2023
Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis
Mooring M, Yeung G, Luukkonen P, Liu S, Akbar M, Zhang G, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky M, Booth C, Konnikova L, Shulman G, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Science Translational Medicine 2023, 15: eade3157. PMID: 37756381, PMCID: PMC10874639, DOI: 10.1126/scitranslmed.ade3157.Peer-Reviewed Original ResearchConceptsNonalcoholic steatohepatitisLiver inflammationNonalcoholic fatty liver diseaseProgression of NASHCysteine-rich angiogenic inducer 61Fatty liver diseaseLiver-specific knockout miceImproved glucose toleranceType 2 diabetesGlucose toleranceLiver diseaseNASH progressionProfibrotic macrophagesProinflammatory propertiesReduced fibrosisCardiovascular diseaseProfibrotic phenotypeFibrotic developmentKnockout miceNF-κBMetabolic diseasesNASH dietPDGFB expressionFibrosisProfibrotic programMAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis.
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler R, Accili D, Shulman G, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023, 72: 1781-1794. PMID: 37725942, PMCID: PMC10658066, DOI: 10.2337/db23-0314.Peer-Reviewed Original ResearchConceptsIR endocytosisInsulin receptor endocytosisCell division regulatorsInsulin receptorProlongs insulin actionReceptor endocytosisTranscriptomic profilesInsulin stimulationEndocytosisMetabolic homeostasisCell surfaceGenetic ablationMetabolic functionsInsulin actionP31cometMad2BubR1DisruptionSignalingRegulatorHomeostasisAdipose tissueInteractionHepatic fat accumulationMetabolismO-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding
Nakamoto A, Ohashi N, Sugawara L, Morino K, Ida S, Perry R, Sakuma I, Yanagimachi T, Fujita Y, Ugi S, Kume S, Shulman G, Maegawa H. O-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding. AJP Endocrinology And Metabolism 2023, 325: e46-e61. PMID: 37224467, PMCID: PMC10292976, DOI: 10.1152/ajpendo.00263.2022.Peer-Reviewed Original ResearchConceptsFKO miceAdipose tissueBody weight gainPrimary cultured adipocytesAdipose expansionFree fatty acidsInflammatory genesWeight gainFree fatty acid effluxCultured adipocytesDiet-induced obesityHigh-fat dietHigh-fat feedingLess body weightDe novo lipogenesisAdipose tissue physiologyDe novo lipogenesis genesFatty acid effluxWeeks of ageAdipose inflammationGlucose intoleranceRAW 264.7 macrophagesControl miceFatty acidsSevere fibrosisInhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis
Luukkonen P, Sakuma I, Gaspar R, Mooring M, Nasiri A, Kahn M, Zhang X, Zhang D, Sammalkorpi H, Penttilä A, Orho-Melander M, Arola J, Juuti A, Zhang X, Yimlamai D, Yki-Järvinen H, Petersen K, Shulman G. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217543120. PMID: 36669104, PMCID: PMC9942818, DOI: 10.1073/pnas.2217543120.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseLiver fibrosisLiver diseaseCommon chronic liver diseaseChronic liver diseaseFatty liver diseaseRisk of fibrosisDistinct mouse modelsPyrimidine catabolismNonalcoholic steatohepatitisMouse modelTherapeutic targetFibrosisDihydropyrimidine dehydrogenaseHuman liverA variantCommon variantsMetabolomics approachDiseaseMiceInhibitionCatabolismKnockdownSteatohepatitisGimeracil
2022
Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice
Gaspar R, Lyu K, Hubbard B, Leitner B, Luukkonen P, Hirabara S, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline G, Pauli J, Perry R, Petersen K, Shulman G. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2022, 66: 567-578. PMID: 36456864, PMCID: PMC11194860, DOI: 10.1007/s00125-022-05838-8.Peer-Reviewed Original ResearchConceptsProtein kinase CsSubcellular compartmentsDistinct subcellular localisationMuscle insulin sensitivityMultiple subcellular compartmentsInsulin receptor kinaseNovel protein kinase CsActivation of PKCεSubcellular localisationPKCθ translocationReceptor kinasePlasma membraneSubcellular distributionTriacylglycerol contentCrucial pathwaysIntramuscular triacylglycerol contentRC miceDiacylglycerolConclusions/interpretationThese resultsPKCεPM compartmentPhosphorylationMuscle triacylglycerol contentSkeletal muscleRecent findingsDeletion of Jazf1 gene causes early growth retardation and insulin resistance in mice
Lee H, Jang H, Li H, Samuel V, Dudek K, Osipovich A, Magnuson M, Sklar J, Shulman G. Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2213628119. PMID: 36442127, PMCID: PMC9894197, DOI: 10.1073/pnas.2213628119.Peer-Reviewed Original ResearchConceptsKO miceEarly growth retardationInsulin resistanceFat massGrowth retardationAge-matched wild-type miceHepatic nuclear factor 4 alphaGH-IGF-1 axisHigh-fat diet feedingKO liversHyperinsulinemic-euglycemic clamp techniquePlasma growth hormone concentrationInsulin-like growth factor-1Type 2 diabetesGrowth hormone concentrationsIGF-1 expressionWild-type miceLean body massMuscle insulin resistanceGrowth factor-1Nuclear factor 4 alphaInsulin sensitivityDiet feedingPlasma concentrationsHormone concentrationsOverexpression of UCP3 decreases mitochondrial efficiency in mouse skeletal muscle in vivo
Codella R, Alves TC, Befroy DE, Choi CS, Luzi L, Rothman DL, Kibbey RG, Shulman GI. Overexpression of UCP3 decreases mitochondrial efficiency in mouse skeletal muscle in vivo. FEBS Letters 2022, 597: 309-319. PMID: 36114012, DOI: 10.1002/1873-3468.14494.Peer-Reviewed Original ResearchConceptsOverexpression of UCP3ATP synthesisMitochondrial oxidationMitochondrial transmembrane proteinInner mitochondrial membraneSkeletal muscleMitochondrial oxidative phosphorylationMitochondrial oxidative metabolismMuscle-specific overexpressionMouse skeletal muscleTransmembrane proteinMitochondrial membraneProton leakPrecise functionOxidative phosphorylationMitochondrial efficiencyUCP3 expressionMitochondrial inefficiencyOverexpressionProtein 3UCP3Oxidative metabolismVivoMagnetic resonance spectroscopyPhosphorylationBrown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Huang Y, Zhou JH, Zhang H, Canfrán-Duque A, Singh AK, Perry RJ, Shulman G, Fernandez-Hernando C, Min W. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal Of Clinical Investigation 2022, 132 PMID: 35202005, PMCID: PMC9057632, DOI: 10.1172/jci148852.Peer-Reviewed Original ResearchConceptsBrown adipose tissueBAT inflammationInsulin resistanceMitochondrial reactive oxygen speciesReactive oxygen speciesAberrant innate immune responsesDiet-induced insulin resistanceSystematic metabolismDiet-induced obesityNLRP3 inflammasome pathwayWhole-body energy metabolismCGAS/STINGInnate immune responseFatty acid oxidationExcessive mitochondrial reactive oxygen speciesMetabolic benefitsImmune responseInflammasome pathwayAdipose tissueInflammationInhibition reversesLipid uptakeLipid metabolismThioredoxin 2Adaptive thermogenesisDyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesisSex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice. Aging Cell 2022, 21: e13539. PMID: 35088525, PMCID: PMC8844126, DOI: 10.1111/acel.13539.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreAge-related metabolic diseasesHepatocellular carcinomaMetabolic diseasesHigh-fat diet-fed miceProtein kinase C epsilon activationDiet-induced obese miceWhole-body energy expenditureC57BL/6J male miceDiet-fed miceHigh-fat dietHepatic lipid peroxidationHepatic lipid contentMitochondrial uncouplingHepatic insulin resistanceHigh therapeutic indexHepatic mitochondrial biogenesisStrain-specific effectsSex-specific mannerCRMP treatmentHFD feedingUnwanted side effectsObese miceInsulin resistanceChronic ingestion
2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidityIsthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism 2021, 33: 1836-1852.e11. PMID: 34348115, PMCID: PMC8429235, DOI: 10.1016/j.cmet.2021.07.010.Peer-Reviewed Original ResearchConceptsFatty liver diseaseAdipose glucose uptakeGlucose toleranceLiver diseaseHepatic steatosisGlucose uptakeDiet-induced obese miceImpaired glucose toleranceInsulin-like growth factor receptorType 2 diabetesHepatic lipid synthesisIsthmin 1Growth factor receptorObese miceInsulin sensitivityTherapeutic dosingMouse modelGlucoregulatory functionGlucose regulationUnmet needTherapeutic potentialDiabetesLipid accumulationPI3K-AktFactor receptorInsulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake
Habtemichael EN, Li DT, Camporez JP, Westergaard XO, Sales CI, Liu X, López-Giráldez F, DeVries SG, Li H, Ruiz DM, Wang KY, Sayal BS, González Zapata S, Dann P, Brown SN, Hirabara S, Vatner DF, Goedeke L, Philbrick W, Shulman GI, Bogan JS. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nature Metabolism 2021, 3: 378-393. PMID: 33686286, PMCID: PMC7990718, DOI: 10.1038/s42255-021-00359-x.Peer-Reviewed Original ResearchConceptsTUG cleavageGlucose uptakeProtein degradation pathwaysGLUT4 glucose transportersCoactivator PGC-1αC-terminal cleavage productInsulin-stimulated glucose uptakeAte1 arginyltransferaseGene expressionPhysiological relevanceWhole-body energy expenditureGlucose transporterPeroxisome proliferator-activated receptorCell surfacePGC-1αProtein 1Proliferator-activated receptorDegradation pathwayEffect of insulinCleavage pathwayAdipose cellsCleavage productsPathwayCleavageEnergy expenditureShort-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCI Insight 2021, 6: e139946. PMID: 33411692, PMCID: PMC7934919, DOI: 10.1172/jci.insight.139946.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin actionAdipose tissue insulin resistanceTissue insulin resistanceWT control miceHyperinsulinemic-euglycemic clampShort-term HFDTissue insulin actionAdipose tissue insulin actionDiet-fed ratsPotential therapeutic targetHFD feedingControl miceInsulin sensitivityTherapeutic targetLipolysis suppressionImpairs insulinHFDPKCε activationGlucose uptakeΕ activationMiceDiacylglycerol accumulationRecent evidenceProtein kinase C
2020
A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21
Han MS, Perry RJ, Camporez JP, Scherer PE, Shulman GI, Gao G, Davis RJ. A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes & Development 2020, 35: 133-146. PMID: 33334822, PMCID: PMC7778269, DOI: 10.1101/gad.344556.120.Peer-Reviewed Original ResearchObesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3
Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin PH, Palmer C, Hong S, Mina AI, Liu B, Deng Z, Aryal P, Jacobs C, Tenen D, Brown CW, Charles JF, Shulman GI, Kahn BB, Tsai LTY, Rosen ED, Spiegelman BM, Banks AS. Obesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metabolism 2020, 32: 665-675.e6. PMID: 32941798, PMCID: PMC7543662, DOI: 10.1016/j.cmet.2020.08.016.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin sensitivitySide effectsObesity-linked phosphorylationSignificant side effectsLigands of PPARγHyperinsulinemic-euglycemic clamp experimentsPromotes Insulin ResistanceDiabetogenic roleReceptor agonismGrowth differentiation factor 3Healthy miceBody weightMice revealsThiazolidinedionesClamp experimentsPPARγMiceInhibits BMPFamily membersFactor 3Putative targetsSerine 273Ectopic expressionBMP family membersMembrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
Abulizi A, Vatner DF, Ye Z, Wang Y, Camporez JP, Zhang D, Kahn M, Lyu K, Sirwi A, Cline GW, Hussain MM, Aspichueta P, Samuel VT, Shulman GI. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice. Journal Of Lipid Research 2020, 61: 1565-1576. PMID: 32907986, PMCID: PMC7707176, DOI: 10.1194/jlr.ra119000586.Peer-Reviewed Original ResearchConceptsHepatic insulin resistanceInsulin resistanceHepatic insulin sensitivityHepatic steatosisLipid-induced hepatic insulin resistancePKCε activationInsulin sensitivityKnockout miceNormal hepatic insulin sensitivityWild-type control miceHepatic ceramide contentHyperinsulinemic-euglycemic clampComprehensive metabolic phenotypingLipid dropletsHepatic DAG contentDAG contentGlucose intoleranceControl miceMTTP activityHepatic insulinAnimal modelsSteatosisAKT Ser/ThrMiceMetabolic phenotypingOGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance
Yang Y, Li X, Luan HH, Zhang B, Zhang K, Nam JH, Li Z, Fu M, Munk A, Zhang D, Wang S, Liu Y, Albuquerque JP, Ong Q, Li R, Wang Q, Robert ME, Perry RJ, Chung D, Shulman GI, Yang X. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 16616-16625. PMID: 32601203, PMCID: PMC7368321, DOI: 10.1073/pnas.1916121117.Peer-Reviewed Original ResearchConceptsRibosomal protein S6 kinase beta-1Macrophage proinflammatory activationGlcNAc signalingProinflammatory activationUnexpected roleWhole-body metabolismNutrient fluxesLipid accumulationImmune cell activationGlcNAcHomeostatic mechanismsMetabolic disturbancesBeta 1Cell activationDiet-induced metabolic dysfunctionDiet-induced obese miceActivationWhole-body insulin resistanceMacrophage inflammationGlcNAcylationOGTPeripheral tissuesPhosphorylationEnhanced inflammationInsulin resistanceRegulation of adipose tissue inflammation by interleukin 6
Han MS, White A, Perry RJ, Camporez JP, Hidalgo J, Shulman GI, Davis RJ. Regulation of adipose tissue inflammation by interleukin 6. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 2751-2760. PMID: 31980524, PMCID: PMC7022151, DOI: 10.1073/pnas.1920004117.Peer-Reviewed Original ResearchConceptsInterleukin-6Adipose tissue inflammationLow-grade inflammationIndividual cell typesMacrophage infiltrationInflammatory cytokinesTissue inflammationGlucose disposalImmune cellsIL6 productionMouse modelChronic stateAdipose tissueMyeloid cellsTissue infiltrationReceptor αConditional expressionCell typesOxidative metabolismOpposite actionsPhysiological regulationEnergy expenditureCanonical modeInflammationSpecific cells
2019
Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans
Gómez-Banoy N, Guseh JS, Li G, Rubio-Navarro A, Chen T, Poirier B, Putzel G, Rosselot C, Pabón MA, Camporez JP, Bhambhani V, Hwang SJ, Yao C, Perry RJ, Mukherjee S, Larson MG, Levy D, Dow LE, Shulman GI, Dephoure N, Garcia-Ocana A, Hao M, Spiegelman BM, Ho JE, Lo JC. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature Medicine 2019, 25: 1739-1747. PMID: 31700183, PMCID: PMC7256970, DOI: 10.1038/s41591-019-0610-4.Peer-Reviewed Original ResearchConceptsType 2 diabetesBody mass indexBeta cellsDiabetic miceInsulin secretagoguesDiabetic db/db miceDb/db micePancreatic beta-cell massBeta cell healthBeta-cell failureBeta-cell lossBeta-cell massComplement components C3aMiddle-aged adultsHuman islet cellsAlternative complement pathwayComplement factor DFuture diabetesMass indexInsulin levelsDb miceInsulin resistanceLower riskType 2Cell loss