2019
TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer
Lio CJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F, Rao A. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Science Immunology 2019, 4 PMID: 31028100, PMCID: PMC6599614, DOI: 10.1126/sciimmunol.aau7523.Peer-Reviewed Original ResearchMeSH Keywords5-MethylcytosineAnimalsBasic-Leucine Zipper Transcription FactorsB-LymphocytesCell DifferentiationCells, CulturedCytidine DeaminaseDioxygenasesDNA DemethylationDNA-Binding ProteinsGene Expression RegulationGenetic LociImmunoglobulin Class SwitchingLymphocyte ActivationMiceMice, TransgenicPrimary Cell CultureProto-Oncogene ProteinsResponse ElementsConceptsClass switch recombinationTranscription factorsChromatin accessibilityDNA demethylationBasic region-leucine zipper (bZIP) transcription factorsBZIP transcription factorsZipper transcription factorKey transcription factorEpigenetic marksTET enzymesEnhancer dynamicsGenomic regionsDeficient B cellsMurine B cellsEnhancer activityEnzyme essentialEnhancer elementsSwitch recombinationActivation-induced deaminase (AID) expressionAID expressionB cellsSuperenhancersTetDemethylationExpression
2011
A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011, 476: 467-471. PMID: 21832993, PMCID: PMC3179485, DOI: 10.1038/nature10312.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell DifferentiationChromosomal Proteins, Non-HistoneDNA-Binding ProteinsGene Expression RegulationGene Rearrangement, T-LymphocyteGenes, RAG-1MiceNuclear ProteinsPhosphoproteinsReceptors, Antigen, T-Cell, alpha-betaRecombinasesThymus GlandTranscription, Genetic
2008
Ebf1-dependent control of the osteoblast and adipocyte lineages
Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 2008, 44: 537-546. PMID: 19130908, PMCID: PMC2657874, DOI: 10.1016/j.bone.2008.11.021.Peer-Reviewed Original ResearchConceptsNumber of osteoclastsBone formation parametersBone formation rateAdipocyte lineageBone marrow cellsOlfactory sensory neuronsSerum osteocalcinOsteoid volumeSensory neuronsAdipocyte numberBone marrowOsteoclast developmentMutant miceMarrow cellsMiceSubcutaneous sitesBone formationAdipocyte developmentStriking increaseDecreased depositionTranscription factorsOsteoblastsB cell fate specificationEBF1Adiposity
2006
Origins of peripheral B cells in IL-7 receptor-deficient mice
Hesslein DG, Yang SY, Schatz DG. Origins of peripheral B cells in IL-7 receptor-deficient mice. Molecular Immunology 2006, 43: 326-334. PMID: 16310046, DOI: 10.1016/j.molimm.2005.02.010.Peer-Reviewed Original ResearchConceptsIL-7Ralpha-deficient miceB cell populationsB cellsBone marrowSplenic B cellsIL-7RalphaCell percentageIL-7 receptor-deficient miceCell populationsReceptor-deficient micePeripheral B cellsSplenic B cell populationSpleens of adultBone marrow-derived B cellsReceptor alpha geneEarly lymphoid differentiationAdult bone marrowSplenic populationsPeripheral BNeonatal developmentB cell developmentFollicular cellsMarrowMiceFetal liver
2005
B cells and osteoblast and osteoclast development
Horowitz MC, Bothwell AL, Hesslein DG, Pflugh DL, Schatz DG. B cells and osteoblast and osteoclast development. Immunological Reviews 2005, 208: 141-153. PMID: 16313346, DOI: 10.1111/j.0105-2896.2005.00328.x.Peer-Reviewed Original ResearchAnimalsB-LymphocytesCarrier ProteinsCell DifferentiationDNA-Binding ProteinsGlycoproteinsHumansInterleukin-7LymphopoiesisMembrane GlycoproteinsOsteoblastsOsteoclastsOsteogenesisOsteoprotegerinPAX5 Transcription FactorRANK LigandReceptor Activator of Nuclear Factor-kappa BReceptors, Cytoplasmic and NuclearReceptors, Tumor Necrosis FactorTrans-ActivatorsTranscription, Genetic
2004
Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors
Horowitz MC, Xi Y, Pflugh DL, Hesslein DG, Schatz DG, Lorenzo JA, Bothwell AL. Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors. The Journal Of Immunology 2004, 173: 6583-6591. PMID: 15557148, DOI: 10.4049/jimmunol.173.11.6583.Peer-Reviewed Original ResearchConceptsNumber of osteoclastsSpleen cellsB cellsOsteoclast developmentB cell-deficient miceCell-deficient miceControl spleen cellsB lymphocyte lineage cellsBone marrow cellsB-cell lineagePro-B cell stageMonocyte phenotypeBone massOsteoclast precursorsMice exhibitOsteoclast progenitorsMarrow cellsGrowth factorMiceOsteoclastsLineage cellsOsteopeniaCell lineagesCellsAdherent cellsUp-Regulation of Hlx in Immature Th Cells Induces IFN-γ Expression
Zheng WP, Zhao Q, Zhao X, Li B, Hubank M, Schatz DG, Flavell RA. Up-Regulation of Hlx in Immature Th Cells Induces IFN-γ Expression. The Journal Of Immunology 2004, 172: 114-122. PMID: 14688316, DOI: 10.4049/jimmunol.172.1.114.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAdoptive TransferAnimalsCD4-Positive T-LymphocytesCell DifferentiationCells, CulturedHemocyaninsHomeodomain ProteinsInjections, IntravenousInjections, SubcutaneousInterferon-gammaInterphaseMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicT-Lymphocytes, Helper-InducerTh1 CellsTranscription FactorsUp-RegulationConceptsCD4 T cellsTransgenic CD4 T cellsTh2-polarizing conditionsTh1 cell differentiationTh cellsT cellsTh1 cellsIFN-gammaKeyhole limpet hemocyanin immunizationNormal CD4 T cellsTime pointsIntracellular cytokine stainingIFN-γ expressionIFN-gamma expressionEarly time pointsCytokine stainingTh2 cellsNaive precursorsCell differentiationSpecific time pointsThymocyte populationTransgenic miceMarked reductionAberrant expressionRetroviral infection
1999
Developing B-cell theories
Schatz D. Developing B-cell theories. Nature 1999, 400: 615-617. PMID: 10458155, DOI: 10.1038/23134.Commentaries, Editorials and LettersDistinct effects of Jak3 signaling on alphabeta and gammadelta thymocyte development.
Eynon E, Livák F, Kuida K, Schatz D, Flavell R. Distinct effects of Jak3 signaling on alphabeta and gammadelta thymocyte development. The Journal Of Immunology 1999, 162: 1448-59. PMID: 9973401, DOI: 10.4049/jimmunol.162.3.1448.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell DivisionCell SurvivalGene ExpressionGene Rearrangement, delta-Chain T-Cell Antigen ReceptorGene Rearrangement, gamma-Chain T-Cell Antigen ReceptorGenes, bcl-2Janus Kinase 3MiceMice, Inbred C57BLMice, KnockoutMice, TransgenicProtein-Tyrosine KinasesReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaSignal TransductionT-Lymphocyte SubsetsConceptsJak3-/- miceGammadelta T cell lineagesThymocyte developmentTransduction of signalsTCRbeta chain gene rearrangementLineage differentiationGammadelta lineageCell lineagesGene resultsKinase 3Developmental blockadeEarly thymocyte differentiationCytokine receptorsGamma locusT-cell lineageTargeted deletionBcl-2 expressionThymocyte differentiationTCRbeta transgeneIL-2 familyLineagesDifferentiationImmature thymocytesTransgeneSevere reduction
1997
αβ Lineage‐committed thymocytes can be rescued by the γδ T cell receptor (TCR) in the absence of TCR β chain
Livák F, Wilson A, MacDonald H, Schatz D. αβ Lineage‐committed thymocytes can be rescued by the γδ T cell receptor (TCR) in the absence of TCR β chain. European Journal Of Immunology 1997, 27: 2948-2958. PMID: 9394823, DOI: 10.1002/eji.1830271130.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationFemaleGene Expression RegulationGene Rearrangement, alpha-Chain T-Cell Antigen ReceptorMiceMice, Inbred AKRMice, Inbred C57BLMice, KnockoutMice, TransgenicModels, ImmunologicalReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaT-Lymphocyte SubsetsThymus GlandTransgenesConceptsT cell receptorLineage commitmentT cell lineage commitmentCell lineage commitmentAlpha beta T cell developmentTCR beta proteinGamma delta T cell lineagesAlpha beta lineageT cell developmentCell receptorTCR-mediated selectionGene rearrangementsCell lineagesT cellsΑβ lineageCell developmentTCR gammaAlpha betaT-cell lineageBeta lineageLineagesGamma delta T-cell receptorTCR β chainGamma delta T cellsDelta T-cell receptor
1995
Down-regulation of RAG1 and RAG2 gene expression in PreB cells after functional immunoglobulin heavy chain rearrangement
Grawunder U, Leu T, Schatz D, Werner A, Rolink A, Melchers F, Winkler T. Down-regulation of RAG1 and RAG2 gene expression in PreB cells after functional immunoglobulin heavy chain rearrangement. Immunity 1995, 3: 601-608. PMID: 7584150, DOI: 10.1016/1074-7613(95)90131-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesBase SequenceCell DifferentiationCell LineDNA-Binding ProteinsDown-RegulationFemaleFlow CytometryGene Rearrangement, B-LymphocyteHomeodomain ProteinsImmunoglobulin Heavy ChainsMiceMice, Inbred C57BLMice, Inbred DBAMice, Inbred StrainsMolecular Sequence DataPolymerase Chain ReactionProtein BiosynthesisProteinsProto-Oncogene Proteins c-kitReceptors, Antigen, B-CellRNA, MessengerConceptsRAG2 gene expressionPreB cellsGene expressionFunctional immunoglobulin genesPreB-II cellsPreB cell receptorB cell developmentCell cycle statusHeavy chain allelesRAG2 proteinsPostranscriptional levelImmature B cellsRAG genesGene productsTranscriptional levelProductive rearrangementsMouse bone marrowCell developmentDifferential surface expressionImmunoglobulin genesRAG1Cell surfaceRAG2 mRNAGenesCycle statusIn-frame TCR δ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision
Livak F, Petrie H, Crisps I, Schatz D. In-frame TCR δ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision. Immunity 1995, 2: 617-627. PMID: 7796295, DOI: 10.1016/1074-7613(95)90006-3.Peer-Reviewed Original ResearchConceptsT cell lineage decisionsCell lineage decisionsLineage decisionsRandom gene rearrangementsSouthern blot analysisT cell receptor complexCell receptor complexGene rearrangementsDelta locusLocus sequenceGamma delta lineageReceptor complexT cell receptorBlot analysisDistinct precursorsCommon precursorCell receptorCritical roleDelta rearrangementsDelta lineageRearrangementΔ gene rearrangementAlpha betaT cellsGamma delta T-cell receptor
1991
Thymocyte Expression of RAG-1 and RAG-2: Termination by T Cell Receptor Cross-Linking
Turka L, Schatz D, Oettinger M, Chun J, Gorka C, Lee K, McCormack W, Thompson C. Thymocyte Expression of RAG-1 and RAG-2: Termination by T Cell Receptor Cross-Linking. Science 1991, 253: 778-781. PMID: 1831564, DOI: 10.1126/science.1831564.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCD3 ComplexCell DifferentiationCell SurvivalDNA NucleotidyltransferasesDNA-Binding ProteinsGene ExpressionGene Rearrangement, T-LymphocyteHomeodomain ProteinsHumansMiceNuclear ProteinsNucleic Acid HybridizationProteinsReceptor AggregationReceptors, Antigen, T-CellReceptors, Interleukin-2RNA, MessengerT-Lymphocyte SubsetsThymus GlandVDJ RecombinasesConceptsMajor histocompatibility complexCortical thymocytesSelf-major histocompatibility complexT cell receptor expressionHLA class IRAG-2Cell receptor expressionTCR complexRAG expressionT cell developmentT cell surfaceThymic subpopulationsCD4-CD8Intact thymusReceptor expressionThymic maturationRAG-1RAG-2 expressionThymocyte TCRThymocyte maturationHistocompatibility complexClass IReceptor crossThymocyte expressionBlot analysis