plots of PDGFA isoform 001 and 001 splice junctions. (B) Coverage plots showing the interquartile range
(lighter shading) of normalized reads and the mean (darker line) for PDGFA. (C) Barplot of nanostring validation showing the mean and the SE of the
normalized number of times a transcript was counted by the nanostring method. (D) Box plots of the splice junctions in NUMB. (E) Coverage plots of
NUMB. (F) Barplot of NUMB alternative splicing nanostring validation. IPF = idiopathic pulmonary fibrosis; RPM = reads per million.

system (28, 29) across the same cohort of
samples with RNA-Seq data (subset of

52 samples with leftover mRNA) and an
independent replication cohort of samples
from the LTRC (n =193) (Table 3). The
results on the same subset of samples
(n=52) corroborated that PDGFA isoform
001 was up-regulated in emphysema versus
control samples and unchanged in IPF
versus control samples. In validation,
PDGFA isoform 002 was down-regulated in
both IPF and emphysema samples versus
control. This verifies that the isoform
proportions of PDGFA are significantly
different between disease and control
samples in the original cohort (Figure 4C).

The nCounter results across independent
cohort of 193 lung tissue samples
confirmed that PDGFA is differentially
spliced in a more general set of COPD
samples compared with control (P < 0.05).
However, when moving to a more
general set of ILD samples (not limited
to IPF samples), PDGFA seems to be
significantly differentially expressed
rather than differentially spliced, suggesting
that the differential splicing is likely to
be more specific to IPF samples than
to the ILD samples (see Figure E4).

For NUMB, the nCounter expression
analysis on the same subset (n = 52) showed
that NUMB isoform 202 was significantly
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up-regulated in both IPF and emphysema
samples versus control (P < 0.05). It also
confirmed that NUMB isoform 203 was
significantly down-regulated in IPF versus
control samples (P < 0.05) and not
significantly changed in COPD with
emphysema versus control samples
(Figure 4F). This confirmed our RNA-seq
results, which showed that isoform
proportions of NUMB were significantly
different between chronic lung diseases and
control samples (Figure 4E). The nCounter
validation on the independent cohort also
confirmed that the NUMB isoform 202 was
significantly up-regulated across a more
general set of ILD versus control samples,
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whereas the NUMB isoform 203 was
significantly down-regulated in ILD
samples (see Figure E4).

Identification and Validation of
MicroRNAs That Regulate
Transcriptional Networks Shared in
COPD and IPF

Integrating mRNA-Seq and miRNA
microarray expression data on the same
samples (Table 1) uncovered additional
insights into the transcriptomic regulation
of the p53/hypoxia pathway in emphysema
and IPF. Using miRconnX (22), we created
a data-driven and prior knowledge based
gene/miRNA regulatory network. Initially,
we constructed a regulatory network using

genes differentially expressed (P < 0.05) in
the same direction in both emphysema
and IPF to explore shared regulatory
mechanisms between the two diseases
(http://mirconnx.csb.pitt.edu/job_results?
job_id=example10103). The network
contains 15 miRNA including MIR96

and 31 genes. We created two additional
networks by submitting emphysema versus
control genes (http://mirconnx.csb.pitt.
edu/job_results?job_id=example10102) and
IPF versus control genes (Figure 5, or
http://mirconnx.csb.pitt.edu/job_results?
job_id=example10101) with the same

P value cutoff. Both of these networks
featured MIR96 as the most connected
miRNA.

Because glutamate transporter SCL1A1
and BTK inhibitor SH3BP5 were down-
regulated in both diseases (see Table E1)
and predicted to be repressed by MIR96 in
the shared regulatory network generated
using mirConnX we tested the effect of
overexpression of MIR96 on their gene
expression levels in vitro. Overexpression of
MIR96 in primary lung fibroblasts and
epithelial cells significantly repressed the
expression of both genes (see Figure E5).
To test whether up-regulation of MIR96
induced global changes in gene expression
similar to those observed in the lung we
ran gene expression arrays on the same
samples. GSEA analysis revealed that
overexpression of MIR96 recapitulated

-
o

—i = repression (bold = PCR validated)
[l = miRNA up in IPF
Il = miRNA down in IPF
= IPF mRNA
@ =53 associated IPF mRNA
= |PF and Emp mRNA
@ =p53 associated IPF and EMP mRNA

1%

x%-\

‘/{
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Figure 5. Shared emphysema (EMP) and idiopathic pulmonary fibrosis (IPF) microRNA (miRNA) regulatory network. Regulatory miRNA-mRNA network
showing regulation in both diseases. Red lines indicate direction of repression. Bold red lines indicate interactions that were selected and validated by

polymerase chain reaction (PCR).
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in vitro some of the global gene expression
changes observed in IPF lungs relative to
controls (see Figure E6; P =0.008).

Discussion

In this study we provide the most in depth
profile of the core lung transcriptome in
health and disease to date using next
generation sequencing. By comparing the
two radically different but similarly
devastating lung diseases, emphysema and
IPF, with healthy, normal histology lungs we
discover that that activation of p53/hypoxia
pathway is common to both diseases.
Despite their extremely divergent
phenotypes, IPF and emphysema share
the same environmental risk factors and
especially exposure to cigarette smoke. This
unexpected and novel finding may shed
significant light on the potential core
pathways that initiate lung chronic lung
remodeling in response to environmental
injury. Taking advantage of the full depth of
our transcriptomic analyses and large well
characterized cohort we identified and
validated alternative splicing of p53/hypoxia
pathway associated molecules NUMB

and a role for MIR96 as a regulator

of the p53/hypoxia lung response to
environmental injury gene-expression
network.

Given the depth of RNA sequencing
coverage across a relatively large and diverse
set of lung tissues at different stages of
health and disease, our study provides a
view of the core transcriptome of the lung
and the wide range of its transcriptional
potential. Using a mixed modeling
approach, we classified genes as either
having no detected expression by RNA-seq,
reliably expressed, and detected but likely to
be transcriptional noise rather than active
expression. Generally, within each
sample, approximately half of the known
transcriptome is reliably expressed as shown
by Figure 2A. We then classified the
transcriptome by counting the number of
samples a gene was reliably expressed in:
approximately one-third of genes were
reliably expressed in all 87 samples, one-
third were never reliably expressed in any
of 87 samples, and one-third were variably
expressed in a subset of the 87 samples as
seen in Figure 2B. This relatively large
transcriptional plasticity likely reflects both
the diversity of cell types in the lung, and
the ability of individual cells types to

Kusko, Brothers, Tedrow, et al.: Transcriptomic Networks Underlying COPD and IPF

dramatically change their transcriptional
profiles, both important characteristics in
an organ continuously and unpredictably
exposed to a wide array of inhaled
environmental exposures.

Aside from its’ novelty the importance
of our description of the lung transcriptome
lies in its comprehensive nature. In recent
years there have been multiple efforts to
target drugs to distinct organ systems.
Many of these efforts failed because most of
the information about organ specificity of
gene expression is historical, based on a
small number of samples and usually
containing only normal tissues or one
disease state. In contrast our dataset is wide,
contains a diverse compendium of lung
tissues in ranges from normal histology to
fulminant disease, and thus should serve
as a unique resource to those seeking to
understand lung transcriptional networks,
or more importantly, develop lung-specific
interventions.

Our initial analysis aimed at identifying
the common molecular networks in
emphysema and IPF was conducted at
the gene-expression level. One of the
striking findings from that analysis was the
relatively large number of genes that were
differentially expressed between IPF and
normal lung, as compared with the number
of genes that are differentially expressed
between emphysema and normal lung.
These findings could potentially stem
from the distinct cellular changes that
characterize fibrotic foci that were profiled
as compared with a more heterogeneous
cell type composition in emphysema.
However, despite the contrasting differences
in cellular content and lung structure
between IPF and emphysema, we identified
a shared molecular network related to the
up-regulation of the p53/hypoxia pathway
in both conditions. When the p53 pathway
is triggered by hypoxia instead of DNA
damage, apoptosis is not triggered. Our
results confirm previous studies that found
up-regulation of specific members of the
p53/hypoxia pathway when studying
the diseases separately. Up-regulation of
HIF1A, TP53, MDM2, CDKNIA, and
BAX were described in IPF (30, 31) and
up-regulation of TP53 and BAX were
described in emphysema (32). However,
these studies did not compare emphysema
and IPF together with control and thus
did not highlight the fact that this pathway
may serve as a core lung response to
environmental injury. Similarly, our

analysis uncovered additional transcriptional
regulatory dimensions of this pathway
were dysregulated in both diseases
including alternative splicing and
microRNA regulation.

Considering the commonality of the
findings between emphysema and IPF, it is
tempting to hypothesize that these findings
represent indeed a core pulmonary injury
response, but further studies are needed
to evaluate whether this dysregulation is
in fact causal. The mechanisms driving
P53/hypoxia pathways in both diseases are
unclear. It is possible that this is simply a
response to the impaired gas exchange
typical for both diseases. However, it could
also represent a response to injury as has
been preciously suggested. Regardless,
chronic activation of these pathways has
important downstream cellular and
inflammatory effects that may sustain
the phenotypic changes observed in the
diseases. Detailed mechanistic studies are
required to answer this question, and to
identify what are the points of divergence for
both diseases.

Another discovery is the identification
of IPF- and emphysema-related splicing
events. Analysis of RNAseq reads that
overlap transcript splice junctions allowed
us to identify disease-associated changes
in alternative splicing. As with differential
gene expression, there were more
differentially spliced genes in IPF versus
control lung as compared with emphysema
versus control lung, which may again likely
reflect diversity of cell types. PDGFA and
p53-associated NUMB were differentially
spliced in both emphysema and IPF tissues
compared with normal histology controls,
with the change in isoform expression in
the same direction. NUMB has four
primary isoforms that occur from the
alternative splicing of two regions: a
phosphotyrosine-binding domain and
a proline-rich region (PRR), which is a
SH3-binding domain. In IPF and
emphysema, we saw evidence for a change
in the alternative splicing of the PRR based
on the splice junctions that distinguish
between the isoforms that contain a 144-nt
(48 amino acid) insert in the PRR and the
isoforms that do not include that insert in
the PRR. In both diseases, the NUMB
isoform with the longer PRR was increased
and the NUMB isoform with the shorter
PRR was decreased. This result is of
particular interest because of its relation
to the p53 pathway. NUMB is known to
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bind to both TP53 and MDM2 separately
and may potentially form a triplex with
TP53 and MDM?2, stabilizing and
preventing TP53 from being degraded
(33-35). Further experiments are required
to determine whether the observed splicing
event affects the binding of NUMB to TP53
and MDM2.

PDGFA has two primary transcript
products (Ensembl isoforms PDGFA-001
and PDGFA-002) that are 196 and 211
amino acids long, respectively (36, 37). The
longer (PDGFA-002) version that contains
exon 6 is decreased in IPF and emphysema,
whereas the shorter (PDGFA-001) does not
change. The function of this extra exon is
well described. It is transcribed into a
retention domain composed of a 15 amino
acid long carboxy-terminus that is ensnared
by binding to heparin sulfate in the
extracellular matrix on secretion,
preventing this isoform from diffusing
away from the cell. The shorter isoform,
however, is able to diffuse away and trigger
other cells (38-43). Although there is
limited understanding how the individual
isoforms may play a role in the p53/hypoxia
pathway, a number of groups have shown
that PDGFA expression associates with
hypoxic lung injury in rodent models of
lung disease (44, 45). We have also shown
that there is a significant enrichment of
genes associated with the p53/hypoxia
pathway in a list of genes whose expression
correlates significantly with the ratio of
measurements of the two different isoforms
of PDGFA and is further evidence that this
overlapping alternatively spliced gene in
IPF and COPD might also be related to the
p53/hypoxia pathway (see ResuLTs in the
online supplement). Although this suggests
a relationship that may affect the
p53/hypoxia pathway, such as NUMB, the
specifics of how the two isoforms may affect
the p53/hypoxia pathway are unknown
and a potential area of future study.

Exploring the shared molecular
network between IPF and emphysema
involved an integrative analysis of the
mRNA-seq and microRNA array data
generated on the same lung tissue samples.
This analysis also revealed evidence

suggesting that both diseases share common
transcriptional regulatory motifs, with
several of the same microRNAs being
included in the regulatory networks of both.
Specifically of interest is MIR96, which goes
up in both diseases and could regulate a
number of genes differentially expressed in
both IPF and emphysema including
SCL1A1, SH3BP5, LDB2, and ARGHAP24.
SCLI1AI is a glutamate transporter that is
down-regulated under hypoxic conditions
(46, 47). SH3BP5 inhibits BTK (48), which
is a binding partner of hypoxia-induced
mitogenic factor (HIMF) (49). LDB2 binds
to LIM domain-binding proteins (50),
which inhibit HIFIA (51). Importantly,
our results demonstrate that overexpression
of MIR96 in both lung epithelial cells

and fibroblasts in vitro recapitulates
components of the shared emphysema-IPF
gene-expression network, providing
evidence that MIR96 may regulate a part of
the shared disease gene-expression
network.

Although our unique study design and
comprehensive transcriptional profiling
provided an unprecedented resolution of the
lung transcriptome in health and disease,
there are several critical limitations to our
work. We profiled whole lung tissue and
thus some of the differential gene expression
observed between conditions is driven by
differing proportions of lung cell types.

To address this concern, we pursued
immunohistochemistry to validate the cell
type responsible for expression of a select
number of genes. Interestingly, we observed
convergence of molecular pathways between
IPF and emphysema despite the clear
difference in cell types between these
conditions, an observation that may
suggest that indeed these are core pathways
that underlie the lung response to
environmental injury.

Given the cross-sectional nature of our
study, it is difficult to distinguish gene
expression changes that are causal versus
consequence of the disease process. The
integrative mRNA-miRNA network and the
subsequent functional validation studies
in vitro provide some evidence for a causal
relationship between regulatory miRNA

and the disease-associated gene expression
network. However, further functional
studies including animal knockout models
are needed to conclusively test for causality.
Some of the control lungs were collected
from smokers with adjacent lung cancer,
raising the potential for some of the
differential expression to be driven by the
local “field cancerization” effect. To limit
this confounding effect, we used matched
single-nucleotide polymorphism array from
the lung and blood to filter out samples
with abnormal gene fusions and cytogenetic
abnormalities. Although the size of our
initial cohort was limited, we confirmed our
sequencing results on multiple levels,
including validating and replicating the
results using an additional cohort and
additional techniques. Finally, our study
did not explore the potential for RNA-seq
to uncover unannotated alternative splicing
events, novel transcripts associated with
disease, or comparative network analysis,
which were beyond the scope of the
current paper.

In summary, our paper demonstrates
the potential for next-generation sequencing
to provide resolution of the transcription
potential of the lung in health and disease.
Importantly, by profiling multiple distinct
lung diseases in parallel within the same
study, we uncovered molecular networks
that are shared among smokers with IPF and
emphysema. Expanding this approach to
other disease of the lung and other organ
systems may enable us to begin to redefine
the clinical and pathologic boundaries that
have traditionally divided disease entities to
the molecular pathways that are shared or
distinct. Our study also demonstrates the
value of integrating diverse molecular data
from the same specimen to gain insight into
the regular networks that associate with
disease. These networks may not only
provide insight into disease pathogenesis
(additional function studies are needed), but
if proved to be causal may suggest novel
diagnostic biomarkers and therapeutic
targets for chronic lung disease.

Author disclosures are available with the text
of this article at www.atsjournals.org.
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