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Abstract

Chitinases and chitinase-like proteins are an evolutionary conserved group of proteins. In the 

absence of chitin synthesis in mammals, the conserved presence of chitinases suggest their roles in 

physiology and immunity, but experimental evidence to prove these roles are scarce. 

Chitotriosidase (chit1) is one of the two true chitinases present in mammals and the most prevalent 

chitinase in humans. Here, we investigated the regulation and the role of chit1 in a mouse model of 

Klebsiella pneumoniae (Kp) lung infection. We show that chitinase activity in bronchoalveolar 

lavage fluid (BAL) is significantly reduced during Kp lung infection. This reduced activity is 

inversely correlated with the number of neutrophils. Further, instilling neutrophil lysates in lungs 

decreased chitinase activity. We observed degradation of chit1 by neutrophil proteases. In a mouse 

model, chit1 deficiency provided a significant advantage to the host during Kp lung infection by 

limiting bacterial dissemination. This phenotype was independent of inflammatory changes in 

chit1−/− mice as they exerted a similar inflammatory response. The decreased dissemination 

resulted in improved survival in chit1−/− mice infected with Kp in the presence or absence of 

antibiotic therapy. The beneficial effects of chit1 deficiency were associated with altered Akt 

activation in the lungs. Chit1−/− mice induced a more robust Akt activation after infection. The 

role of the Akt pathway in Kp lung infection was confirmed by using an Akt inhibitor, which 

impaired health and survival. These data suggest a detrimental role of chit1 in Kp lung infections.

Introduction

Lung infections are the 8th leading cause of death in the United States (CDC, 2017). 

Pneumonia due to bacterial pathogens is a major clinical challenge. Due to anatomical and 

physiological reasons, lungs are constantly exposed to microbial agents. To deal with 

invading microbes, lungs are well equipped with various host defense mechanisms (1, 2). 
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However, opportunistic pathogens often overcome these host defense mechanisms, 

especially in persons with an impaired host defense such as those in hospitals with 

underlying diseases, or those on ventilators (3). Klebsiella pneumoniae (Kp) is one such 

opportunistic gram-negative bacterium (4). Pulmonary bacterial infections due to Kp result 

in substantial mortality and therapeutic costs and Kp is the 3rd leading cause of hospital-

acquired bacterial pneumonia (4, 5). Significant increase in mortality is observed when 

infections spread to the peripheral organs, which can lead to sepsis and septic shock. 

Mortality due to Kp bacteremia can be as high as 50–70 % (6, 7). Although antibiotics are 

the main therapeutic intervention used, therapeutic failure is common and significant 

mortalities still persist (8). The emergence of multi-drug resistant (MDR) strains of this 

pathogen, especially strains that produce carbapenamase, are putting further limitations on 

the currently available therapies (9). While the discovery rate of new antibiotics has been 

dismal (10), exploring host mechanisms that contribute to the regulation of infection could 

help to develop new therapies. Further, there is always a risk of emerging resistant strains 

against newly developed antibiotics. On the other hand, host-targeted therapies are not prone 

to develop resistance by pathogens, at least theoretically. However, very little is known about 

the mechanisms involved in bacterial dissemination from the lung to systemic circulation 

and the host factors that are responsible for this phenomenon.

Chitinase and chitinase-like proteins (CLPs) are a conserved group of proteins that belong to 

the 18-glycosyl hydrolase family (11). In the absence of chitin biosynthesis in mammals, 

chitinases were hypothesized to have important roles in physiology. Their well-documented 

regulation in various diseases and pathological conditions further support their important 

biological roles (12–14). Chitotriosidase (chit1) is one of the two true chitinases present in 

mammals, the other one being Acidic mammalian chitinase (AMCase) (15, 16). While chit1 

is the most prominent chitinase present in humans, mice express both chit1 and AMCase 

(17). The role of chit1 in fungal and parasitic infection is indicated by both epidemiological 

and experimental studies (18–21). A significant proportion of various populations including 

Asians, Caucasians and Indians are deficient (5–20%) in enzymatic activity mainly due to a 

24-bp duplication mutation (22, 23). Interestingly, these individuals without chitinase 

activity do not express any obvious related phenotypes or reported abnormalities. However, 

how these individuals respond to bacterial infections is not known.

The role of chit1 has been proposed in host immunity mainly due to its high expressions at 

anatomical locations where host pathogen interactions take place, such as the lungs and the 

gut (17, 24). Further, supporting this belief, chit1 is stored in and released from 

macrophages, one of the main effector cells against invading pathogens (25). However, the 

regulation and role of chit1 in bacterial infection has not been explored in vivo.

In the current study, we explored the regulation and the role of chit1 in Kp lung infection. 

Here we report that chitinase activity is significantly down-regulated during Kp infection, 

which is mediated by the degradation of chit1 by neutrophil elastases. In this infection 

model, we show that chit1 deficiency provides a significant advantage to the mice by 

limiting bacterial dissemination. This resulted in improved survival in mice in the presence 

or absence of antibiotic therapy. Altered Akt activation in chit1-deficient mice was 

associated with improved outcomes in Kp infection.
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Material and Methods

Animal studies

All animal studies were done according to IUCAC approved protocols at Yale University.

Bacterial infection model

Mouse adapted laboratory strain of Klebsiella pneumoniae (Kp) ATCC 43186 was grown on 

LB plates from the glycerol stocks stored in −80 C. Next day, a single colony was 

transferred to liquid broth to culture overnight and next day it was sub cultured for 1 h to 

bring the bacteria into log phase of growth. The numbers of CFUs were estimated by 

measuring OD at 600 nm and were confirmed by plating the inoculum. Mice were 

inoculated intratracheally by injecting 50 μl of PBS solution containing 5000 CFUs of Kp.

For intratracheal inoculation, mice were anaesthetized using a mixture of ketamine and 

xylazine (100 and 10 mg/kg respectively). A small incision was made on the neck to expose 

the trachea, and bacterial suspension was instilled directly into the trachea. The wound was 

sealed with Vetbond surgical glue, and the mice were observed until they recovered from 

anesthesia.

For peritoneal infection, 104 CFUs of Kp, suspended in 200 μl of PBS, were injected into the 

peritoneal cavity of mice. Mice were euthanized at 24 h post infection to harvest peritoneal 

lavage fluid, spleen, and BAL. Peritoneum was lavaged twice with 5 ml sterile PBS each 

time.

For Pseudomonas aeruginosa infections, PAO1 strain was grown in the similar manner as 

described for Kp. Mice were inoculated intratracheally with 1 × 10 7 CFUs per mouse and 

organs were harvested at 12 hours post infection.

For LPS administration in the lungs, LPS from Pseudomonas aeruginosa or from Kp (Sigma 

Aldrich, St. Louis, MO) were used at 5 μg/mouse by intratracheal route and mice were 

sacrificed at 12 hours post infection.

Purification of neutrophils and preparation of neutrophil lysates

Mouse bone marrows were isolated from donor mice and flushed to isolate bone marrow 

cells. Purified neutrophils were isolated using a neutrophil isolation kit from Stem cell 

technologies according to the manufacture’s protocol. This kit utilizes a negative selection 

method using magnetic beads.

Measurement of chitinase activity

Chitinase activity in the BAL samples was measured using a fluorescence-based assay. BAL 

samples (5μl) were incubated with 4-Methylumbelliferyl β-D-N,N′-diacetylchitobioside 

hydrate solution for 15 minutes at 37 °C and the fluorescence intensity was measured at 450 

nm. BAL samples from IL-13 transgenic mice were used as positive controls as previous 

studies have indicated significant elevation of chitinase activity in these mice (26).
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Western blot studies

Western blots of BAL samples were performed by loading 30 μl of BAL samples from each 

mouse in 4–20% gradient SDS page gel. For lung tissue and cell lysates, 30 μg and 10 μg of 

protein, respectively, were loaded. After electrophoresis, the gels were transferred to a 

PVDF membrane using the Trans-Blot system from Biorad. Membranes were then blocked 

with 5% milk for 1 h and incubated with primary antibodies overnight. HRP labeled 

secondary antibodies were used. Bands were detected by using HRP substrate. Band 

intensities were measured using the BioRad chemiDoc MP imaging system from BioRad. 

Antibodies to Phospho-Akt (T308), total Akt, and anti-rabbit secondary antibodies were 

purchased from Cell Signaling Danvers, MA. Antibodies to Chit1 and AMCase were 

purchased from LS Bio, Seattle, WA. β-actin was purchased from Santa Cruz 

Biotechnologies.

Quantitative PCR

Total RNA from the lung tissue was extracted using the Qiagen RNAeasy Kit as per 

manufacturer’s instruction. cDNA was synthesized using the iScript reverse transcriptase kit 

using instructions provided with the kit. qPCR assays were performed using the syber green 

mastermix. Following primers were used in this study:

AMCase

F- ACA AGC ATC TCT TCA CTG TCC TGG T

R- TGG ATG TTG GAA ATC CCA CCA GCT

Chit1

F- CGG CAG GAA CTA AAT CTT CCA T

R- TGG GCG TGG CTC AGG TAT

18S

F- -GCA ATT ATT CCC CAT GAA CG

R- AGG GCC TCA CTA AAC CAT CC

Harvesting BAL samples

Mice were euthanized at a given point of time post infection or at baseline as indicated. The 

trachea was exposed by making a small cut on the neck and then inserted with a 22 G 

catheter as described before (27). Lungs were lavaged by two aliquots of 750 μl of ice-cold 

sterile PBS. BAL was kept on ice or 4 °C until further processing. These BAL samples were 

centrifuged to pellet the cells and the cell free supernatant was collected in separate tubes 

and stored at −80 °C for further analysis.
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Enumeration of bacterial burden in BAL, Lung and Spleen

Small aliquots of BAL samples were serially diluted in sterile broth and plated on agar 

plates. Aseptically isolated left lung or spleens were homogenized in 1 ml of sterile PBS and 

then serially diluted and plated on agar plates. Numbers of CFUs were estimated by 

counting the number of colonies on the agar plates after overnight incubation at 37 °C.

Cell count and differential counts

Total numbers of WBCs in the BAL samples were collected by re-suspending the cell pellet 

obtained from BAL samples from mice into PBS. The cells were counted using the 

Beckman Coulter cell counter. Approximately 1 × 10 5 cells were used to prepare cytospin 

slides, which were stained with HEMA-3 stain, and the number of macrophages and 

neutrophils were estimated by counting at least 200 cells per slide.

Lung Pathology Scoring

Lungs were inflated with 0.5% low melting agar and fixed in formalin. Tissue sections were 

stained with hematoxylin and eosin. Lung scoring was done based on scores from 0 to 4, 

where 0 is no pathology while 4 is severe. Scores for peri-bronchial and peri-vascular 

inflammation were added for each mouse.

ELISA and Bio-plex assays

Cytokines in the BAL samples were measured using conventional sandwich ELISA duoset 

kits from R & D as per manufacturer’s instruction. Briefly, 96-well plates were coated 

overnight with capture antibody. Unbound antibody was washed off the next day and the test 

samples were loaded and incubated for 2 h. Detection antibody was added after washing off 

the samples. Detection antibody was washed off and streptavidin HRP was added to incubate 

for 20 minutes. After washing off unbound streptavidin, TMB substrate was added to react 

with bound HRP for 20 minutes. Stop solution was added to stop the reaction and 

absorbance was measured at 450 nm. The Bioplex cytokine assay was performed using Bio-

Plex Pro™ Mouse Cytokine kit from Bio-Rad according to the instruction provided with the 

kit.

Survival studies

For survival studies, mice were infected with 5 × 10 3 CFUs of Kp and were observed every 

day for mortality. Mice were euthanized once they were considered humane concern and 

considered as dead. Blood samples were collected from some of these mice, from orbital 

sinus while under anesthesia by ketamine/xylazine at given time points to estimate bacterial 

burden in the blood. For survival with antibiotics, two doses of antibiotics were administered 

at 48 and 60 h post infection.

Primary macrophage and cell line culture

Mouse bone marrow derived macrophages from wild type and chit1−/− mice were developed 

by culturing the bone marrow in RPMI containing 10% fetal bovine serum and 20 % of 

L929 cell conditioned media, for 7 days. Cells were treated with Kp LPS at 500 ng/ml for 
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the indicated time points. RAW 264.7 cells from ATCC were grown in DMEM with 10% 

FBS and 1% penicillin streptomycin solution.

Statistics

Data were analyzed using graph pad prism software version 7. Two groups were compared 

using student’s t test. Experiments comprising more than two groups were analyzed using 

one way ANOVA and Sidak’s multiple comparison test was used. For survival studies, 

Kaplan Meier curves were prepared and data were analyzed using Wilcoxon test.

Results

Airway chitinase activity is down-regulated during infection and inflammation

Chitinase activity is dynamically regulated during various inflammatory conditions and is 

believed to be an important mediator of inflammation and disease progression (12, 16, 28). 

To understand the regulation of chitinase activity during bacterial lung infection, chitinase 

activity was measured in the BAL samples of mice infected with Kp for different durations. 

At baseline, mice have a marked chitinase activity which decreases in a time dependent 

fashion during Kp infection and by 48 h post infection, a significant drop in chitinase 

activity was observed (596 ± 43 vs 390 ± 33 AU, P < 0.05, Fig 1 A). A similar drop in the 

chitinase activity was observed during Pseudomonas infection or sterile inflammation with 

the bacterial product LPS (394 ± 32 vs 223 ± 26 AU, P < 0.01, Fig. 1 B). Unlike BAL 

samples, no detectable chitinase activity was observed in the peritoneal lavage fluids 

obtained from mice (Sup.Fig. 2C). To determine whether infection with Kp leads to the 

down-regulation of the expression of chitinases, the mRNA levels of chitotriosidase and 

AMCase were measured. Expression levels of chit1 (1.00± 0.42 vs 0.94 ± 0.43, P = ns, Fig. 

1 C) and AMCase (1.00 ± 0.40 vs 1.03 ± 0.46, P = ns, Fig. 1 D) in the lungs of infected mice 

were similar to that of uninfected mice suggesting that the chitinase expression is not 

responsible for the decreased activity during infection. Together, our results suggest that 

chitinase activity is down-regulated during bacterial infection and LPS-mediated 

inflammation without altering the lung expression of true chitinases.

Inflammatory cells mediate down-regulation of chitinase activity during lung infection by 
cleaving chitotriosidase

Up-regulation of chitinase activity is often associated with the type 2 inflammatory 

responses, especially those mediated by eosinophils (14, 26). However, the role of 

inflammatory cells such as neutrophils in regulating chitinase activity is not known. We 

found that neutrophil infiltration in the lung during Kp infection (Fig. 2A) inversely 

correlated with chitinase activity in the BAL of mice (R = −0.93, P < 0.05, Fig 2B). No 

significant correlation was observed with macrophage infiltration and chitinase activity (R = 

−0.84, P = ns, Fig. 2D). To establish a causal relationship between neutrophils and down-

regulation of chitinase activity, we instilled neutrophil lysates directly to the lungs of mice 

and measured chitinase activity into the BAL samples of mice. Similar to infection and 

inflammation, instillation of neutrophil lysates resulted in a significant decrease in chitinase 

activity in the BAL samples (800 ± 45 vs 601 ± 39 AU, P < 0.05, Fig. 2E). By western blot 

analysis, we observed a significant reduction in the levels of chit1 protein during infection as 
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well as upon instillation of neutrophil lysates (Fig. 2 F & G). The levels of AMCase did not 

change in the BAL samples after infection or after instillation of neutrophil lysate. In 

agreement with these results, we also observed that the treatment of BAL fluid with 

neutrophil elastase significantly degrades chit1 but no susceptibility of AMCase to elastase 

was observed (Fig. 2 H). Together these results suggest that neutrophil infiltration during 

lung infection or sterile inflammation contribute toward decreased chitinase activity 

mediated by proteolytic cleavage of chitotriosidase.

Chit1 deficiency in mice limits bacterial dissemination and weight loss during Klebsiella 
infection

Chit1 is the most prominent chitinase present in humans and also contributes significantly to 

chitinase activity in mice (17) and Sup Fig. 2). To understand the role of chitinases during 

lung infection, we infected chit1 deficient (chit1−/−) mice to study their weight loss, lung 

bacterial burden, spleen bacterial burden (as a marker of dissemination), and total protein 

content in BAL (as a marker of lung injury). These data show that at 48 h post infection, 

chit1−/− mice maintain their weight closer to baseline compared to wild type mice (Weight 

loss in wild type 14.64 ± 0.84% vs 12.37 ± 0.74 % in chit1−/− mice, P = 0.05, Fig. 3A). The 

decreased weight loss corresponded to decreased bacterial burden in spleen of chit1−/− mice 

by a log change (6.06 ± 0.26 in wild type vs 5.05 ± 0.25 Log CFUs/Spleen in chit1−/− mice, 

P < 0.01 Fig. 3B), while similar bacterial burden in the BAL was observed (6.20 ± 0.18 in 

wild type vs 5.97 ± 0.17 Log CFUs/ml BAL in chit1−/− mice, P = ns, Fig. 3C). Similar to 

BAL, the bacterial burden in the lung tissue were not different among the two groups (5.52 

± 0.45 vs 6.39 ± 0.41, P = ns). No difference in the lung injury was observed as indicated by 

the total protein content in the BAL (169.50 ± 13.25 in wild type vs 186.80 ± 12.95 μg/ ml 

BAL in chit1−/− mice, P = ns, Fig. 3D). In contrast, upon peritoneal infection, similar 

bacterial burdens were observed in the peritoneal lavage fluid, BAL, and spleen in wild type 

and chit1−/− mice (Sup Fig. 3B, C and D). Similar weight loss between wild type and 

chit1−/− mice was observed during peritoneal infection (Sup Fig. 3A), along with similar 

levels of inflammation (Sup Fig. 3E and F), suggesting lung specific protective effects of 

chit1 deficiency during Kp infection. Interestingly, unlike BAL fluid, which has significant 

chitinase activity at baseline, the peritoneal lavage fluid had no detectable chitinase activity 

(Sup. Fig. 2C)

To test whether these protective effects are specific to Kp or extends to other gram negative 

infections, we use a Pseudomonas infection mouse model. Using this mouse model, we did 

not see any protection in Chit1 −/− mice as evident by increased bacterial load in lung 

tissues as well as in the spleen (Sup Fig. 3G, H and I). Together, these results suggest that 

chit1 specifically regulates bacterial dissemination during Kp lung infection without 

significantly altering pulmonary bacterial clearance and lung injury.

Chit1−/− mice have similar inflammatory responses during Kp lung infection

To understand the possible mechanisms behind improved health and limited bacterial 

dissemination in the absence of chit1, we sought to determine the inflammatory response 

during lung infection with Kp. Mice infected with Kp leads to the elevation of many of the 

inflammatory cytokines resulting in inflammatory cell recruitment (data not shown). 
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Compared to wild type mice, chit1−/− mice had similar inflammatory cell infiltration at 48 h 

after Kp infection (0.55 ± 0.07 in wild type vs 0.57 ± 0.09 × 106 / mouse in chit1−/− mice, P 

= ns, Fig. 4A). The number of neutrophils (0.32 ± 0.07 in wild type vs 0.28 ± 0.06 × 10 6 /

mouse in chit1−/− mice, P = ns, Fig. 4B) and macrophages (0.19 ± 0.02 in wild type vs 0.27 

± 0.04 × 10 6 /mouse in chit1−/− mice, P = ns, Fig. 4C) were similar in these mice BALs 

after lung infection. Histological analysis revealed cell infiltration and consolidation in the 

lung tissue of infected mice but there was no apparent difference between lungs from wild 

type and chit1−/− mice as indicated by lung pathology scores (4.73 ± 0.59 in wild type vs 4.9 

± 0.57 in chit1−/− mice, P = ns, Fig. 4 K & L). The levels of cytokines were also measured in 

the BAL samples obtained from the infected mice. The levels of various inflammatory 

cytokines such as TNFα, IL-β, IL-6, IL-12, IFNγ and IL-17 were not different between the 

two groups upon infection (Fig. 4 D-I). Similarly, the anti-inflammatory cytokine IL-10 was 

similar between infected wild type and chit1−/− mice (Fig. 4J). The levels of other tested 

cytokines such as IL-2, IL-4 and IL-5 were below the detection limit (1pg/ml) in BAL 

samples of both wild type and chit1−/− mice. Corresponding to these results, bone marrow 

derived macrophages obtained from wild type and chit1−/− mice had similar cytokine 

responses when stimulated with LPS (Sup Fig. 4 D & E). Also, macrophages cell line RAW 

264.7 cells produced similar cytokines in response to LPS in the presence or absence of 

recombinant chit1 (Sup Fig. 4 F & G). Interestingly, BMDMs obtained from chit1−/− mice 

had better control on bacterial growth in-vitro compared to the BMDMs obtained from wild 

type mice (Sup Fig. 4 H).

Overall, these results indicate that chit1 deficiency does not play a significant role in 

regulating inflammatory response during lung infection but still contribute to the protection 

against Kp infection in macrophages.

Chit1−/− mice regulate early dissemination of bacteria and have a survival advantage with 
Kp lung infection with or without antibiotic therapy

To better understand the mechanisms of lower bacterial burden in the spleen of chit1−/− 

mice, we sought to determine the time course of bacterial dissemination in these mice. After 

infection with Kp, bacterial burden was measured in the blood samples of these mice. 

Chit1−/− mice have lower bacterial burden in their blood compared to wild type mice, which 

is evident as early as 24 h after infection and remains higher up to 48 h (196.18 vs 8.82 × 10 
3 CFU/ ml at 24 h, 185.40 vs 28.75 × 10 3 CFU/ ml at 36 h and 544.67 vs 23.64 × 10 4 CFU/ 

ml at 48 h, P = .011), suggesting better control of bacterial dissemination in the chit1−/− 

mice (Fig. 5A). Next, we investigated if limiting the bacterial dissemination results in better 

survival in chit1−/− mice. As expected, we observed a significant survival advantage in the 

chit1−/− mice during lung infection. On day 3, while 70 % of mice succumbed to infection in 

the wild type group, only 44 % died of infection in the chit1−/− group (Fig. 5B) P < 0.05. To 

further mimic a clinical situation, we administered two doses of antibiotics in the mice at 48 

and 60 h post infection to understand the role of chit1 deficiency in this model. While even 

after two doses of antibiotics, wild type mice maintained detectable bacterial burden in their 

circulation; the chit1−/− mice effectively cleared circulating pathogens after similar doses of 

antibiotics (Fig. 5C). The lower bacterial burden in chit1−/− mice after antibiotic treatment 

resulted in a rather dramatic increase in the survival during Kp lung infection. While 
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approximately 80 % of mice survived in the chit1−/− group, only 10 % of mice survived in 

the wild type group (Fig. 5D) P < 0.05. Taken together, these data strongly suggest that chit1 

deficiency provides mice with a survival advantage, with or without antibiotics, due to better 

control of early dissemination.

Altered Akt activation in chit1−/− mice during lung infection

Akt signaling has been shown to play important roles during host pathogen interactions (29). 

Chitinase-like proteins have been shown to regulate the Akt signaling pathway. AMCase has 

been shown to protect epithelial cells apoptosis by regulating PI3K-Akt pathway while 

chitinase-like protein Chil1 directly activates Akt signaling (30, 31). We sought to determine 

whether chit1 regulates the Akt pathway during Kp infection. Our data indicate that chit1−/− 

mice maintain a lower Akt activation compared to wild type mice at baseline (1.00 ± 0.14 in 

wild type mice vs 0.45 ± 0.03 in chit1−/− mice, P < 0.01, Fig. 6A). Interestingly, upon Kp 

lung infection, chit1−/− mice have a significantly higher activation of Akt signaling 

compared to wild type mice (1.00 ± 0.07 in wild type mice vs 1.27 ± 0.10 in chit1−/− mice, P 

< 0.05 Fig. 6B). Similar to the lungs, bone marrow-derived macrophages from chit1−/− mice 

had significantly lower activation of Akt at baseline (1.0 in wild type cells vs 0.79 ± 0.04, in 

chit1−/− cells, P < 0.05); however, upon stimulation with LPS, a robust activation of Akt was 

observed in chit1−/− macrophages (0.79 ± 0.04 at baseline vs 1.14 ± 0.12 with LPS 

stimulation, P < 0.005) but not in wild type macrophages (1.0 at baseline vs 0.96 ± 0.04 with 

LPS stimulation, P =ns) (Fig. 6C). On the other hand, there were no differences in the 

activation of the MAPK pathway as measured by the activation of P42/44 or P38 at either 

baseline or upon infection (Fig. 6D, E, G & H). Similar results were obtained upon in bone 

marrow derived macrophages stimulation with LPS (Fig. 6F & I).

Inhibition of Akt pathway impairs bacterial clearance, dissemination, and survival in 
Klebsiella lung infection

To further understand the role of Akt during Kp lung infection, we used Akt inhibitor 

wortmannin. A single dose of wortmannin impaired health (Weight loss 4.78 ± 0.51 in 

controls vs 9.14 ± 0.65 in treated, P < 0.005, Fig. 7A) and decreased survival in mice 

(Median survival 4 day in controls vs 2 day in treated, P < 0.01, Fig. 7B). As expected, the 

wortmannin treated mice had significantly elevated bacterial load in the spleen (3.21 ± 0.556 

vs 7.09 ± 0.30 CFUs/spleen) and BAL (5.46 ± 0.14 vs 6.85± 0.04 CFUs/ml BAL) (Fig. 7C 

& D, respectively), suggesting the importance of the Akt pathway during Kp lung infection.

Discussion

Lung infections result in significant morbidity and mortality in humans. In the fight against 

infectious bacteria, antibiotics provided us with a significant edge over pathogens, but this 

advantage diminished with the development of antibiotic resistance in pathogens (32). 

Currently, MDR strains are threatening to revert all the advantages achieved in the last eight 

decades. The rapidly evolving antibiotic resistance, and slow antibiotic discovery prompted 

us to explore host mechanisms that might boost host immunity to help survive infections.
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Chitinases are an evolutionally conserved group of proteins from yeasts, arthropods and fruit 

flies to mammals including humans (Sup Fig. 1). Shared and conserved areas of the CHIT1 

gene can be seen across the different species from the depicted gene tree. The presence of 

chitinases in humans and other mammals has been puzzling in the absence of chitin 

synthesis. The obvious role of chitinases in physiology or host defense has not been proven 

experimentally. Also, a significant human population (5–20% of healthy human population) 

that is devoid of chitinase activity due to a 24 bp mutation (22, 23, 33). However, a well-

documented regulation of chitinases during many diseases and pathological conditions (16, 

34, 35), suggest specific regulatory mechanisms of the activity and functions associated with 

chitinases.

In the current study, we explored the regulation of chitinases during lung infection with 

Klebsiella pneumoniae (Kp), a leading pathogen in hospital-acquired pneumonia and in 

patients with complex lung diseases (5, 36, 37). Kp infection resulted in a time dependent 

decrease in chitinases activity in the BAL fluid (Fig. 1A), which was independent of gene 

expression of AMCase and Chit1 (Fig. 1C & D). The role of live pathogens in decreasing 

chitinase activity in the infected mice was excluded due to similar down-regulation of 

chitinase activity in LPS injected mice (Fig. 1B). These data suggest that live pathogens are 

not essential to decrease chitinasae activity.

To understand the mechanisms underlying the down-regulation of chitinase activity, we 

characterized the inflammatory response during Kp infection. We observed not only a strong 

negative correlation between chitinase activity and the number of neutrophils in BAL, but 

also direct instillation of neutrophil lysates in the lung effectively decreased chitinase 

activity, establishing a causal role of neutrophils. In our BAL samples from mice that were 

infected with Kp or instilled with neutrophil lysates, we observed lower levels of 

chitotriosidase protein, suggesting a mechanism for decreased chitinase activity (Fig 2 F & 

G). A similar breakdown of chitotriosidase was observed when BAL samples were 

incubated with neutrophil elastase (Fig. 2H). Supporting our observations, a recent report 

studying the interaction of neutrophil enzymes with chitotriosidase in fungus infected CF 

patients reported that neutrophil enzymes can directly cleave chitotriosidase present in the 

BAL samples of patients with cystic fibrosis (38). Interestingly, we did not see a reduction in 

the levels of AMCase, the second chitinase present in mammals (Fig. 2 F & G). Supporting 

this observation, treatment of BAL with neutrophil elastase had no effect on AMCase levels. 

Overall, we propose here that neutrophils recruited during pulmonary infections directly 

decrease chitinase activity by cleaving chitotriosidase with minimal effect on AMCase. It is 

important to note that only airway lavage fluids possessed significant chitinase activity at 

baseline, which was absent in the peritoneal lavage fluids (Sup Fig. 2 C).

Many pathological conditions and diseases such as Gaucher’s disease, interstitial lung 

disease, COPD, and diabetes have been shown to be associated with increased chitinase 

activity (16, 34, 35, 39). However, these studies did not explore the type of inflammation or 

cell types involved in these pathological conditions, or the role of chit1 as a contributor to 

the underlying disease or patho-physiological conditions. Also, whether increased chitinase 

activity contributes to the increased susceptibility to infections in many of these diseases, is 

not known.
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To understand the role of chitinases in lung infections, we used mice that are deficient in 

chit1. Chit1 is the most prominent chitinase in humans and almost all of chitinase activity 

can be attributed to it (16). However, AMCase has been reported to be the major chitinase in 

mice (15, 26). The role of chit1 in mouse lung or its contribution to the overall chitinase 

activity has not been well appreciated (17). In this report, we present data to show that chit1 

is a significant contributor to the chitinases activity in mice, as chit1 knockout mice have 

significantly lower chitinase activity in BAL and serum (Sup Fig. 2). Emphasizing the 

importance of chit1, Kp infected chit1−/− mice exhibited a significant protected phenotype 

where they lost significantly lower weight compared to the wild type mice, suggesting better 

health in these mice (Fig. 3A). In agreement to the overall health, the chit1−/− mice have 

significantly lower bacterial dissemination to the spleen (Fig. 3B), a marker of bacterial 

dissemination, while maintaining similar bacterial load in the lung as well as similar protein 

levels in the BAL (a marker of lung leakage) (Fig. 3C and D). In agreement with similar 

bacterial burden and airway protein content, no difference in pathology was observed 

between the two groups after infection (Fig. 4 K & L). However, the dissemination 

phenotype was visible at early time points as indicated by decreased bacterial counts in the 

blood of chit1−/− mice (Fig 5 A). Also, the trend toward decreased bacterial number in the 

blood of chit1−/− mice suggest that the significant decreased bacterial load in the spleens of 

chit1−/− mice is due to limited dissemination from the lung rather than better peripheral 

control of infection. This theory is further supported by the fact that similar dissemination 

and health was observed in chit1−/− mice when infected by intra-peritoneal route (Sup Fig. 

3). Chitotriosidase is believed to be important mediator of host response against pathogens 

based on its presence in macrophages where it performs important functions during 

pulmonary infections. It is interesting to note that it was hypothesized that chit1 might 

possess antibacterial properties by itself or it can promote antibacterial activity of lysozymes 

(40). Experiments showed that chit1 does not possess any bactericidal activity of its own or 

boost the bactericidal activity of lysozymes (40). Our study shows a better control of 

bacterial infection in chit1−/− mice, which further refutes any direct antibacterial role of 

chitotriosidase against Kp in vivo. In this regard, our data suggest that not only 

chitotriosidase is dispensable for immunity against Kp but plays a detriments role in Kp lung 

infection. Further, these effects are specific to Kp lung infection. In a mouse model of 

Pseudomonas lung infection, we did not observe any protection in chit1−/− mice, indeed out 

data show that they had higher bacterial load in the lung and spleen. Although Pseudomonas 

and Klebsiella are both gram-negative pathogens associated with nosocomial lung 

infections, they have many differences in their virulence factors and patho-mechanisms. 

Flagella and type-3 secretion system constitute important virulence factor in PA infection, 

while capsule is important component of Kp virulence (41, 42). Their virulence also varies 

to great extent in our mouse models, where inoculation of only 5 × 10 3 is sufficient to cause 

a severe lung infection which effectively disseminates to other organs for Klebsiella. On the 

other hand, 1 × 10 7 CFUs of PA are needed to establish severe infection in the lungs, with 

minimal dissemination to the periphery. These obvious differences might account for 

differences observed in Chit1−/− mice between these two pathogens in this study.

The controlled dissemination in chit1−/− mice during Kp infection resulted in increased 

survival, further emphasizing the advantage provided by chit1 deficiency during Kp 
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infection. However, the survival advantage provided by chit1 deficiency was limited to just 

one day extension of survival in our infection model (median survival 3 day vs 4 day, Fig. 5 

B). This might be attributed to the high lethality of Kp and its ability to keep multiplying in 

the mouse in spite of an intact immune system. We also used antibiotics in our model to 

mimic a clinical scenario; patients with pneumonia often treated with antibiotics (43). Two 

doses of the antibiotic treatment increased survival in both the groups compared to the mice 

that did not receive antibiotics (Fig 5B vs 5D). However, chit1−/− mice had significantly 

increased survival upon antibiotic treatment compared to the wild type mice that received 

similar antibiotic treatment (Fig. 5D).

To understand the mechanisms that improved bacterial control in these mice, we sought to 

determine the inflammatory response in these mice, as inflammation plays an important role 

in limiting bacterial growth and spread during Kp lung infection (44, 45). Lung infection 

produced a similar inflammatory response in wild type and chit1−/− mice at 48 h, as 

indicated by the number of recruited cells including neutrophils and macrophages, which are 

the major cell types in the airways of Kp infected mice (Fig 4 A, B & C). We also 

characterized inflammation at early time points post infection and found a similar 

inflammatory response, even at early phase of infection (data not shown), which suggests 

that chit1 has a limited impact on the inflammatory response during Kp bacterial infection. 

In agreement with these results, chit1−/− mice invoked similar levels of inflammatory 

responses upon administration of LPS in the lung (Sup Fig 4 A, B & C).

Cytokines contribute to the orchestration of the inflammatory response (45–47). Levels of 

many cytokines, both inflammatory and anti-inflammatory, were measured to find out if 

chit1 plays a role in regulating cytokine response during lung infection. After infection, both 

wild type and chit1−/− mice produced similar levels of cytokines in their lungs (Fig. 4 D-J), 

suggesting a limited role of chit1 in regulating cytokine response during Kp lung infection. 

These data explain similar number of cell recruitment in the lung during infection in chit1−/− 

mice. In agreement with these in vivo data, bone marrow derived macrophages from wild 

type and chit1−/− mice, or macrophage cell line RAW 264.7 upon treatment with 

chitotriosidase, produced similar cytokines levels (Sup Fig. 4). These data exclude the role 

of chit1 in regulating the inflammatory response to Kp bacteria or bacterial product LPS.

To elucidate the mechanisms that might contribute to the improved outcome in lung 

infection, we explored the regulation of the Akt pathway during lung infection. True 

chitinase AMCase, and chitinase-like protein BRP 39 have been shown to regulate Akt 

activity (30, 48). The Akt pathway plays an important role in both immune and structural 

cells. It has been reported that Akt activation can increase the phagocytic activity in 

macrophages to engulf more of bacteria while also increases extracellular trap formation in 

neutrophils (49, 50). Similarly, in epithelial cells, Akt has been shown to control bacterial 

transmigration across the gut epithelial monolayer (51). In this study, we observed that, 

while at baseline, chit1−/− mice maintained a lower level of Akt activation, but upon 

infection with Kp, chit1−/− had a robust increase in Akt activation (Fig. 6 A & B). Similar to 

the whole lung Akt level, bone marrow derived macrophages from chit1−/− mice had a lower 

Akt phosphorylation at baseline. However, upon stimulation with LPS, chit1−/− bone 

marrow derived macrophages had robust Akt activation which was absent in wild type 

Sharma et al. Page 12

J Immunol. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



macrophages (Fig. 6 C). This altered activation of Akt in chit1−/− macrophages was 

associated with increased ability to control growth of Kp in-vitro. We believe that a 

contribution of both immune cells and structural cells might have contributed to the altered 

dissemination phenotype we observed in chit1−/− during Kp infection. We also determined 

the role of chit1 in regulating the MAPK pathway by measuring the activation of P42/44 and 

P38 MAPK proteins. There was no significant difference in both the MAPK protein levels 

either at baseline or upon infection (Fig. 6 D-I).

To understand the role of Akt, we used a pharmacological inhibitor of Akt in our Kp 

infection mouse model. Akt inhibition led to a significant impairment of the host’s ability to 

maintain health and survival by impairing bacterial clearance and increasing bacterial 

dissemination (Fig. 7), suggesting the importance of the Akt pathway in Kp lung infection.

Various theories have been proposed to explain the presence of chitinase in mammals. 

Earlier evidence suggested increased chitinase deficiency among the Caucasian population 

while a conserved presence was observed in Africans (21). This study indicated that 

improved living conditions in Caucasians have led to enzyme deficiency while the 

continuous threat of malaria and other parasitic infections provided selection pressure to 

retain intact chit1 gene in Africans (21). The same group demonstrated elevated levels of 

chitotriosidase in the colostrum of African women compared to Caucasian women (52). 

However, later observations did not support these initial reports. Studies demonstrated no 

significant correlation between parasitic information and chit1 genotype (33, 53, 54). 

Furthermore, high prevalence of chitinase deficiency was observed in Peruvians with high 

prevalence of enteroparasites and high consumption of chitin containing food, refuting 

previous beliefs that chitinases play a role in the digestion of chitin containing food or 

protection against parasitic infection (33). The obvious role of chit1 in fungal infection was 

proposed due to its in vitro fungicidal activity (15, 25), but this role was refuted by a recent 

study using an in vivo fungal infection model (55). In this study, chit1 deficiency was shown 

to provide a survival advantage in a Cryptococcal infection model by limiting pathological 

inflammation mediated by chitotriosidase mediated chitin recognition (55). This study 

refutes that chit1 has an important role in the host defense against fungal infections.

It is interesting to compare the effects of chit1 in lung infection with other members of 

chitinase and chitinase-like proteins. Our lab has reported that chitinase 3 like protein1 

(Chil1) plays an essential role in lung infection with Streptococcus. Chil1 protects 

macrophages against Streptococcus induced pyroptosis, which leads to improved bacterial 

clearance and limited pathology (56). Similarly, in Pseudomonas lung infection, absence of 

chil1 results in an exaggerated inflammatory response and a diminished survival (57), 

suggesting its essential role in both gram positive and gram-negative bacterial infections. 

These studies show distinct roles between different chitinases and chitinase-like proteins.

Overall, our study suggests that chitinase activity is actively regulated during bacterial lung 

infection, mainly by proteolytic cleavage of chitotriosidase mediated by infiltrated 

neutrophils. Deficiency of chit1 provides a survival advantage to the host during lung 

infection by limiting bacterial dissemination. This might provide a new therapeutic target to 

increase host immunity during bacterial infections. These data also suggest that the loss of 
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chitinase activity in humans provides an edge during bacterial lung infection, putting a 

selection pressure for mutant gene.
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Fig. 1. Down-regulation of chitinase activity during infection and inflammation.
Chitinase activity was measured in the BAL samples of C57BL6 mice infected with 5×103 

CFUs of Kp for indicated time points (A) or in mice administered with LPS or Pseudomonas 

aeruginosa strain PAO1 for 12 h (B). Lung expression of true chitinases and AMCase (C) 

and Chit1 (D) were measured using qpcr method. *, P ≤ 0.05, **, P ≤ 0.01, ns = not 

significant, AU = arbitrary unit. Data are from at one of at least two independent 

experiments performed for A and B, N = 3–5 each, while data are pooled from two 

independent experiments in C and D, N =4–5 each experiment.

Sharma et al. Page 18

J Immunol. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Neutrophils mediate decrease in chitinase activity in mice.
Time course of neutrophil infiltration during Kp lung infection (A) and its correlation with 

chitinase activity (B). Time course of macrophage recruitment to the lung during Kp 

infection (C) and its correlation with chitinase activity (D). Mice were administered with 

neutrophil lysate directly to the lung and BAL samples were collected after 4 h of incubation 

to measure chitinase activity (E). Chit1 (upper gel) and AMCase levels (lower gels) in the 

BAL samples of Kp infected mice (F). Chit1 (upper gel) and AMCase levels (lower gels) in 

the BAL samples of neutrophil lysate administered mice (G). Mice BAL samples were 

treated with neutrophil elastase for indicated time points and probed for chit1 (upper gel) 

and AMCase (lower gel) (H). *, P ≤ 0.05, ns = not significant, AU = arbitrary unit. Data are 

pooled from one or two independent experiments performed at each time point (A, C), N 
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=4–5 each experiment or from one representative experiment from at least two 

independently performed experiments (B, D and E - I), N = 4–5 each group.
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Fig. 3. Chit1 regulates overall health and bacterial dissemination during Kp lung infection.
Wild type and chit1−/− mice were infected with Kp for 48 h to measure their weight loss (A), 

bacterial burden in the spleen (B), and bacterial burden in the BAL (C) and total protein 

content in the BAL (D). *, P≤ 0.05, **, P≤ 0.01 using unpaired t test, ns = not significant. 

Data are pooled from 4 independent experiments (N = 4–6 each experiment).

Sharma et al. Page 21

J Immunol. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Chit1−/− mice have similar level of inflammation and lung pathology during Kp lung 
infection.
Total WBCs were counted in the BAL samples of WT and Chit1−/− mice at 48 h post 

infection (A). Neutrophil (B) and Macrophage (C) numbers were assessed in the BAL 

samples. BAL samples from wild type and chit1−/− mice infected with 5 X 10 3 CFUs for 48 

h were used to measure cytokine levels using either Bioplex cytokine assay kit (TNFα, 

IL-10 and IL-12) or sandwich ELISA (IL-6, IL-1β, INFγ and IL-17) (D-J). Lung sections 

were stained with H & E and scored for pathology based on peribronchial and perivascular 

inflammation. Representative lung section from two groups (L), and the lung pathology 

scores (K), ns = not significant. Data are pooled from 4 independent experiments performed 

(A –J, N = 4–6 each experiment) or from two independent experiments (K & L).
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Fig. 5. Chit1−/− mice have early control on bacterial dissemination and improved survival during 
Kp lung infection.
Wild type and chit1−/− mice were infected with 5X103 CFUs of Kp and blood samples were 

collected at given time points to determine bacterial numbers (A). Wild type and chit1−/− 

mice were infected with 5X103 CFUs of Kp and monitored for survival for 7 days (B). Wild 

type and chit1−/− mice were infected with 5X103 CFUs of Kp and treated with two doses of 

gentamicin at 48 and 60 h post infection. Blood was harvested at 72 h post infection to 

determine bacterial burden in the blood (C). Mice were observed for survival after two doses 

of antibiotics (D). *, P≤ 0.05 using Wilcoxon test. N = 10–12 each group for A, 30–31 each 

group for B, 4–5 for C and 9–10 each group for D. Data are pooled from two independent 

experiments (A and D, N = 4–5 each experiment) or one of two independent experiment 

with same outcome (C, N =4 −5) or pooled from 4 independent survival studies (B, N =5–6 

each experiment).
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Fig. 6. Chit1−/− mice have altered Akt activation during Kp lung infection.
Lung lysates from wild type and chit1−/− mice either at baseline (A) or after 48 h of Kp 

infection were tested for Akt activation (B). Akt activation was also tested in BMDMs from 

wild type and chit1−/− mice stimulated with PBS or LPS for two h (C). Levels of 

phosphorylated MAPK P42/44 and P38 at baseline (D & G), lung infection (E & H) and in 

BMDMs (F & I) were measured and normalized to β actin. Upper panels are representative 

images while the lower panels are the densitometry quantifications of the bands. *, P≤ 0.05, 

**, P≤ 0.01, using t test. Each experiment was performed at least two independent 

Sharma et al. Page 24

J Immunol. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments (A & B, N =4–6 each experiment). All the in-vitro experiments were performed 

at least 3 times in duplicates (C-I).
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Fig. 7. Akt inhibition impairs bacterial clearance and survival in Kp lung infection
Mice were infected with Kp and injected with Akt pathway inhibitor wortmannin at 1 

mg/Kg. Mice were measured for weight loss (A) and observed for survival (B). Bacterial 

load in BAL and spleen were measured (C & D). *, P≤ 0.05, **, P≤ 0.01, P≤ 0.005 using 

unpaired t test or Sidak’s multiple comparisons test or Wilcoxon test for survival. Data are 

from one experiment each performed independently for bacterial load and survival study 

(N= 5–6 each experiment).
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