2024
Validation of an Electronic Health Record-Based Machine Learning Model Compared to Clinical Risk Scores for Gastrointestinal Bleeding
Shung D, Chan C, You K, Nakamura S, Saarinen T, Zheng N, Simonov M, Li D, Tsay C, Kawamura Y, Shen M, Hsiao A, Sekhon J, Laine L. Validation of an Electronic Health Record-Based Machine Learning Model Compared to Clinical Risk Scores for Gastrointestinal Bleeding. Gastroenterology 2024 PMID: 38971198, DOI: 10.1053/j.gastro.2024.06.030.Peer-Reviewed Original ResearchElectronic health recordsGlasgow-Blatchford scoreEmergency departmentVery-low-risk patientsRisk scoreOakland scoreMachine learning modelsStructured data fieldsClinical risk scoreGastrointestinal bleedingAll-cause mortalityHealth recordsLearning modelsManual data entrySecondary analysisRisk stratification scoresAssess proportionRed blood-cell transfusionPrimary outcomeProportion of patientsData entryOvert gastrointestinal bleedingPrimary analysisReceiver-operating-characteristic curveVery-low-risk
2021
Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules
Shung D, Tsay C, Laine L, Chang D, Li F, Thomas P, Partridge C, Simonov M, Hsiao A, Tay JK, Taylor A. Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules. Journal Of Gastroenterology And Hepatology 2021, 36: 1590-1597. PMID: 33105045, DOI: 10.1111/jgh.15313.Peer-Reviewed Original ResearchConceptsNatural language processingElectronic health recordsLanguage processingNLP algorithmSystematized NomenclatureReal timeAcute gastrointestinal bleedingBidirectional Encoder RepresentationsDecision rulesEHR-based phenotyping algorithmsGastrointestinal bleedingRisk stratification scoresEncoder RepresentationsData elementsPhenotyping algorithmStratification scoresHealth recordsAlgorithmPhenotyping of patientsEmergency department patientsTime of presentationRisk stratification modelED reviewDeploymentExternal validation