Treating Tobacco Use Among People Living with HIV

Robert Schnoll, Ph.D. Professor Department of Psychiatry Associate Director for Population Science Co-Leader, Tobacco and Environmental Carcinogenesis Program Abramson Cancer Center University of Pennsylvania

Disclosures

- Consultant to Pfizer, GlaxoSmithKline, and Curaleaf
- Received research support (medication and placebo) from Pfizer

CFAR/CIRNA Team

Penn HIV and Tobacco Program

ARTs Have Transformed HIV

SOURCES: National Vital Statistics Reports, 2012; PLoS One, 2013; and Journal of the American Medical Association, 1993.

Focus Shifted to Health Behaviors

Helleberg 2013 Clinical Infectious Diseases; Humfleet 2013 Nicotine Tob Res; Turner 2001 J Gen Intern Med

PLWH are more likely to smoke

Current Smoking – Adults

among people living with HIV than in the general population

HIV+ smokers are more likely to smoke despite *wanting* to quit

Varenicline – gold standard, but not well tested in PLWH

- RCT in France showed small but significant benefit of varenicline (15%) vs placebo (6%) at 1-year
- < 4% of PLWH report using varenicline
- 1 in 5 clinicians report prescribing
- Concerns about psychiatric and cardiovascular side effects linger

Randomized controlled trial of varenicline for smoking cessation

Testing the Efficacy of Varenicline in HIV+ Smokers

BSL = Baseline (and Intake Session and Randomization); A = Assessment; C = Counseling; TQD = Target Quit Day; * Corresponds to End-of-Treatment and 6-months post-TQD and primary outcomes.

Varenicline is safe and well-tolerated

Mariahla	Placebo	Varenicline	Total
variable	(N=90)	(N=89)	(N=179)
Participants with an Adverse Event	28 (31.1%)	19 (21.3%)	47 (26.3%)
Participants with a Serious Adverse Event	3 (3.3%)	5 (5.6%)	8 (4.5%)
Total Number of Adverse Events	70	43	113
Skin swelling	28	19	47
Depression	16	7	23
Agitation	16	8	24
Hostility	5	2	7
Weakness	0	1	1
Irritability	2	0	2
Skin redness	1	1	2
Dizziness	0	1	1
Headache	1	3	4
Abdominal pain	1	1	2
ER visit	2	0	2
Total Number of Serious Adverse Events	8	8	16
Suicidality	1	1	2
Cancer diagnosis	1	1	2
Cancer metastasis	0	1	1
Hospitalization	3	5	8
Death	1	0	1
Number of High Blood Pressure Recordings ^a	30	17	47

Varenicline had no adverse effects on viral load or ART adherence

Varenicline is safe and effective but quit rates are lower than general population

Why are treatments less effective? PLWH may be particularly vulnerable to risk factors for relapse

- Cognition
- Nicotine metabolism rate (NMR)
- Medication adherence
- Negative Affect

Evaluating cognition as unique risk factor for relapse among HIV+ smokers

HIV-related Comorbidities are Barriers to Quitting

- HIV-associated neurocognitive disorder (HAND)
 - 39%-69% exhibit deficits in multiple cognitive domains
 - Associated with functional disabilities
 - Smoking can accelerate the incidence and progression of HAND

The nature and consequences of cognitive deficits among tobacco smokers with HIV: a comparison to tobacco smokers without HIV

Joseph D. Harrison¹ · Jessica A. Dochney¹ · Sonja Blazekovic¹ · Frank Leone² · David Metzger¹ · Ian Frank³ · Robert Gross^{3,4} · Anita Hole¹ · Karam Mounzer⁵ · Steven Siegel⁶ · Robert A. Schnoll⁷ · Rebecca L. Ashare¹

HIV-infected (n=103)

 Enrolled in placebocontrolled clinical trial of varenicline for smoking cessation among those with HIV (NCT01710137)

HIV-uninfected (n=70)

- Enrolled in placebocontrolled trial evaluating the effects of galantamine on short-term smoking abstinence (NCT01845961)
- Except for HIV status, trials had similar inclusion criteria
- Completed same cognitive tasks
- Data are from baseline, prior to initiation of treatment

R01 DA033681, K23 DA035295

Neurocognitive Performance

Measure	HIV-uninfected		HIV-infected	
	Mean	SD	Mean	SD
N-back Discrimination Index	0.72	0.09	0.62	0.14
N-back RT	616.8	111.7	728.2	174.5
N-back CV	0.25	0.05	0.24	0.07
CPT Discrimination Index	0.85	0.15	0.81	0.12
CPT RT	452.8	52.5	488.8	49.6
CPT CV	0.18	0.03	0.21	0.03

Note. Raw values are depicted for each task. CV = Coefficient of Variation

Cognitive variables predict HIV status

- Demographic and Smoking Variables
 - Education: HIV+ < HIV-</p>
 - Nicotine Dependence:
 HIV+ < HIV-
- Neurocognitive Performance
 - Accuracy: HIV+ < HIV-</p>
 - Response time: HIV+ > HIV-
 - Intraindividual variability:
 HIV+ > HIV-

 $X^{2}(1) = 12.8, p = 0.0003$

Why is cognition important?

Nicotine withdrawal produces impaired cognition

• Domains of cognitive function impaired during abstinence similar to HAND

• Withdrawal-related cognitive impairment predict relapse

Ashare & Hawk 2012 <u>Psychopharm;</u> Lerman 2002 <u>Drug Alcohol Depend;</u> Loughead 2015 <u>Neuropsychopharmacology;</u> Patterson 2009 <u>Biol Psychiatry;</u> Strong 2009 <u>Nicotine Tob Res</u>

Ongoing Mechanistic Observational Trial

R01 DA042682

Possible neurobiological mechanisms

- HIV-1 infection may cause neuronal damage (Lindl *et al*, 2010)
- Brain regions critical for neurocognitive function are impacted by HAND and smoking (Hakkers *et al*, 2016; Weiland *et al*, 2015)
- In the post-ART era, persistent inflammation may contribute to HAND (Hunt *et al*, 2016; Lederman *et al*, 2013)
- Tobacco smoking also induces inflammatory markers implicated in HAND (e.g., CRP, IL-6, MCP-1) (Stampfli and Anderson, 2009)

Smoking rate is related to inflammation among HIV+ smokers

HIV-

Working memory is related to inflammation among HIV+ smokers

HIV-

Targeting cholinergic function to address HIV-related inflammation and cognitive function

R01 DA044906

Optimizing Tobacco Treatment with NMR and Adherence

R01 CA243914

Nicotine metabolism is associated with smoking phenotypes

- Ratio of 3HC:cotinine = <u>NMR</u>
- CYP2A6 mutations alter nicotine metabolism
- Reflects environmental and demographic factors
- Strong test-retest reliability

<u>Clin Pharmacol Ther</u>, 2006, 2008, 2010; <u>Pharmacol Biochem Behav</u>, 2009; Hamilton et al <u>Nicotine Tob Res</u> 2015

Smokers with HIV may metabolize nicotine faster

Smokers with HIV metabolize nicotine faster than matched controls

Ashare et al, 2019 AIDS

p < 0.001

The Adherence Problem

- 40-50% of those treated with varenicline are adherent (42% in our trial)
- Quit rates among those treated with varenicline who were adherent are significantly higher
- Little understanding of factors associated with nonadherence to varenicline (side effects and negative affect; Quinn et al., 2020)
- No evidence-based interventions (Pacek et al., 2018)

Varenicline Effect Related to Nicotine Metabolism and Varenicline Adherence

■ Slow Metabolizers ■ Fast Metabolizers ■ Non-adherent ■ Adherent

Nicotine Metabolism and Adherence

 Effects of NMR on abstinence enhanced when considering adherence to varenicline (General Population)

NMR Optimization

6.5

- <u>Quit Rates</u>: Varenicline was more efficacious than nicotine patch in fast metabolizers but not in slows
- <u>Side effects</u>: Increased side effects on varenicline for SMs, but not for fast metabolizers

Figure 3. Abstinence Rates Across Treatment Arms and NMR Groups (N = 1246)

OKK (Biomarker-by-deathent)=1.36, CI=(1.11, 3.46), p=0.02

6				Ni Ni	cotine Patch
5.5		_		Va Va	arenicline
5	_				
4.5	_			-	_
4	-			-	
3.5					
3					
2.5	Slow Metabolizers	East Metabolizers	Slow Metak	olizers	East Metabolizers
3		Fast Wetabolizers	Slow Metal	0112.015	Fast Wietabolizers

Figure 4. Mean Side Effect Severity Index by Treatment Arm and NMR

NNT	Patch	Varenicline
SMs	10.3	8.1
FMs	26	4.9

Lerman, Schnoll et al., 2015; Lancet Res Med

β (Biomarker-by-treatment)= -1.06; CI=(-2.08, -0.03); p=0.044

Adherence Optimization

- Managed problem solving (MAPS) counseling: brainstorming, planning, implementation, and assessment and modification
- RCT vs. usual care found significant increased adherence (MEMS and viral load)
- MAPS associated with higher adherence (Missing=0%: Odds of being in a higher category of adherence <u>1.78</u> (<u>1.07-2.96</u>) for MAPS vs. UC
- MAPS associated with higher odds of UDVL (Missing=0%: Odds of UDVL=1.48 (0.94-2.31) favoring MAPS

Longitudinal Distribution of Adherence Categories

Optimizing Tobacco Treatment with NMR and MAPS

- NMR-tailored treatment and MAPS counseling to boost cessation
- Aims:
 - Intervention effects on cessation
 - Mediators (e.g., adherence, treatment outcome expectancies, motivation)
 - Moderators (e.g., demographics, smoking, psychiatric)

Faster NMR may be related to ART regimen

Schnoll...Ashare, <u>JAIDS</u>, in press

Determinants and Outcomes of NMR in Smokers with HIV

RCT of behavioral intervention for smoking in Botswana

R01 DA045604

Smoking and HIV in Botswana

	HIV-infected ART-exp*	Females	Males	*P-value
N (%)	375	239 (63.7)	136 (26.3)	
Demographics				
Age Category N (%)				
21-39	167 (46.6)	131 (54.8)	36 (26.4)	< 0.01
40-49	135 (37.7)	78 (32.6)	57 (41.9)	
50-59	41(11.5)	14 (5.9)	27 (19.9)	
> 60	15 (4.2)	2 (1.2)	12 (8.8)	
Current Cigarette Smoking, N(%)	85 (22.7)	15 (6.3)	70 (51.5)	< 0.01
Known CVD*** (70)	2 (0.5)	2 (0.0)	U (U)	> 0.9
HIV parameters				
Time since HIV diagnosis (years) Mean (SD)	8.9 (2.8)	8.7 (2.6)	8.9 (3.0)	0.68

Smoking and Depression Symptoms

- Smoking 2x higher
- 20% of population but about half of tobaccorelated deaths

- Those with SMI express quit motivation
- High rates of depression among PLWH

Smokers with mental illness or addictive disorders are just as ready to quit smoking as the general population of smokers.

 No relationship between psychiatric symptom severity and readiness to quit

LeCook et al., 2014; Callaghen et al., 2014; Olfsen et al., 2015; Colton & Manderscheid, 2006; US Dept of VA, 2016

Behavioral Activation for MDD

- Behavioral activation (BA) derived from CBT for depression
- Simpler than CBT; easier to train
- Increases engagement in rewarding activities <u>not</u> associated with smoking (<u>substitute reinforcers</u>) and reduces engagement in activities associated with smoking (complementary reinforcers)
- Small studies showing some efficacy for BA for smoking cessation (e.g., MacPherson et al., 2010)

Thotloetso Intervention

 Adapt Behavioral Activation and Merge with Problem Solving from MAPS

Thotloetso Pilot

- Adaptation process
 - English to Setswana and back
 - Iterated until considered equivalent
 - All concepts deemed culturally relevant
- Team (N=5) trained
 - No one had smoking cessation or clinical research experience
 - Enrollment focused on teamwork and non-judgmental attitude
- N=44 enrolled
 - Study completed

Thotloetso Results

- Characteristics
 - 38 male (95%)
 - Median PHQ-8 = 2 (IQR 1-4)
- Quit rate
 - 15/20 at EOT
 - Overall 15/40 (37.5%)
- Exit interviews
 - All endorsed BAPS
 - Would refer others

Thotloetso Trial

- RCT of Behavioral Activation and MAPS vs. standard behavioral smoking cessation counseling
- Large N will provide power for testing mediator and moderator aims (depression symptoms)
- Figure 5. Thotloetso Trial Schema TQD Week з *12 †24 BAPS-SC **Behavioral Activation/Problem** BSL Follow-Up (n=325) Solving R SC-SC Follow-Up BSL Standard Counseling (n=325) ASSESSMENTS and COUNSELING Week 0 3 9 12 24 А С С С A C С A А
- Potential for developing a new paradigm for addressing tobacco use among HIV+ smokers in low-income countries

BSL=Baseline (and Intake Session and Randomization (R)); A=Assessment; C=Counseling TDQ=Target Quit Day; *End-of-Treatment; †6 months post-TQD

Acknowledgements

R01 DA033681 R01 DA042682 R01 DA044906 R01 DA045604

National Heart, Lung, and Blood Institute

R01 HL151292

R01 CA243914

P30 AI045008