2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidity
2019
Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance. The Journal Of Physiology 2019, 597: 3885-3903. PMID: 31206703, PMCID: PMC6876753, DOI: 10.1113/jp277270.Peer-Reviewed Original ResearchConceptsObesity-induced insulin resistanceHigh-fat dietEctopic lipid contentWhite adipose tissue lipolysisInsulin resistanceAdipose tissue lipolysisMale miceInsulin sensitivityFemale miceInsulin-stimulated suppressionWAT inflammationTissue lipolysisRodent studiesTumor necrosis factor αWhole-body insulin sensitivityLipid-induced insulin resistanceMetabolic homeostasisAge-matched menInterleukin-6 concentrationsSkeletal muscleAnti-inflammatory effectsType 2 diabetesInsulin-mediated suppressionSexual dimorphic responseNecrosis factor α
2018
Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity
Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports 2018, 24: 1085-1092.e6. PMID: 30067966, PMCID: PMC6223120, DOI: 10.1016/j.celrep.2018.06.112.Peer-Reviewed Original ResearchConceptsHigh-fat dietInsulin resistanceFood intakeMetabolic inflammationNucleobindin-2M2-like macrophage polarizationHigh-fat diet feedingWeight lossAdipose tissue macrophagesObesity-associated diseasesNesfatin-1Insulin sensitivityDiet feedingMacrophage polarizationNUCB2 proteinMyeloid cellsTissue macrophagesGlobal deletionClassical M1NUCB2NFκB-dependent mannerWeight gainSatietyIntakeAdiposity
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levels
2015
A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents
Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, Giannini C, Lopez X, Pierpont B, Nouws J, Shulman GI, Caprio S. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes 2015, 65: 610-618. PMID: 26718495, PMCID: PMC4764142, DOI: 10.2337/db15-1478.Peer-Reviewed Original ResearchMeSH KeywordsAbdomenAcetyl-CoA CarboxylaseAdipogenesisAdiponectinAdolescentCarrier ProteinsCaspase 1ChildDown-RegulationFatty Acid Synthase, Type IFemaleGene Expression ProfilingGlucose Transporter Type 4HumansInflammasomesInsulin ResistanceInterleukin-1betaIntra-Abdominal FatLeptinLipogenesisLipoprotein LipaseMacrophagesMagnetic Resonance ImagingMaleNLR Family, Pyrin Domain-Containing 3 ProteinObesityPPAR gammaSirtuin 1Sterol Regulatory Element Binding Protein 1Subcutaneous FatToll-Like Receptor 4ConceptsVisceral adipose tissueObese adolescentsInsulin resistanceTissue inflammationNLRP3 inflammasomeAdipose tissueInnate immune cell sensorsAbdominal subcutaneous adipose tissueAbdominal adipose depotsAbdominal fat partitioningAdipogenesis/lipogenesisAdipose tissue inflammationProinflammatory cytokines interleukinInfiltration of macrophagesExpression of CASP1Subcutaneous adipose tissueInflammation markersSAT biopsiesIL-18Macrophage infiltrationVisceral fatCytokines interleukinSAT ratioInsulin sensitivityAdipose depotsMetabolism and Aging: From Molecular Physiology to Systems Biology: 2015 meeting abstracts
Sharma L, Bai Y, Chou C, Bain J, Fillenbaum G, Pieper C, Cohen H, Huffman K, Kraus V, Camell C, Youm Y, Spadaro O, Ravussin A, Nguyen K, O'Neill L, Kaech S, Dixit V, Gribble K, Welch D, Hambright S, Munkácsy E, Khan M, Park J, Lane R, Bokov A, Link C, Rea S, Nizamutdinova I, Dusio G, Tobin R, Zawieja D, Newell-Rogers M, Santambrogio L, Gashev A, Westbrook R, Langdon J, Roy C, Yang H, Choudhury P, Xue Q, de Cabo R, Walston J, Schuld N, Ferrington D, Zhou Y, Liang H, Zhang N, Musi N, Rodriguez K, Khan M, Buffenstein R, Fisher A, Apple D, Fonseca R, dos Santos M, Mahesula S, Shu C, Kokovay E, Grimes K, Barefield D, Sadayappan S, Buffenstein R, Hussong S, Burbank R, Halloran J, Lin A, Soto V, Galvan V, Valentine J, Orr M, Liang H, Zhou Y, Musi N, Jahrling J, Derosa N, Lin A, Hussong S, Burbank R, Halloran J, Asmis R, Galvan V, Martinez P, Martinez V, Fernandez E, Strong R, Ahmed A, Alnabbat K, Smoczer C, Shah M, Ikeno Y, Cabelof D, Fonseca R, Mahesula S, Apple D, Raghunathan R, Dugan A, Cardona A, O'Connor J, Kokovay E, Manaye K, O'Neil J, Duttaroy A, Stout M, Jurk D, Jurczak M, Evans G, Zhu Y, Singh R, Lebrasseur N, Shulman G, von Zglinicki T, Tchkonia T, Kirkland J, Khan M, Fisher A, Mahoney R, Vasilakos G, Lei H, Matheny M, Yen F, Morales J, Barton E, Srikantan S, Deng Y, Luo A, Qin Y, Gao Q, Reddick R, Abdul-Ghani M, Dahia P, Seldeen K, Lasky G, Pang M, Leiker M, Troen B, van Skike C, Lin A, Burbank R, Halloran J, Cuvillier J, Hussong S, Jahrling J, Austad S, Fischer K, Galvan V, Clark N, Katolik A, Roberts K, Taylor A, Holloway S, Montemayor E, Stevens S, Fitzpatrick P, Damha M, Hart P, Singh R, Martinez V, Halloran J, Holstein D, Diaz V, Galvan V, Chaudhuri A, Gelfond J, Fernandez E, Lechleiter J, Strong R, Weiss R, Liu Y, Salmon A, Bitto A, Ito T, Le Texier N, Sutlief E, Tung H, Vizzini N, Snyder J, Treuting P, Kaeberlein M, Li G, McHardy S, Nicholson B, Strong R, Hart M, Garbarino V, Edwards M, Lozano R, Smolik C, Zhang W, Daws L, Gould G. Metabolism and Aging: From Molecular Physiology to Systems Biology: 2015 meeting abstracts. Pathobiology Of Aging & Age-related Diseases 2015, 5: 30765. PMID: 26725924, PMCID: PMC4698431, DOI: 10.3402/pba.v5.30765.Peer-Reviewed Original Research