Stephen Waxman, MD, PhD
Research & Publications
Biography
News
Locations
Research Summary
My research program uses molecular genetic, biophysical, stem-cell based and pharmacological technicues, togetther with sophisticated molecular imaging and computer simulations, to study the molecular basis for neurological diseases, especially spinal cord injury, multiple sclerosis, and neuropathic pain, and to search for new treatments that will alleviate suffering in these disorder.. On major interest focuses the molecular basis for functional recovery after CNS injury. Our studies were the first to explicate how remissions (recovery of function) occur in MS, and demonstrated the remarkable molecular remodeling of sodium channels that enables demyelinated axons to recover the capability to conduct impulses. Our early studies also demonstrated the modification of conduction properties by pharmacological modulation of ion channels, an approach that has led to clinical studies in multiple sclerosis and spinal cord injury.
In our studies on neuropathic pain, we were the first to show the role of sodium channels in the regulation of excitability of pain-signaling sensory neurons. We are a world-wide hub for the study of gene mutations that prduce or alleviate pain. Our studies of inherited erythromelalgia (IEM, the "man on fire syndrome") provide a genetic model of neuropathic pain in humans and identify sodium channel Nav1.7gene SCN9A) as a major regulator of human pain. . For example, we have demonstrated (Cao et al, Science Translational Medicine 2016) that blockade of Nav1.7 reduces firing in nociceptive neurons, and provides pain relief in human subjects carrying gain-of-function mutations in Nav1.7. We also demonstrate the use of induced pluripotent stem cells (iPSC) as a patient-derived “pain-in-a-dish” model containing the patient’s entire genome that can enable rapid screening of drugs for pain. This research is ongoing, and w are optimistic that pain-relief through selective blockade of Nav1.7 can be achieved for more common pain indications within the general population.
A second pharmacogenomic approach, now published in JAMA Neurology (Geha et al 2016), interrogated the genomes of patients with IEM to search for gene variants that enhance responsiveness to existing medications, and used molecular modeling and functional analysis to confirm drug engagement of Nav1.7 for two patients with one particular mutation (S241T). Our double-blind, placebo-controlled study demonstrated that the drug, carbamazepine, reduced the patients’ pain. Functional imaging showed that reduction in pain was paralleled by a shift in brain activity from areas involved in emotional processing to areas encoding accurate sensation. Although these observations apply in the strictest sense only to patients carrying one unique IEM mutation, our results provide proof-of-principle that this precision medicine approach, using genomics and molecular modeling, can match patients with specific medications for relief of chronic pain.
The Editorial accompanying our pharmacogenomic study in JAMA Neurology noted that “this study provides an intelligent practical demonstration of the growing value of molecular neurological reasoning… There are relatively few examples in medicine where molecular reasoning is rewarded with a comparable degree of success.” There is a lot of work ahead of us, but we are optimistic that our findings presage the arrival of a new generation of precision treatments for patients with chronic pain.
In another line of work, we are using molecular genetics and stem-cell derived models to identify pain resilience genes (Mis et al, Journal of Neuroscience, 2019
We hope that our work will lead to new therapies not only for neuropathic pain but also for multiple sclerosis, spinal cord injury, and related disorders.
Specialized Terms: Axons; Electrophysiology; Genes; Ion Channels; Molecular Biology; Multiple Sclerosis; Pain Syndromes; Sodium Channels; Spinal Cord Injury; Stroke; Translational Neuroscience.
Extensive Research Description
My laboratory focuses on functional recovery in diseases of the brain and spinal cord. In particular, we use a spectrum of methods including molecular biology and genetics, cell biology, electrophysiology, computer simulations, molecular modeling etc. to understand how the nervous system responds to injury, and how we can induce functional recovery. Approaching these issues from a molecule- and mechanism-driven standpoint, we have a special interest in spinal cord injury, multiple sclerosis, and neuropathic pain. Our early studies demonstrated the molecular basis for remissions in MS. We have a major interest in the role of ion channels in diseases of the brain and spinal cord. We have demonstrated, for example, that following injury to their axons, spinal sensory neurons turn off some sodium channel genes, while turning others on. This results in the production of different types of sodium channels (with different kinetics and voltage-dependencies) in these neurons, causing them to become hyperexcitability and thereby contributing to neuropathic pain.
We are also interested in hereditary neuropathic pain and have delineated, for the first time, the molecular basis for a hereditary pain syndrome (inherited erythromelalgia; OMIM #133020;#603415). We have identified mutations in ion channel genes that cause painful peripheral neuropathy, and are moving toward pharmacogenomically-guided pain pharmacotherapy. We have also used molecular genetics and stem-cell derived models to identify pain resilience genes.
We are using state-of-the art molecular imaging to determine how nerve cell build their excitable membranes, molecule by molecule. My laboratory is also examining the role of abnormal sodium channel expression in spinal cord injury (SCI) and multiple sclerosis (MS). Specific projects focus on molecular mechanisms of recovery of conduction along demyelinated axons, and on molecular substrates of axonal degeneration. We are also studying neuroprotection, and have demonstrated that it is possible to pharmacologically protect axons, so they don't degenerate in SCI and MS.
Coauthors
Research Interests
Axons; Electrophysiology; Ion Channels; Multiple Sclerosis; Neurology; Neurosciences; Sodium Channels
Selected Publications
- Genetic Profiling of Sodium Channels in Diabetic Painful and Painless and Idiopathic Painful and Painless NeuropathiesAlmomani R, Sopacua M, Marchi M, Ślęczkowska M, Lindsey P, de Greef B, Hoeijmakers J, Salvi E, Merkies I, Ferdousi M, Malik R, Ziegler D, Derks K, Boenhof G, Martinelli-Boneschi F, Cazzato D, Lombardi R, Dib-Hajj S, Waxman S, Smeets H, Gerrits M, Faber C, Lauria G, Group O. Genetic Profiling of Sodium Channels in Diabetic Painful and Painless and Idiopathic Painful and Painless Neuropathies International Journal Of Molecular Sciences 2023, 24: 8278. PMID: 37175987, PMCID: PMC10179245, DOI: 10.3390/ijms24098278.
- Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 functionJami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F, Okorokov A, Li S, Zhang J, Cristofori-Armstrong B, Israel M, Ju R, Robinson S, Zhao P, Ragnarsson L, Andersson Å, Tran P, Schendel V, McMahon K, Tran H, Chin Y, Zhu Y, Liu J, Crawford T, Purushothamvasan S, Habib A, Andersson D, Rash L, Wood J, Zhao J, Stehbens S, Mobli M, Leffler A, Jiang D, Cox J, Waxman S, Dib-Hajj S, Gregory Neely G, Durek T, Vetter I. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function Nature Communications 2023, 14: 2442. PMID: 37117223, PMCID: PMC10147923, DOI: 10.1038/s41467-023-37963-2.
- Voltage-gated sodium channels (NaV) in GtoPdb v.2023.1Catterall W, Goldin A, Waxman S. Voltage-gated sodium channels (NaV) in GtoPdb v.2023.1 IUPHAR/BPS Guide To Pharmacology CITE 2023, 2023 DOI: 10.2218/gtopdb/f82/2023.1.
- TRPA1 rare variants in chronic neuropathic and nociplastic pain patients.Marchi M, Salvi E, Andelic M, Mehmeti E, D'Amato I, Cazzato D, Chiappori F, Lombardi R, Cartelli D, Devigili G, Dalla Bella E, Gerrits M, Almomani R, Malik R, Ślęczkowska M, Mazzeo A, Gentile L, Dib-Hajj S, Waxman S, Faber C, Vecchio E, de Tommaso M, Lauria G. TRPA1 rare variants in chronic neuropathic and nociplastic pain patients. Pain 2023, Publish Ahead of Print PMID: 37079850, DOI: 10.1097/j.pain.0000000000002905.
- Nav1.7 gain-of-function mutation I228M triggers age-dependent nociceptive insensitivity and C-LTMR dysregulationWimalasena N, Taub D, Shim J, Hakim S, Kawaguchi R, Chen L, El-Rifai M, Geschwind D, Dib-Hajj S, Waxman S, Woolf C. Nav1.7 gain-of-function mutation I228M triggers age-dependent nociceptive insensitivity and C-LTMR dysregulation Experimental Neurology 2023, 364: 114393. PMID: 37003485, PMCID: PMC10171359, DOI: 10.1016/j.expneurol.2023.114393.
- Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifsTyagi S, Sarveswaran N, Higerd-Rusli G, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifs Frontiers In Molecular Neuroscience 2023, 16: 1161028. PMID: 37008789, PMCID: PMC10060856, DOI: 10.3389/fnmol.2023.1161028.
- Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activityHigerd-Rusli G, Tyagi S, Baker C, Liu S, Dib-Hajj F, Dib-Hajj S, Waxman S. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2215417120. PMID: 36897973, PMCID: PMC10089179, DOI: 10.1073/pnas.2215417120.
- Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitabilityEstacion M, Liu S, Cheng X, Dib-Hajj S, Waxman S. Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitability Frontiers In Pharmacology 2023, 14: 1138556. DOI: 10.3389/fphar.2023.1138556.
- Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitabilityEstacion M, Liu S, Cheng X, Dib-Hajj S, Waxman S. Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitability Frontiers In Pharmacology 2023, 14: 1138556. PMID: 36923357, PMCID: PMC10008904, DOI: 10.3389/fphar.2023.1138556.
- Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8 Frontiers In Molecular Neuroscience 2023, 16: 1130123. DOI: 10.3389/fnmol.2023.1130123.
- Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8 Frontiers In Molecular Neuroscience 2023, 16: 1130123. PMID: 36860665, PMCID: PMC9970094, DOI: 10.3389/fnmol.2023.1130123.
- Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy.Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D'Amato I, D’Amato I, Hoeijmakers J, Dib-Hajj S, Waxman S, Faber C, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023 PMID: 36730021, DOI: 10.1093/brain/awad025.
- Nav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neuronsGhovanloo M, Effraim P, Yuan J, Schulman B, Jacobs D, Dib-Hajj S, Waxman S. Nav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons Journal Of Neurophysiology 2023, 129: 609-618. PMID: 36722722, PMCID: PMC9988530, DOI: 10.1152/jn.00457.2022.
- A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neuronsGualdani R, Gailly P, Yuan J, Yerna X, Di Stefano G, Truini A, Cruccu G, Dib-Hajj S, Waxman S. A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons Biophysical Journal 2023, 122: 321a. DOI: 10.1016/j.bpj.2022.11.1799.
- A novel high throughput combined voltage-clamp/current-clamp analysis of single primary neuronsGhovanloo M, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj S, Waxman S. A novel high throughput combined voltage-clamp/current-clamp analysis of single primary neurons Biophysical Journal 2023, 122: 101a. DOI: 10.1016/j.bpj.2022.11.734.
- Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptorsOvsepian S, Waxman S. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors Nature Reviews Neuroscience 2023, 24: 252-265. PMID: 36658346, DOI: 10.1038/s41583-022-00673-7.
- High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neuronsGhovanloo M, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj S, Waxman S. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons Cell Reports Methods 2023, 3: 100385. PMID: 36814833, PMCID: PMC9939380, DOI: 10.1016/j.crmeth.2022.100385.
- The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradationHigerd-Rusli G, Tyagi S, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation Journal Of Biological Chemistry 2022, 299: 102816. PMID: 36539035, PMCID: PMC9843449, DOI: 10.1016/j.jbc.2022.102816.
- 901 SYMPOSIUM: Molecular biology and immunology of painWaxman S. 901 SYMPOSIUM: Molecular biology and immunology of pain 2022, a59.1-a59. DOI: 10.1136/lupus-2022-lupus21century.52.
- Dendritic Spines and Pain Memory.Benson C, King J, Reimer M, Kauer S, Waxman S, Tan A. Dendritic Spines and Pain Memory. The Neuroscientist 2022, 10738584221138251. PMID: 36461773, DOI: 10.1177/10738584221138251.
- Peripheral Ion Channel Genes Screening in Painful Small Fiber NeuropathyŚlęczkowska M, Almomani R, Marchi M, Salvi E, de Greef B, Sopacua M, Hoeijmakers J, Lindsey P, Waxman S, Lauria G, Faber C, Smeets H, Gerrits M. Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy International Journal Of Molecular Sciences 2022, 23: 14095. PMID: 36430572, PMCID: PMC9696564, DOI: 10.3390/ijms232214095.
- Correction to: Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel’s pore: a modeling studyXenakis M, Kapetis D, Yang Y, Heijman J, Waxman S, Lauria G, Faber C, Smeets H, Lindsey P, Westra R. Correction to: Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel’s pore: a modeling study Journal Of Biological Physics 2022, 48: 477-478. PMID: 36370323, PMCID: PMC9727027, DOI: 10.1007/s10867-022-09616-w.
- Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerolGhovanloo M, Dib-Hajj S, Goodchild S, Ruben P, Waxman S. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol Frontiers In Physiology 2022, 13: 1066455. PMCID: PMC9691960, DOI: 10.3389/fphys.2022.1066455.
- Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerolGhovanloo M, Dib-Hajj S, Goodchild S, Ruben P, Waxman S. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol Frontiers In Physiology 2022, 13: 1066455. PMID: 36439273, PMCID: PMC9691960, DOI: 10.3389/fphys.2022.1066455.
- Cannabigerol inhibits sodium conductance to reduce neuronal dorsal root ganglion excitabilityGhovanloo M, Estacion M, Zhao P, Dib-Hajj S, Waxman S. Cannabigerol inhibits sodium conductance to reduce neuronal dorsal root ganglion excitability Biophysical Journal 2022, 121: 93a. DOI: 10.1016/j.bpj.2021.11.2240.
- Voltage-gated sodium channels (NaV) in GtoPdb v.2021.3Catterall W, Goldin A, Waxman S. Voltage-gated sodium channels (NaV) in GtoPdb v.2021.3 IUPHAR/BPS Guide To Pharmacology CITE 2021, 2021 DOI: 10.2218/gtopdb/f82/2021.3.
- Correction: Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencingAlmomani R, Marchi M, Sopacua M, Lindsey P, Salvi E, de Koning B, Santoro S, Magri S, Smeets H, Boneschi F, Malik R, Ziegler D, Hoeijmakers J, Bönhof G, Dib-Hajj S, Waxman S, Merkies I, Lauria G, Faber C, Gerrits M, . Correction: Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing PLOS ONE 2021, 16: e0248250. PMID: 33651841, PMCID: PMC7924768, DOI: 10.1371/journal.pone.0248250.
- Cumulative hydropathic topology of a voltage‐gated sodium channel at atomic resolutionXenakis M, Kapetis D, Yang Y, Heijman J, Waxman S, Lauria G, Faber C, Smeets H, Westra R, Lindsey P. Cumulative hydropathic topology of a voltage‐gated sodium channel at atomic resolution Proteins Structure Function And Bioinformatics 2020, 88: 1319-1328. PMID: 32447794, DOI: 10.1002/prot.25951.
- Altered Axonal Trafficking of NaV1.7 in Cultured Peripheral Neurons in Response to Inflammatory Mediators and PaclitaxelAkin E, Higerd G, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. Altered Axonal Trafficking of NaV1.7 in Cultured Peripheral Neurons in Response to Inflammatory Mediators and Paclitaxel Biophysical Journal 2020, 118: 578a. DOI: 10.1016/j.bpj.2019.11.3139.
- Identification of a Novel Gain-of-Function Sodium Channel B2 Subunit Mutation in Small Fiber NeuropathyAlsaloum M, Zhao P, Gerrits M, Almomani R, Hoeijmakers J, Sopacua M, Lauria G, Faber C, Dib-Hajj S, Waxman S. Identification of a Novel Gain-of-Function Sodium Channel B2 Subunit Mutation in Small Fiber Neuropathy Biophysical Journal 2020, 118: 578a-579a. DOI: 10.1016/j.bpj.2019.11.3141.
- A 49-residue sequence motif in the C terminus of Nav1.9 regulates trafficking of the channel to the plasma membraneSizova D, Huang J, Akin E, Estacion M, Gomis-Perez C, Waxman S, Dib-Hajj S. A 49-residue sequence motif in the C terminus of Nav1.9 regulates trafficking of the channel to the plasma membrane Journal Of Biological Chemistry 2020, 295: 1077-1090. DOI: 10.1016/s0021-9258(17)49917-0.
- Voltage-gated sodium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology DatabaseCatterall W, Goldin A, Waxman S. Voltage-gated sodium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database IUPHAR/BPS Guide To Pharmacology CITE 2019, 2019 DOI: 10.2218/gtopdb/f82/2019.4.
- Episodic Pain Syndrome Associated with a Novel Heterozygous Gain-of-Function SCN11A Missense MutationBrockmann K, Brackmann R, Abicht A, Kurth I, Huang J, Waxman S, Dib-Hajj S. Episodic Pain Syndrome Associated with a Novel Heterozygous Gain-of-Function SCN11A Missense Mutation Neuropediatrics 2019, 50: s1-s55. DOI: 10.1055/s-0039-1698164.
- Sodium Channels and PainCummins T, Waxman S, Wood J. Sodium Channels and Pain 2019, 233-262. DOI: 10.1093/oxfordhb/9780190860509.013.3.
- A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathyAlsaloum M, Estacion M, Almomani R, Gerrits MM, Bönhof GJ, Ziegler D, Malik R, Ferdousi M, Lauria G, Merkies IS, Faber CG, Dib-Hajj S, Waxman S. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy Molecular Pain 2019, 15: 1744806919849802. PMID: 31041876, PMCID: PMC6510061, DOI: 10.1177/1744806919849802.
- Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibersGrubinska B, Chen L, Alsaloum M, Rampal N, Matson D, Yang C, Taborn K, Zhang M, Youngblood B, Liu D, Galbreath E, Allred S, Lepherd M, Ferrando R, Kornecook T, Lehto S, Waxman S, Moyer B, Dib-Hajj S, Gingras J. Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers Molecular Pain 2019, 15: 1744806919881846. PMID: 31550995, PMCID: PMC6831982, DOI: 10.1177/1744806919881846.
- 116 Exome Sequencing Uncovers Molecular Determinants of Trigeminal NeuralgiaChoi J, Zeng X, Jin S, Gaillard J, Duran D, Nelson-Williams C, Panchagnula S, Dib-Hajj S, Barker F, Sekula R, Waxman S, Gunel M, Lifton R, T. K. 116 Exome Sequencing Uncovers Molecular Determinants of Trigeminal Neuralgia Neurosurgery 2018, 65: 85-86. DOI: 10.1093/neuros/nyy303.116.
- Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent mannerLi Y, Zhu T, Yang H, Dib-Hajj S, Waxman S, Yu Y, Xu TL, Cheng X. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner Molecular Pain 2018, 14: 1744806918782229. PMID: 29790812, PMCID: PMC6024516, DOI: 10.1177/1744806918782229.
- A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathyAdi T, Estacion M, Schulman BR, Vernino S, Dib-Hajj S, Waxman S. A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy Molecular Pain 2018, 14: 1744806918815007. PMID: 30392441, PMCID: PMC6856981, DOI: 10.1177/1744806918815007.
- Nonmuscle myosin II isoforms interact with sodium channel alpha subunitsDash B, Han C, Waxman S, Dib-Hajj S. Nonmuscle myosin II isoforms interact with sodium channel alpha subunits Molecular Pain 2018, 14: 1744806918788638. PMID: 29956586, PMCID: PMC6052497, DOI: 10.1177/1744806918788638.
- Therapeutic potential of Pak1 inhibition for pain associated with cutaneous burn injuryGuo Y, Benson C, Hill M, Henry S, Effraim P, Waxman S, Dib-Hajj S, Tan AM. Therapeutic potential of Pak1 inhibition for pain associated with cutaneous burn injury Molecular Pain 2018, 14: 1744806918788648. PMID: 29956587, PMCID: PMC6053256, DOI: 10.1177/1744806918788648.
- ForewordWaxman S. Foreword 2018 DOI: 10.7551/mitpress/10310.003.0001.
- DISSECTING GOD’S MEGAPHONE: THE SEARCH FOR A PAIN GENEWaxman S. DISSECTING GOD’S MEGAPHONE: THE SEARCH FOR A PAIN GENE 2018 DOI: 10.7551/mitpress/10310.003.0005.
- SHERRINGTON’S ENCHANTED LOOM AND HUXLEY’S SCIENCE FICTIONWaxman S. SHERRINGTON’S ENCHANTED LOOM AND HUXLEY’S SCIENCE FICTION 2018 DOI: 10.7551/mitpress/10310.003.0006.
- ALABAMA TO BEIJING … AND BACKWaxman S. ALABAMA TO BEIJING … AND BACK 2018 DOI: 10.7551/mitpress/10310.003.0008.
- ELECTROPHYSIOLOGICAL PROPERTIES OF MUTANT NaV1.7 SODIUM CHANNELS IN A PAINFUL INHERITED NEUROPATHYWaxman S. ELECTROPHYSIOLOGICAL PROPERTIES OF MUTANT NaV1.7 SODIUM CHANNELS IN A PAINFUL INHERITED NEUROPATHY 2018 DOI: 10.7551/mitpress/10310.003.0009.
- GAIN-OF-FUNCTION MUTATION IN NaV1.7 IN FAMILIAL ERYTHROMELALGIA INDUCES BURSTING OF SENSORY NEURONSWaxman S. GAIN-OF-FUNCTION MUTATION IN NaV1.7 IN FAMILIAL ERYTHROMELALGIA INDUCES BURSTING OF SENSORY NEURONS 2018 DOI: 10.7551/mitpress/10310.003.0010.
- AVALANCHEWaxman S. AVALANCHE 2018 DOI: 10.7551/mitpress/10310.003.0011.
- THE NaV1.7 SODIUM CHANNEL: FROM MOLECULE TO MANWaxman S. THE NaV1.7 SODIUM CHANNEL: FROM MOLECULE TO MAN 2018 DOI: 10.7551/mitpress/10310.003.0012.
- TWO SIDES OF ONE COINWaxman S. TWO SIDES OF ONE COIN 2018 DOI: 10.7551/mitpress/10310.003.0013.
- A SINGLE SODIUM CHANNEL MUTATION PRODUCES HYPEROR HYPOEXCITABILITY IN DIFFERENT TYPES OF NEURONSWaxman S. A SINGLE SODIUM CHANNEL MUTATION PRODUCES HYPEROR HYPOEXCITABILITY IN DIFFERENT TYPES OF NEURONS 2018 DOI: 10.7551/mitpress/10310.003.0014.
- EAVESDROPPINGWaxman S. EAVESDROPPING 2018 DOI: 10.7551/mitpress/10310.003.0015.
- DYNAMIC-CLAMP ANALYSIS OF WILD-TYPE HUMAN NaV1.7 AND ERYTHROMELALGIA MUTANT CHANNEL L858HWaxman S. DYNAMIC-CLAMP ANALYSIS OF WILD-TYPE HUMAN NaV1.7 AND ERYTHROMELALGIA MUTANT CHANNEL L858H 2018 DOI: 10.7551/mitpress/10310.003.0016.
- TWISTED NERVE: A GANGLION GONE AWRYWaxman S. TWISTED NERVE: A GANGLION GONE AWRY 2018 DOI: 10.7551/mitpress/10310.003.0018.
- MULTIPLE SODIUM CHANNEL ISOFORMS AND MITOGEN-ACTIVATED PROTEIN KINASES ARE PRESENT IN PAINFUL HUMAN NEUROMASWaxman S. MULTIPLE SODIUM CHANNEL ISOFORMS AND MITOGEN-ACTIVATED PROTEIN KINASES ARE PRESENT IN PAINFUL HUMAN NEUROMAS 2018 DOI: 10.7551/mitpress/10310.003.0019.
- CROSSING BORDERSWaxman S. CROSSING BORDERS 2018 DOI: 10.7551/mitpress/10310.003.0020.
- FROM ZEBRAS TO HORSESWaxman S. FROM ZEBRAS TO HORSES 2018 DOI: 10.7551/mitpress/10310.003.0021.
- GAIN OF FUNCTION NaV1.7 MUTATIONS IN IDIOPATHIC SMALL FIBER NEUROPATHYWaxman S. GAIN OF FUNCTION NaV1.7 MUTATIONS IN IDIOPATHIC SMALL FIBER NEUROPATHY 2018 DOI: 10.7551/mitpress/10310.003.0022.
- NEUROPATHY-ASSOCIATED NaV1.7 VARIANT I228M IMPAIRS INTEGRITY OF DORSAL ROOT GANGLION NEURON AXONSWaxman S. NEUROPATHY-ASSOCIATED NaV1.7 VARIANT I228M IMPAIRS INTEGRITY OF DORSAL ROOT GANGLION NEURON AXONS 2018 DOI: 10.7551/mitpress/10310.003.0023.
- RIPPLESWaxman S. RIPPLES 2018 DOI: 10.7551/mitpress/10310.003.0024.
- SEVEN YEARS FROM THEORY TOWARD THERAPY … VIA “PAIN IN A DISH”Waxman S. SEVEN YEARS FROM THEORY TOWARD THERAPY … VIA “PAIN IN A DISH” 2018 DOI: 10.7551/mitpress/10310.003.0026.
- PHARMACOLOGICAL REVERSAL OF A PAIN PHENOTYPE IN iPSC-DERIVED SENSORY NEURONS AND PATIENTS WITH INHERITED ERYTHROMELALGIAWaxman S. PHARMACOLOGICAL REVERSAL OF A PAIN PHENOTYPE IN iPSC-DERIVED SENSORY NEURONS AND PATIENTS WITH INHERITED ERYTHROMELALGIA 2018 DOI: 10.7551/mitpress/10310.003.0027.
- FROM TRIAL-AND-ERROR TO FIRST-TIME-AROUND: TOWARD GENOMICALLY GUIDED THERAPYWaxman S. FROM TRIAL-AND-ERROR TO FIRST-TIME-AROUND: TOWARD GENOMICALLY GUIDED THERAPY 2018 DOI: 10.7551/mitpress/10310.003.0028.
- STRUCTURAL MODELLING AND MUTANT CYCLE ANALYSIS PREDICT PHARMACORESPONSIVENESS OF A NaV1.7 MUTANT CHANNELWaxman S. STRUCTURAL MODELLING AND MUTANT CYCLE ANALYSIS PREDICT PHARMACORESPONSIVENESS OF A NaV1.7 MUTANT CHANNEL 2018 DOI: 10.7551/mitpress/10310.003.0029.
- PRECISIONWaxman S. PRECISION 2018 DOI: 10.7551/mitpress/10310.003.0030.
- PHARMACOTHERAPY FOR PAIN IN A FAMILY WITH INHERITED ERYTHROMELALGIA GUIDED BY GENOMIC ANALYSIS AND FUNCTIONAL PROFILINGWaxman S. PHARMACOTHERAPY FOR PAIN IN A FAMILY WITH INHERITED ERYTHROMELALGIA GUIDED BY GENOMIC ANALYSIS AND FUNCTIONAL PROFILING 2018 DOI: 10.7551/mitpress/10310.003.0031.
- “THE IMPORTANT THING IS NOT TO STOP”Waxman S. “THE IMPORTANT THING IS NOT TO STOP” 2018 DOI: 10.7551/mitpress/10310.003.0032.
- THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: OverviewAlexander S, Kelly E, Marrion N, Peters J, Faccenda E, Harding S, Pawson A, Sharman J, Southan C, Buneman O, Cidlowski J, Christopoulos A, Davenport A, Fabbro D, Spedding M, Striessnig J, Davies J, , Abbracchio M, Aldrich R, Al‐Hosaini K, Arumugam T, Attali B, Bäck M, Barnes N, Bathgate R, Beart P, Becirovic E, Bettler B, Biel M, Birdsall N, Blaho V, Boison D, Bräuner‐osborne H, Bröer S, Bryant C, Burnstock G, Calo G, Catterall W, Ceruti S, Chan S, Chandy K, Chazot P, Chiang N, Chun J, Chung J, Clapham D, Clapp L, Connor M, Cox H, Davies P, Dawson P, Decaen P, Dent G, Doherty P, Douglas S, Dubocovich M, Fong T, Fowler C, Frantz A, Fuller P, Fumagalli M, Futerman A, Gainetdinov R, Gershengorn M, Goldin A, Goldstein S, Goudet C, Gregory K, Grissmer S, Gundlach A, Hagenbuch B, Hamann J, Hammond J, Hancox J, Hanson J, Hanukoglu I, Hay D, Hobbs A, Hollenberg A, Holliday N, Hoyer D, Ijzerman A, Inui K, Irving A, Ishii S, Jacobson K, Jan L, Jarvis M, Jensen R, Jockers R, Kaczmarek L, Kanai Y, Karnik S, Kellenberger S, Kemp S, Kennedy C, Kerr I, Kihara Y, Kukkonen J, Larhammar D, Leach K, Lecca D, Leeman S, Leprince J, Lolait S, Macewan D, Maguire J, Marshall F, Mazella J, Mcardle C, Michel M, Miller L, Mitolo V, Mizuno H, Monk P, Mouillac B, Murphy P, Nahon J, Nerbonne J, Nichols C, Norel X, Offermanns S, Palmer L, Panaro M, Papapetropoulos A, Perez‐reyes E, Pertwee R, Pintor S, Pisegna J, Plant L, Poyner D, Prossnitz E, Pyne S, Ramachandran R, Ren D, Rondard P, Ruzza C, Sackin H, Sanger G, Sanguinetti M, Schild L, Schiöth H, Schulte G, Schulz S, Segaloff D, Serhan C, Singh K, Slesinger P, Snutch T, Sobey C, Stewart G, Stoddart L, Summers R, Szabo C, Thwaites D, Toll L, Trimmer J, Tucker S, Vaudry H, Verri T, Vilargada J, Waldman S, Ward D, Waxman S, Wei A, Willars G, Wong S, Woodruff T, Wulff H, Ye R, Yung Y, Zajac J. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview British Journal Of Pharmacology 2017, 174: s1-s16. PMID: 29055037, PMCID: PMC5650665, DOI: 10.1111/bph.13882.
- Ode to Glia: A Tribute to Bruce RansomWaxman SG, Black JA. Ode to Glia: A Tribute to Bruce Ransom Neurochemical Research 2017, 42: 2442-2442. PMID: 28921457, DOI: 10.1007/s11064-017-2368-8.
- Erratum: Corrigendum: Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3aDeuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, Imlach WL, Herzig V, Armstrong DA, Rosengren KJ, Bosmans F, Waxman SG, Dib-Hajj SD, Escoubas P, Minett MS, Christie MJ, King GF, Alewood PF, Lewis RJ, Wood JN, Vetter I. Erratum: Corrigendum: Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a Scientific Reports 2017, 7: 46816. PMID: 28548111, PMCID: PMC5445320, DOI: 10.1038/srep46816.
- COL6A5 variants in familial neuropathic chronic itchMartinelli-Boneschi F, Colombi M, Castori M, Devigili G, Eleopra R, Malik RA, Ritelli M, Zoppi N, Dordoni C, Sorosina M, Grammatico P, Fadavi H, Gerrits MM, Almomani R, Faber CG, Merkies IS, Toniolo D, Cocca M, Doglioni C, Waxman S, Dib-Hajj S, Taiana M, Sassone J, Lombardi R, Cazzato D, Zauli A, Santoro S, Marchi M, Lauria G. COL6A5 variants in familial neuropathic chronic itch Brain 2017, 140: 555-567. PMID: 28073787, DOI: 10.1093/brain/aww343.
- Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional ProfilingGeha P, Yang Y, Estacion M, Schulman BR, Tokuno H, Apkarian AV, Dib-Hajj SD, Waxman SG. Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling JAMA Neurology 2016, 73: 659. PMID: 27088781, DOI: 10.1001/jamaneurol.2016.0389.
- Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgiaCao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJ, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting P, Ali Z, Bilsland J, Stevens EB. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia Science Translational Medicine 2016, 8: 335ra56. PMID: 27099175, DOI: 10.1126/scitranslmed.aad7653.
- Voltage-Gated Ion Channels as Molecular Targets for PainZamponi G, Han C, Waxman S. Voltage-Gated Ion Channels as Molecular Targets for Pain 2016, 415-436. DOI: 10.1007/978-1-4899-7654-3_22.
- The Concise Guide to PHARMACOLOGY 2015/16: OverviewAlexander S, Kelly E, Marrion N, Peters J, Benson H, Faccenda E, Pawson A, Sharman J, Southan C, Buneman O, Catterall W, Cidlowski J, Davenport A, Fabbro D, Fan G, McGrath J, Spedding M, Davies J, , Aldrich R, Attali B, Bäck M, Barnes N, Bathgate R, Beart P, Becirovic E, Biel M, Birdsall N, Boison D, Bräuner‐Osborne H, Bröer S, Bryant C, Burnstock G, Burris T, Cain D, Calo G, Chan S, Chandy K, Chiang N, Christakos S, Christopoulos A, Chun J, Chung J, Clapham D, Connor M, Coons L, Cox H, Dautzenberg F, Dent G, Douglas S, Dubocovich M, Edwards D, Farndale R, Fong T, Forrest D, Fowler C, Fuller P, Gainetdinov R, Gershengorn M, Goldin A, Goldstein S, Grimm S, Grissmer S, Gundlach A, Hagenbuch B, Hammond J, Hancox J, Hartig S, Hauger R, Hay D, Hébert T, Hollenberg A, Holliday N, Hoyer D, Ijzerman A, Inui K, Ishii S, Jacobson K, Jan L, Jarvis G, Jensen R, Jetten A, Jockers R, Kaczmarek L, Kanai Y, Kang H, Karnik S, Kerr I, Korach K, Lange C, Larhammar D, Leeb‐Lundberg F, Leurs R, Lolait S, Macewan D, Maguire J, May J, Mazella J, Mcardle C, Mcdonnell D, Michel M, Miller L, Mitolo V, Monie T, Monk P, Mouillac B, Murphy P, Nahon J, Nerbonne J, Nichols C, Norel X, Oakley R, Offermanns S, Palmer L, Panaro M, Perez‐Reyes E, Pertwee R, Pike J, Pin J, Pintor S, Plant L, Poyner D, Prossnitz E, Pyne S, Ren D, Richer J, Rondard P, Ross R, Sackin H, Safi R, Sanguinetti M, Sartorius C, Segaloff D, Sladek F, Stewart G, Stoddart L, Striessnig J, Summers R, Takeda Y, Tetel M, Toll L, Trimmer J, Tsai M, Tsai S, Tucker S, Usdin T, Vilargada J, Vore M, Ward D, Waxman S, Webb P, Wei A, Weigel N, Willars G, Winrow C, Wong S, Wulff H, Ye R, Young M, Zajac J. The Concise Guide to PHARMACOLOGY 2015/16: Overview British Journal Of Pharmacology 2015, 172: 5729-5743. PMID: 26650438, PMCID: PMC4718217, DOI: 10.1111/bph.13347.
- Diversity of composition and function of sodium channels in peripheral sensory neuronsDib-Hajj SD, Waxman SG. Diversity of composition and function of sodium channels in peripheral sensory neurons Pain 2015, 156: 2406-2407. PMID: 26580678, DOI: 10.1097/j.pain.0000000000000353.
- Microglia and chronic pain.Dib-Hajj S, Waxman S. Microglia and chronic pain. Pain 2015, 157: 1002-3. PMID: 27081836, DOI: 10.1097/j.pain.0000000000000353.
- Neurology—the next 10 yearsBaron R, Ferriero D, Frisoni G, Bettegowda C, Gokaslan Z, Kessler J, Vezzani A, Waxman S, Jarius S, Wildemann B, Weller M. Neurology—the next 10 years Nature Reviews Neurology 2015, 11: 658-664. PMID: 26503922, DOI: 10.1038/nrneurol.2015.196.
- Correction: Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor NeuropathyDoppler K, Appeltshauser L, Krämer HH, Ng JK, Meinl E, Villmann C, Brophy P, Dib-Hajj SD, Waxman SG, Weishaupt A, Sommer C. Correction: Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy PLOS ONE 2015, 10: e0137443. PMID: 26317434, PMCID: PMC4552886, DOI: 10.1371/journal.pone.0137443.
- Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor NeuropathyDoppler K, Appeltshauser L, Krämer HH, Ng JK, Meinl E, Villmann C, Brophy P, Dib-Hajj SD, Waxman SG, Weishaupt A, Sommer C. Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy PLOS ONE 2015, 10: e0134274. PMID: 26218529, PMCID: PMC4517860, DOI: 10.1371/journal.pone.0134274.
- De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsyBlanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans M, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, Yntema HG, Bindels R, Meisler MH, Kamsteeg EJ. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy Journal Of Medical Genetics 2015, 52: 330. PMID: 25725044, PMCID: PMC4413743, DOI: 10.1136/jmedgenet-2014-102813.
- Sodium ChannelsLampert A, Stühmer W, Waxman S. Sodium Channels 2015, 1-7. DOI: 10.1002/9780470015902.a0000127.pub2.
- Paroxysmal itch caused by gain‐of‐function Nav1.7 mutationDevigili G, Eleopra R, Pierro T, Lombardi R, Rinaldo S, Lettieri C, Faber C, Merkies I, Waxman S, Lauria G. Paroxysmal itch caused by gain‐of‐function Nav1.7 mutation Pain 2014, 155: 1702-1707. PMID: 24820863, DOI: 10.1016/j.pain.2014.05.006.
- Dysfunction and recovery in demyelinated and dysmyelinated axonsWaxman S. Dysfunction and recovery in demyelinated and dysmyelinated axons 2014, 457-471. DOI: 10.1017/cbo9780511995583.034.
- Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsyOliva MK, McGarr TC, Beyer BJ, Gazina E, Kaplan DI, Cordeiro L, Thomas E, Dib-Hajj SD, Waxman SG, Frankel WN, Petrou S. Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy Neurobiology Of Disease 2014, 67: 180-190. PMID: 24657915, PMCID: PMC4298829, DOI: 10.1016/j.nbd.2014.03.007.
- Epidermal Nerve FibersLauria G, Merkies I, Waxman S, Faber C. Epidermal Nerve Fibers 2014, 76-79. DOI: 10.1016/b978-0-12-385157-4.00656-4.
- Approach to Small Fiber NeuropathyLauria G, Merkies I, Waxman S, Faber C. Approach to Small Fiber Neuropathy 2013, 507-517. DOI: 10.1007/978-1-4614-6567-6_25.
- A new Nav1.7 mutation in an erythromelalgia patientEstacion M, Yang Y, Dib-Hajj SD, Tyrrell L, Lin Z, Yang Y, Waxman SG. A new Nav1.7 mutation in an erythromelalgia patient Biochemical And Biophysical Research Communications 2013, 432: 99-104. PMID: 23376079, DOI: 10.1016/j.bbrc.2013.01.079.
- Opportunities in rehabilitation researchOmmaya AK, Adams KM, Allman RM, Collins EG, Cooper RA, Dixon CE, Fishman PS, Henry JA, Kardon R, Kerns RD, Kupersmith J, Lo A, Macko R, McArdle R, McGlinchey RE, McNeil MR, O'Toole TP, Peckham PH, Tuszynski MH, Waxman SG, Wittenberg GF. Opportunities in rehabilitation research The Journal Of Rehabilitation Research And Development 2013, 50: vii-xxxii. PMID: 24203548, PMCID: PMC4599704, DOI: 10.1682/jrrd.2012.09.0167.
- Painful ChannelopathiesWaxman S. Painful Channelopathies 2013, 2770-2776. DOI: 10.1007/978-3-642-28753-4_3157.
- The NaV1.7 sodium channel: from molecule to manDib-Hajj SD, Yang Y, Black JA, Waxman SG. The NaV1.7 sodium channel: from molecule to man Nature Reviews Neuroscience 2012, 14: 49-62. PMID: 23232607, DOI: 10.1038/nrn3404.
- Myelin, Impulse Conduction, and the Pathophysiology of DemyelinationBangalore L, Waxman S. Myelin, Impulse Conduction, and the Pathophysiology of Demyelination 2012, 529-542. DOI: 10.1093/med/9780199794591.003.0042.
- Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channelYang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel Nature Communications 2012, 3: 1186. PMID: 23149731, PMCID: PMC3530897, DOI: 10.1038/ncomms2184.
- Gain-of-function Nav1.8 mutations in painful neuropathyFaber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19444-19449. PMID: 23115331, PMCID: PMC3511073, DOI: 10.1073/pnas.1216080109.
- Genetic aspects of sodium channelopathy in small fiber neuropathyHoeijmakers J, Merkies I, Gerrits M, Waxman S, Faber C. Genetic aspects of sodium channelopathy in small fiber neuropathy Clinical Genetics 2012, 82: 351-358. PMID: 22803682, DOI: 10.1111/j.1399-0004.2012.01937.x.
- Axonal Protection with Sodium Channel Blocking Agents in Models of Multiple SclerosisBlack J, Smith K, Waxman S. Axonal Protection with Sodium Channel Blocking Agents in Models of Multiple Sclerosis 2012, 179-201. DOI: 10.1007/978-1-4614-2218-1_8.
- Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strongVandenberg J, Waxman S. Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong The Journal Of Physiology 2012, 590: 2569-2570. PMID: 22787169, PMCID: PMC3424715, DOI: 10.1113/jphysiol.2012.233411.
- Understanding chronic inflammatory and neuropathic painHughes J, Chessell I, Malamut R, Perkins M, Bačkonja M, Baron R, Farrar J, Field M, Gereau R, Gilron I, McMahon S, Porreca F, Rappaport B, Rice F, Richman L, Segerdahl M, Seminowicz D, Watkins L, Waxman S, Wiech K, Woolf C. Understanding chronic inflammatory and neuropathic pain Annals Of The New York Academy Of Sciences 2012, 1255: 30-44. PMID: 22564068, DOI: 10.1111/j.1749-6632.2012.06561.x.
- Analysis of Voltage-Gated Sodium Channel Membrane Dynamics in Hippocampal Neurons via a Fluorescent Protein and Biotin Tagged Nav1.6 ChannelAkin E, Weigel A, Dib-Hajj S, Waxman S, Krapf D, Tamkun M. Analysis of Voltage-Gated Sodium Channel Membrane Dynamics in Hippocampal Neurons via a Fluorescent Protein and Biotin Tagged Nav1.6 Channel Biophysical Journal 2012, 102: 528a. DOI: 10.1016/j.bpj.2011.11.2884.
- Sodium channels and microglial functionBlack JA, Waxman SG. Sodium channels and microglial function Experimental Neurology 2011, 234: 302-315. PMID: 21985863, DOI: 10.1016/j.expneurol.2011.09.030.
- Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated DemyelinationWilkins A, Kondo Y, Song J, Liu S, Compston A, Black J, Waxman S, Duncan I. Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination Journal Of Neuropathology & Experimental Neurology 2010, 69: 1256-1269. PMID: 21107138, DOI: 10.1097/nen.0b013e3181ffc317.
- Sodium channel expression and function in multiple sclerosisBangalore L, Black J, Carrithers M, Waxman S. Sodium channel expression and function in multiple sclerosis 2010, 29-43. DOI: 10.1017/cbo9780511781698.005.
- Plenary Session I: The Spinal CordDib‐Hajj S, Waxman S. Plenary Session I: The Spinal Cord European Journal Of Pain Supplements 2010, 4: 17-17. DOI: 10.1016/s1754-3207(10)70061-4.
- 76 NAV1.7 IS A THRESHOLD CHANNEL FOR PAINDib‐Hajj S, Waxman S. 76 NAV1.7 IS A THRESHOLD CHANNEL FOR PAIN European Journal Of Pain Supplements 2010, 4: 23-24. DOI: 10.1016/s1754-3207(10)70081-x.
- Multiple SclerosisPreiningerova J, Bomprezzi R, Vollmer T, Waxman S. Multiple Sclerosis 2009 DOI: 10.1002/9780470015902.a0000192.pub2.
- The ataxia3 Mutation in the N-Terminal Cytoplasmic Domain of Sodium Channel Nav1.6 Disrupts Intracellular TraffickingSharkey LM, Cheng X, Drews V, Buchner DA, Jones JM, Justice MJ, Waxman SG, Dib-Hajj SD, Meisler MH. The ataxia3 Mutation in the N-Terminal Cytoplasmic Domain of Sodium Channel Nav1.6 Disrupts Intracellular Trafficking Journal Of Neuroscience 2009, 29: 2733-2741. PMID: 19261867, PMCID: PMC2679640, DOI: 10.1523/jneurosci.6026-08.2009.
- NaV1.7 Gain-of-function Mutations As A Continuum: A1632E Displays Physiological Changes Associated With Erythromelalgia And Paroxysmal Extreme Pain Disorder Mutations And Produces Symptoms Of Both DisordersEstacion M, Dib-Hajj S, Benke P, Morsche R, Eastman E, Macala L, Drenth J, Waxman S. NaV1.7 Gain-of-function Mutations As A Continuum: A1632E Displays Physiological Changes Associated With Erythromelalgia And Paroxysmal Extreme Pain Disorder Mutations And Produces Symptoms Of Both Disorders Biophysical Journal 2009, 96: 12a. DOI: 10.1016/j.bpj.2008.12.960.
- Mexiletine-responsive Erythromelalgia Due To A New NaV1.7 Mutation Showing Use-dependent BlockChoi J, Zhang L, Dib-Hajj S, Han C, Tyrrell L, Lin Z, Wang X, Yang Y, Waxman S. Mexiletine-responsive Erythromelalgia Due To A New NaV1.7 Mutation Showing Use-dependent Block Biophysical Journal 2009, 96: 252a. DOI: 10.1016/j.bpj.2008.12.1241.
- Voltage-gated Sodium Channels: Multiple Roles in the Pathophysiology of PainDib-Hajj S, Waxman S. Voltage-gated Sodium Channels: Multiple Roles in the Pathophysiology of Pain 2009, 4365-4371. DOI: 10.1007/978-3-540-29678-2_6409.
- Dorsal Root Ganglion NeuronsRush A, Waxman S. Dorsal Root Ganglion Neurons 2009, 615-619. DOI: 10.1016/b978-008045046-9.01660-0.
- Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromasBlack JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas Annals Of Neurology 2008, 64: 644-653. PMID: 19107992, DOI: 10.1002/ana.21527.
- Voltage‐Gated Sodium Channels: Multiple Roles in the Pathophysiology of PainDib‐Hajj S, Hains B, Black J, Waxman S. Voltage‐Gated Sodium Channels: Multiple Roles in the Pathophysiology of Pain 2008, 67-104. DOI: 10.1002/9780470429907.ch3.
- Alarm or curse? The pain of neuroinflammationSaab C, Waxman S, Hains B. Alarm or curse? The pain of neuroinflammation Brain Research Reviews 2008, 58: 226-235. PMID: 18486228, DOI: 10.1016/j.brainresrev.2008.04.002.
- Nav1.9, G‐proteins, and nociceptorsWaxman SG, Estacion M. Nav1.9, G‐proteins, and nociceptors The Journal Of Physiology 2008, 586: 917-918. PMID: 18287383, PMCID: PMC2375642, DOI: 10.1113/jphysiol.2007.149922.
- Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord InjuryDeumens R, Joosten E, Waxman S, Hains B. Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord Injury Molecular Neurobiology 2008, 37: 52-63. PMID: 18415034, DOI: 10.1007/s12035-008-8016-1.
- Mechanisms of Disease: sodium channels and neuroprotection in multiple sclerosis—current statusWaxman SG. Mechanisms of Disease: sodium channels and neuroprotection in multiple sclerosis—current status Nature Reviews Neurology 2008, 4: 159-169. PMID: 18227822, DOI: 10.1038/ncpneuro0735.
- VO’Doherty J, Raphan T, Zahm D, Carter M, de Lecea L, Tatsumi I, Watanabe M, Bronstein A, Omote H, Moriyama Y, Dutia M, Straka H, Maklad A, Feng F, Fritzsch B, Barmack N, Pettorossi V, de Waele C, Keshner E, van der Steen J, Graf W, Manzoni D, Verrillo R, Morrison J, Bielefeldt K, Foreman R, Windhorst U, Deco G, Rolls E, McMains S, Kastner S, Douglas R, Kennedy H, Martin K, Hirsch J, Martinez L, Wenderoth P, Clifford C, Brooks A, van der Zwan R, Mercier M, Blanke O, Connor C, Westwood D, Zeki S, Merigan W, Grieve K, Rivadulla C, Cudeiro J, Sakata H, Murata A, Tsutsui K, Battaglia-Mayer A, Caminiti R, Wylie D, Shin S, Crapse T, Mayo J, Sommer M, Gold M, Dib-Hajj S, Waxman S, Flanders M, Highstein S, Cullen K. V 2008, 4157-4387. DOI: 10.1007/978-3-540-29678-2_22.
- CHAPTER 26 Paraplegia and Spinal Cord SyndromesByrne T, Waxman S. CHAPTER 26 Paraplegia and Spinal Cord Syndromes 2008, 353-364. DOI: 10.1016/b978-0-7506-7525-3.50029-7.
- Schwann cells and their precursors for repair of central nervous system myelinKocsis JD, Waxman SG. Schwann cells and their precursors for repair of central nervous system myelin Brain 2007, 130: 1978-1980. PMID: 17626033, DOI: 10.1093/brain/awm161.
- 46 PHOSPHORYLATION OF SODIUM CHANNEL NAV1.8 BY P38 MAPK INCREASES CURRENT DENSITY IN DRG NEURONSHudmon A, Choi J, Tyrrell L, Black J, Rush A, Waxman S, Dib‐Hajj S. 46 PHOSPHORYLATION OF SODIUM CHANNEL NAV1.8 BY P38 MAPK INCREASES CURRENT DENSITY IN DRG NEURONS European Journal Of Pain 2007, 11: s19-s19. DOI: 10.1016/j.ejpain.2007.03.060.
- 293 SPONTANEOUS IMPULSE GENERATION IN C‐NOCICEPTORS OF FAMILIAL ERYTHROMELALGIA (FE) PATIENTSUyanik O, Quiles C, Bostock H, Dib‐Hajj S, Fischer T, Tyrrell L, Waxman S, Serra J. 293 SPONTANEOUS IMPULSE GENERATION IN C‐NOCICEPTORS OF FAMILIAL ERYTHROMELALGIA (FE) PATIENTS European Journal Of Pain 2007, 11: s130-s130. DOI: 10.1016/j.ejpain.2007.03.308.
- 22 ERYTHROMELALGIA AS A HUMAN MODEL OF C‐FIBER HYPEREXCITABILITYWaxman S. 22 ERYTHROMELALGIA AS A HUMAN MODEL OF C‐FIBER HYPEREXCITABILITY European Journal Of Pain 2007, 11: s9-s10. DOI: 10.1016/j.ejpain.2007.03.036.
- A case of inherited erythromelalgiaNovella SP, Hisama FM, Dib-Hajj SD, Waxman SG. A case of inherited erythromelalgia Nature Reviews Neurology 2007, 3: 229-234. PMID: 17410110, DOI: 10.1038/ncpneuro0425.
- Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotypeWaxman SG. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype Nature Neuroscience 2007, 10: 405-409. PMID: 17387329, DOI: 10.1038/nn1857.
- Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neuronsRush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons The Journal Of Physiology 2007, 579: 1-14. PMID: 17158175, PMCID: PMC2075388, DOI: 10.1113/jphysiol.2006.121483.
- Contributor's ListBerkovic S, Bilguvar K, Blackstone C, Bloch M, Blumenfeld H, Bredesen D, Bressman S, Brucal M, Burton E, Dalmau J, Dawson T, Dawson V, Depondt C, DiLuna M, DiMauro S, Ferrari M, Fink D, Flügel A, Frants R, Glorioso J, Goadsby P, Goldin A, Gunel M, Harel N, Helbig I, Hemmen T, Hisama F, Hyman B, Ingelsson M, Johnson D, Kamholz J, Kaul M, Kocsis J, Lammers G, Leckman J, Li J, Lipton S, Maragakis N, Mehlen P, Morimoto R, Orton K, Overeem S, Ozelius L, Pandolfo M, Pascual J, Paulson H, Peroutka S, Petroff O, Ransom C, Rao R, Rismanchi N, Rothstein J, Savitt J, Scheffer I, Schon E, Shy M, Strittmatter S, Tafti M, Tanriover G, Todi S, van den Maagdenberg A, Vance J, Vincent A, Voisine C, Waxman S, Wekerle H, Williams A, Wood J, Yang Y, Zivin J. Contributor's List 2007, vii-ix. DOI: 10.1016/b978-012369509-3.50001-9.
- 14 The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord InjuryHarel N, Yang Y, Strittmatter S, Kocsis J, Waxman S. 14 The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord Injury 2007, 207-220. DOI: 10.1016/b978-012369509-3.50016-0.
- Painful ChannelopathiesWaxman S. Painful Channelopathies 2007, 1748-1751. DOI: 10.1007/978-3-540-29805-2_3157.
- 27 Chronic Pain as a Molecular DisorderWood J, Waxman S. 27 Chronic Pain as a Molecular Disorder 2007, 427-438. DOI: 10.1016/b978-012369509-3.50029-9.
- 22 Multiple Sclerosis as a Neurodegenerative DiseaseWaxman S. 22 Multiple Sclerosis as a Neurodegenerative Disease 2007, 333-346. DOI: 10.1016/b978-012369509-3.50024-x.
- Axonal conduction and injury in multiple sclerosis: the role of sodium channelsWaxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels Nature Reviews Neuroscience 2006, 7: 932-941. PMID: 17115075, DOI: 10.1038/nrn2023.
- Transcriptional Channelopathies of the Nervous SystemWaxman S. Transcriptional Channelopathies of the Nervous System 2006 DOI: 10.1002/9780470015902.a0006086.
- Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgiaDib-Hajj S, Rush A, Cummins T, Waxman S. Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia Drug Discovery Today Disease Mechanisms 2006, 3: 343-350. DOI: 10.1016/j.ddmec.2006.09.005.
- Fire and phantoms after spinal cord injury: Na+ channels and central painWaxman S, Hains B. Fire and phantoms after spinal cord injury: Na+ channels and central pain Trends In Neurosciences 2006, 29: 207-215. PMID: 16494954, DOI: 10.1016/j.tins.2006.02.003.
- Dysfunction and recovery in demyelinated and dysmyelinated axonsWaxman S. Dysfunction and recovery in demyelinated and dysmyelinated axons 2006, 468-486. DOI: 10.1017/cbo9780511545061.029.
- Characterizing the Mechanisms of Progression in Multiple Sclerosis: Evidence and New Hypotheses for Future DirectionsFrohman E, Filippi M, Stuve O, Waxman S, Corboy J, Phillips J, Lucchinetti C, Wilken J, Karandikar N, Hemmer B, Monson N, De Keyser J, Hartung H, Steinman L, Oksenberg J, Cree B, Hauser S, Racke M. Characterizing the Mechanisms of Progression in Multiple Sclerosis: Evidence and New Hypotheses for Future Directions JAMA Neurology 2005, 62: 1345-1356. PMID: 16157741, DOI: 10.1001/archneur.62.9.1345.
- Voltage-gated sodium channels and pain associated with nerve injury and neuropathiesBlack J, Hains B, Dib-Hajj S, Waxman S. Voltage-gated sodium channels and pain associated with nerve injury and neuropathies 2005, 1-21. DOI: 10.1007/3-7643-7411-x_1.
- 7 Altered Distributions and Functions of Multiple Sodium Channel Subtypes in Multiple Sclerosis and its ModelsWaxman S. 7 Altered Distributions and Functions of Multiple Sodium Channel Subtypes in Multiple Sclerosis and its Models 2005, 101-118. DOI: 10.1016/b978-012738761-1/50008-0.
- 6 The Conduction Properties of Demyelinated and Remyelinated AxonsSmith K, Waxman S. 6 The Conduction Properties of Demyelinated and Remyelinated Axons 2005, 85-100. DOI: 10.1016/b978-012738761-1/50007-9.
- 22 Neuronal Blocking Factors in Demyelinating DiseasesCummins T, Waxman S. 22 Neuronal Blocking Factors in Demyelinating Diseases 2005, 317-326. DOI: 10.1016/b978-012738761-1/50023-7.
- Chapter 20 New Molecular Targets for the Treatment of Neuropathic PainWood J, Waxman S. Chapter 20 New Molecular Targets for the Treatment of Neuropathic Pain 2005, 339-355. DOI: 10.1016/b978-012738903-5/50021-7.
- Chapter 19 Transcriptional Channelopathies of the Nervous System New Targets for Molecular MedicineWaxman S. Chapter 19 Transcriptional Channelopathies of the Nervous System New Targets for Molecular Medicine 2005, 319-338. DOI: 10.1016/b978-012738903-5/50020-5.
- 29 Blocking the Axonal Injury Cascade Neuroprotection in Multiple Sclerosis and Its ModelsWaxman S, Lo A. 29 Blocking the Axonal Injury Cascade Neuroprotection in Multiple Sclerosis and Its Models 2005, 435-449. DOI: 10.1016/b978-012738761-1/50030-4.
- 19 Molecular Mechanisms of Calcium Influx in Axonal DegenerationStys P, Waxman S. 19 Molecular Mechanisms of Calcium Influx in Axonal Degeneration 2005, 275-292. DOI: 10.1016/b978-012738761-1/50020-1.
- PrefaceWaxman S. Preface 2005, vii-viii. DOI: 10.1016/b978-012738761-1/50000-6.
- Sodium channel blockers and axonal protection in neuroinflammatory diseaseWaxman S. Sodium channel blockers and axonal protection in neuroinflammatory disease Brain 2004, 128: 5-6. PMID: 15596795, DOI: 10.1093/brain/awh353.
- Myelin Function and Saltatory ConductionWaxman S, Bangalore L. Myelin Function and Saltatory Conduction 2004, 273-284. DOI: 10.1093/acprof:oso/9780195152227.003.0021.
- Receiving the baton: a tribute to Manfred ZimmermannWaxman S. Receiving the baton: a tribute to Manfred Zimmermann Neuroscience Letters 2004, 361: 3. DOI: 10.1016/j.neulet.2004.02.022.
- Chapter 5 Electrophysiologic Consequences of MyelinationWaxman S, Bangalore L. Chapter 5 Electrophysiologic Consequences of Myelination 2004, 117-141. DOI: 10.1016/b978-012439510-7/50058-9.
- Chapter 41 Ischemic White Matter DamageStys P, Waxman S. Chapter 41 Ischemic White Matter Damage 2004, 985-1007. DOI: 10.1016/b978-012439510-7/50094-2.
- Neuroscience Letters enters the new milleniumWaxman S. Neuroscience Letters enters the new millenium Neuroscience Letters 2004, 354: 1. DOI: 10.1016/j.neulet.2003.12.030.
- Distinct repriming and closed‐state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neuronsHerzog R, Cummins T, Ghassemi F, Dib‐Hajj S, Waxman S. Distinct repriming and closed‐state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons The Journal Of Physiology 2003, 551: 741-750. DOI: 10.1111/j.1469-7793.2003.00741.x.
- The pentapeptide QYNAD does not block voltage-gated sodium channelsBrinkmeier H, Weber F, Aulkemeyer P, Wollinsky K, Rudel R, Cummins T, Renganathan M, Herzog R, Dib-Hajj S, Waxman S, Stys P, Horn R. The pentapeptide QYNAD does not block voltage-gated sodium channels Neurology 2003, 60: 1871-1872. PMID: 12796562, DOI: 10.1212/wnl.60.11.1871-a.
- Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injuryHains B, Black J, Waxman S. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury The Journal Of Comparative Neurology 2003, 462: 328-341. PMID: 12794736, DOI: 10.1002/cne.10733.
- Selective expression of a persistent Ttx-resistant Na+ current and Navl.9 subunit in myenteric sensory neuronsRugiero F, Clerc N, Mistry M, Sage D, Black J, Waxman S, Crest M, Delmas P, Gola M. Selective expression of a persistent Ttx-resistant Na+ current and Navl.9 subunit in myenteric sensory neurons Gastroenterology 2003, 124: a343. DOI: 10.1016/s0016-5085(03)81730-4.
- Multiple SclerosisVollmer T, Preiningerova J, Waxman S. Multiple Sclerosis 2003 DOI: 10.1038/npg.els.0000192.
- Nitric oxide and the axonal death cascadeWaxman S. Nitric oxide and the axonal death cascade Annals Of Neurology 2003, 53: 150-153. PMID: 12557280, DOI: 10.1002/ana.10397.
- Primary motor neurons fail to up‐regulate voltage‐gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injuryHains B, Black J, Waxman S. Primary motor neurons fail to up‐regulate voltage‐gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injury Journal Of Neuroscience Research 2002, 70: 546-552. PMID: 12404508, DOI: 10.1002/jnr.10402.
- Subthreshold Oscillations Induced By Spinal Nerve Injury In Dissociated Muscle And Cutaneous Afferents Of Mouse DRGLiu C, Devor M, Waxman S, Kocsis J. Subthreshold Oscillations Induced By Spinal Nerve Injury In Dissociated Muscle And Cutaneous Afferents Of Mouse DRG Journal Of The Peripheral Nervous System 2002, 7: 212-212. DOI: 10.1046/j.1529-8027.2002.02026_27.x.
- Axotomy does not up-regulate expression of sodium channel Nav1.8 in Purkinje cellsBlack J, Dusart I, Sotelo C, Waxman S. Axotomy does not up-regulate expression of sodium channel Nav1.8 in Purkinje cells Brain Research 2002, 101: 126-131. PMID: 12007840, DOI: 10.1016/s0169-328x(02)00200-0.
- HSV-1 Helper Virus 5dl1.2 Suppresses Sodium Currents in Amplicon-Transduced NeuronsWhite BH, Cummins TR, Wolf DH, Waxman SG, Russell DS, Kaczmarek LK. HSV-1 Helper Virus 5dl1.2 Suppresses Sodium Currents in Amplicon-Transduced Neurons Journal Of Neurophysiology 2002, 87: 2149-2157. PMID: 11929932, DOI: 10.1152/jn.00498.2001.
- Nitric Oxide Blocks Fast, Slow, and Persistent Na+ Channels in C-Type DRG Neurons by S-NitrosylationRenganathan M, Cummins T, Waxman S. Nitric Oxide Blocks Fast, Slow, and Persistent Na+ Channels in C-Type DRG Neurons by S-Nitrosylation Journal Of Neurophysiology 2002, 87: 761-775. PMID: 11826045, DOI: 10.1152/jn.00369.2001.
- Sodium channels and the molecular basis for painBlack J, Cummins T, Dib-Hajj S, Waxman S. Sodium channels and the molecular basis for pain 2002, 23-50. DOI: 10.1007/978-3-0348-8129-6_2.
- Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally RegulatedTyrrell L, Renganathan M, Dib-Hajj S, Waxman S. Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated Journal Of Neuroscience 2001, 21: 9629-9637. PMID: 11739573, PMCID: PMC6763018, DOI: 10.1523/jneurosci.21-24-09629.2001.
- Flanking regulatory sequences of the locus encoding the murine GDNF receptor, c‐ret, directs lac Z (β‐galactosidase) expression in developing somatosensory systemSukumaran M, Waxman S, Wood J, Pachnis V. Flanking regulatory sequences of the locus encoding the murine GDNF receptor, c‐ret, directs lac Z (β‐galactosidase) expression in developing somatosensory system Developmental Dynamics 2001, 222: 389-402. PMID: 11747074, DOI: 10.1002/dvdy.1192.
- Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*Liu C, Dib-Hajj S, Black J, Greenwood J, Lian Z, Waxman S. Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane* Journal Of Biological Chemistry 2001, 276: 46553-46561. PMID: 11581273, DOI: 10.1074/jbc.m108699200.
- Transcriptional channelopathies: An emerging class of disordersWaxman S. Transcriptional channelopathies: An emerging class of disorders Nature Reviews Neuroscience 2001, 2: 652-659. PMID: 11533733, DOI: 10.1038/35090026.
- Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG NeuronsRenganathan M, Cummins T, Waxman S. Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons Journal Of Neurophysiology 2001, 86: 629-640. PMID: 11495938, DOI: 10.1152/jn.2001.86.2.629.
- Acquired channelopathies in nerve injury and MSWaxman S. Acquired channelopathies in nerve injury and MS Neurology 2001, 56: 1621-1627. PMID: 11428390, DOI: 10.1212/wnl.56.12.1621.
- β1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factorGhassemi F, Dib-Hajj S, Waxman S. β1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factor Brain Research 2001, 90: 118-124. PMID: 11406290, DOI: 10.1016/s0169-328x(01)00091-2.
- AxonsWaxman S. Axons 2001 DOI: 10.1038/npg.els.0000019.
- Loss and Restoration of Impulse Conduction in Disorders of MyelinCook S, Waxman S. Loss and Restoration of Impulse Conduction in Disorders of Myelin 2001, 53 DOI: 10.1201/9780824741846.ch11.
- Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)*Liu C, Dib-Hajj S, Waxman S. Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)* Journal Of Biological Chemistry 2001, 276: 18925-18933. PMID: 11376006, DOI: 10.1074/jbc.m101606200.
- Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.
- Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosisBlack J, Dib-Hajj S, Baker D, Newcombe J, Cuzner M, Waxman S. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 11598-11602. PMID: 11027357, PMCID: PMC17246, DOI: 10.1073/pnas.97.21.11598.
- A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivationBendahhou S, Cummins T, Hahn A, Langlois S, Waxman S, Ptácek L. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation Journal Of Clinical Investigation 2000, 106: 431-438. PMID: 10930446, PMCID: PMC314328, DOI: 10.1172/jci9654.
- Do ‘demyelinating’ diseases involve more than myelin?Waxman S. Do ‘demyelinating’ diseases involve more than myelin? Nature Medicine 2000, 6: 738-739. PMID: 10888913, DOI: 10.1038/77450.
- The neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neuronsWaxman S. The neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neurons Philosophical Transactions Of The Royal Society B Biological Sciences 2000, 355: 199-213. PMID: 10724456, PMCID: PMC1692729, DOI: 10.1098/rstb.2000.0559.
- Development of Glutamatergic Synaptic Activity in Cultured Spinal NeuronsRobert A, Howe J, Waxman S. Development of Glutamatergic Synaptic Activity in Cultured Spinal Neurons Journal Of Neurophysiology 2000, 83: 659-670. PMID: 10669482, DOI: 10.1152/jn.2000.83.2.659.
- Voltage-gated sodium channels and the molecular pathogenesis of pain: a review.Waxman SG, Cummins TR, Dib-Hajj SD, Black JA. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. The Journal Of Rehabilitation Research And Development 2000, 37: 517-28. PMID: 11322150.
- Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptorsFjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.
- Sodium channels and the molecular pathophysiology of painCummins T, Dib-Hajj S, Black J, Waxman S. Sodium channels and the molecular pathophysiology of pain 2000, 129: 3-19. PMID: 11098678, DOI: 10.1016/s0079-6123(00)29002-x.
- Experimental Approaches to Restoration of Function of Ascending and Descending Axons in Spinal Cord InjuryWaxman S, Kocsis J. Experimental Approaches to Restoration of Function of Ascending and Descending Axons in Spinal Cord Injury 2000, 215-239. DOI: 10.1007/978-1-59259-200-5_10.
- Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic painDibHajj S, Fjell J, Cummins TR, Zheng Z, Fried K, LaMotte R, Black JA, Waxman S. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain Pain 1999, 83: 591-600. PMID: 10568868, DOI: 10.1016/s0304-3959(99)00169-4.
- Sodium channels: from mechanisms to medicines?Waxman S, Wood J. Sodium channels: from mechanisms to medicines? Brain Research Bulletin 1999, 50: 309-310. PMID: 10643411, DOI: 10.1016/s0361-9230(99)00158-6.
- Sodium channels, excitability of primary sensory neurons, and the molecular basis of painWaxman S, Cummins T, Dib‐Hajj S, Fjell J, Black J. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain Muscle & Nerve 1999, 22: 1177-1187. PMID: 10454712, DOI: 10.1002/(sici)1097-4598(199909)22:9<1177::aid-mus3>3.0.co;2-p.
- Coding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaNDib-Hajj S, Tyrrell L, Escayg A, Wood P, Meisler M, Waxman S. Coding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaN Genomics 1999, 59: 309-318. PMID: 10444332, DOI: 10.1006/geno.1999.5890.
- The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neuronsWaxman S. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons Pain 1999, 82: s133-s140. PMID: 10491982, DOI: 10.1016/s0304-3959(99)00147-5.
- Characterization of a new sodium channel mutation at arginine 1448 associated with moderate paramyotonia congenita in humansBendahhou S, Cummins T, Kwiecinski H, Waxman S, Ptácek L. Characterization of a new sodium channel mutation at arginine 1448 associated with moderate paramyotonia congenita in humans The Journal Of Physiology 1999, 518: 337-344. PMID: 10381583, PMCID: PMC2269438, DOI: 10.1111/j.1469-7793.1999.0337p.x.
- Sodium channel expression in NGF‐overexpressing transgenic miceFjell J, Cummins T, Davis B, Albers K, Fried K, Waxman S, Black J. Sodium channel expression in NGF‐overexpressing transgenic mice Journal Of Neuroscience Research 1999, 57: 39-47. PMID: 10397634, DOI: 10.1002/(sici)1097-4547(19990701)57:1<39::aid-jnr5>3.0.co;2-m.
- Activation and Inactivation of the Voltage-Gated Sodium Channel: Role of Segment S5 Revealed by a Novel Hyperkalaemic Periodic Paralysis MutationBendahhou S, Cummins T, Tawil R, Waxman S, Ptácek L. Activation and Inactivation of the Voltage-Gated Sodium Channel: Role of Segment S5 Revealed by a Novel Hyperkalaemic Periodic Paralysis Mutation Journal Of Neuroscience 1999, 19: 4762-4771. PMID: 10366610, PMCID: PMC6782655, DOI: 10.1523/jneurosci.19-12-04762.1999.
- Changes in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomyIshikawa K, Tanaka M, Black J, Waxman S. Changes in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomy Muscle & Nerve 1999, 22: 502-507. PMID: 10204786, DOI: 10.1002/(sici)1097-4598(199904)22:4<502::aid-mus12>3.0.co;2-k.
- Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neuronsFjell J, Cummins T, Dib-Hajj S, Fried K, Black J, Waxman S. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons Brain Research 1999, 67: 267-282. PMID: 10216225, DOI: 10.1016/s0169-328x(99)00070-4.
- In Vivo NGF Deprivation Reduces SNS Expression and TTX-R Sodium Currents in IB4-Negative DRG NeuronsFjell J, Cummins T, Fried K, Black J, Waxman S. In Vivo NGF Deprivation Reduces SNS Expression and TTX-R Sodium Currents in IB4-Negative DRG Neurons Journal Of Neurophysiology 1999, 81: 803-810. PMID: 10036280, DOI: 10.1152/jn.1999.81.2.803.
- The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matterImaizumi T, Kocsis J, Waxman S. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter Brain Research 1999, 817: 84-92. PMID: 9889329, DOI: 10.1016/s0006-8993(98)01214-1.
- Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium ChannelCummins T, Howe J, Waxman S. Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel Journal Of Neuroscience 1998, 18: 9607-9619. PMID: 9822722, PMCID: PMC6793269, DOI: 10.1523/jneurosci.18-23-09607.1998.
- Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal CordImaizumi T, Lankford K, Waxman S, Greer C, Kocsis J. Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord Journal Of Neuroscience 1998, 18: 6176-6185. PMID: 9698311, PMCID: PMC2605360, DOI: 10.1523/jneurosci.18-16-06176.1998.
- Endogenous NMDA-Receptor Activation Regulates Glutamate Release in Cultured Spinal NeuronsRobert A, Black J, Waxman S. Endogenous NMDA-Receptor Activation Regulates Glutamate Release in Cultured Spinal Neurons Journal Of Neurophysiology 1998, 80: 196-208. PMID: 9658041, DOI: 10.1152/jn.1998.80.1.196.
- Effects of Glucose Deprivation, Chemical Hypoxia, and Simulated Ischemia on Na+ Homeostasis in Rat Spinal Cord AstrocytesRose C, Waxman S, Ransom B. Effects of Glucose Deprivation, Chemical Hypoxia, and Simulated Ischemia on Na+ Homeostasis in Rat Spinal Cord Astrocytes Journal Of Neuroscience 1998, 18: 3554-3562. PMID: 9570787, PMCID: PMC6793162, DOI: 10.1523/jneurosci.18-10-03554.1998.
- Novel splice variants of the voltage-sensitive sodium channel alpha subunitOh Y, Waxman S. Novel splice variants of the voltage-sensitive sodium channel alpha subunit Neuroreport 1998, 9: 1267-1272. PMID: 9631410, DOI: 10.1097/00001756-199805110-00002.
- SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain modelTanaka M, Cummins T, Ishikawa K, Dib-Hajj S, Black J, Waxman S. SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model Neuroreport 1998, 9: 967-972. PMID: 9601651, DOI: 10.1097/00001756-199804200-00003.
- Mechanisms of enhancement of neurite regeneration in vitro following a conditioning sciatic nerve lesionLankford K, Waxman S, Kocsis J. Mechanisms of enhancement of neurite regeneration in vitro following a conditioning sciatic nerve lesion The Journal Of Comparative Neurology 1998, 391: 11-29. PMID: 9527536, PMCID: PMC2605358, DOI: 10.1002/(sici)1096-9861(19980202)391:1<11::aid-cne2>3.0.co;2-u.
- Demyelinating Diseases -- New Pathological Insights, New Therapeutic TargetsWaxman S. Demyelinating Diseases -- New Pathological Insights, New Therapeutic Targets New England Journal Of Medicine 1998, 338: 323-325. DOI: 10.1056/nejm199801293380510.
- Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental StudyFern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.
- Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelinationImaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.
- Pharmacological Characterization of Na+ Influx via Voltage-Gated Na+ Channels in Spinal Cord AstrocytesRose C, Ransom B, Waxman S. Pharmacological Characterization of Na+ Influx via Voltage-Gated Na+ Channels in Spinal Cord Astrocytes Journal Of Neurophysiology 1997, 78: 3249-3258. PMID: 9405543, DOI: 10.1152/jn.1997.78.6.3249.
- Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axonsSteffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.
- Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytesOh Y, Lee Y, Waxman S. Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes Neuroscience Letters 1997, 234: 107-110. PMID: 9364509, DOI: 10.1016/s0304-3940(97)00694-0.
- Different Strokes in Different Folks: Unique Molecular Signatures of Cortical and Deep Brain InfarctsWaxman S. Different Strokes in Different Folks: Unique Molecular Signatures of Cortical and Deep Brain Infarcts Cerebrovascular Diseases 1997, 7: 243-244. DOI: 10.1159/000108201.
- Axon-glia interactions: Building a smart nerve fiberWaxman S. Axon-glia interactions: Building a smart nerve fiber Current Biology 1997, 7: r406-r410. PMID: 9210363, DOI: 10.1016/s0960-9822(06)00203-x.
- Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent NeuronsOyelese A, Rizzo M, Waxman S, Kocsis J. Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons Journal Of Neurophysiology 1997, 78: 31-42. PMID: 9242258, PMCID: PMC2605357, DOI: 10.1152/jn.1997.78.1.31.
- NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neuronsBlack J, Langworthy K, Hinson A, Dib-Hajj S, Waxman S. NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons Neuroreport 1997, 8: 2331-2335. PMID: 9243635, DOI: 10.1097/00001756-199707070-00046.
- P-3-316 Functional repair of demyelinated spinal cordaxons in the adult rat by transplantation of genetically-engineering Schwann cellsHommou O, Hashi K, Felts P, Waxman S, Kocsis J. P-3-316 Functional repair of demyelinated spinal cordaxons in the adult rat by transplantation of genetically-engineering Schwann cells Clinical Neurology And Neurosurgery 1997, 99: s143. DOI: 10.1016/s0303-8467(97)81922-1.
- Spinal Cord Repair: Progress Towards a Daunting GoalWaxman S, Kocsis J. Spinal Cord Repair: Progress Towards a Daunting Goal The Neuroscientist 1997, 3: 263-269. DOI: 10.1177/107385849700300414.
- Downregulation of Na+ channel mRNA in olfactory bulb tufted cells following deafferentiationSashihara S, Waxman S, Greer C. Downregulation of Na+ channel mRNA in olfactory bulb tufted cells following deafferentiation Neuroreport 1997, 8: 1289-1293. PMID: 9175131, DOI: 10.1097/00001756-199703240-00046.
- TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma CellsGu X, Dib-Hajj S, Rizzo M, Waxman S. TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells Journal Of Neurophysiology 1997, 77: 236-246. PMID: 9120565, DOI: 10.1152/jn.1997.77.1.236.
- Functional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial CellsWaxman S, Kocsis J. Functional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial Cells 1997, 283-298. DOI: 10.1007/978-1-4615-5949-8_28.
- Abstracts from the Spinal Cord Research Foundation’s 20th Anniversary SymposiumFessler R, Quencer R, Hall E, Tessier-Lavigne M, McKerracher L, Kocsis J, Reier P, Snyder E, Bregman B, Edgerton R, Calancie B, Trull F, Cardenas D, DeLisa J, Whiteneck G, Blight A, Mortimer T, Cooper R, Axelson P, Waldrep K, Rymer W, Waxman S. Abstracts from the Spinal Cord Research Foundation’s 20th Anniversary Symposium Journal Of Spinal Cord Medicine 1997, 20: 90-100. DOI: 10.1080/10790268.1997.11719462.
- Orphan nuclear receptor RORα gene: isoform-specific spatiotemporal expression during postnatal development of brainSashihara S, Felts P, Waxman S, Matsui T. Orphan nuclear receptor RORα gene: isoform-specific spatiotemporal expression during postnatal development of brain Brain Research 1996, 42: 109-117. PMID: 8915586, DOI: 10.1016/s0169-328x(96)00118-0.
- Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotidesRoy M, Saal D, Perney T, Sontheimer H, Waxman S, Kaczmarek L. Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides Glia 1996, 18: 177-184. PMID: 8915650, DOI: 10.1002/(sici)1098-1136(199611)18:3<177::aid-glia2>3.0.co;2-x.
- Action potential-like responses in B 104 cells with low Na+ channel densitiesGu X, Waxman S. Action potential-like responses in B 104 cells with low Na+ channel densities Brain Research 1996, 735: 50-58. PMID: 8905169, DOI: 10.1016/0006-8993(96)00604-x.
- Voltage-gated Na+ channels in glia: properties and possible functionsSontheimer H, Black J, Waxman S. Voltage-gated Na+ channels in glia: properties and possible functions Trends In Neurosciences 1996, 19: 325-331. PMID: 8843601, DOI: 10.1016/0166-2236(96)10039-4.
- 2 Glia and recovery of conduction following demyelinationWaxman S. 2 Glia and recovery of conduction following demyelination International Journal Of Developmental Neuroscience 1996, 14: 51. DOI: 10.1016/0736-5748(96)80197-3.
- Molecular anatomy of the node of Ranvier: newer conceptsWaxman S. Molecular anatomy of the node of Ranvier: newer concepts 1996, 13-28. DOI: 10.1017/cbo9780511570193.004.
- Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neuronsWaxman S, Black J. Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons Neurochemical Research 1996, 21: 395-401. PMID: 8734431, DOI: 10.1007/bf02527702.
- White Matter Stroke: Autoprotective Mechanisms with Therapeutic ImplicationsFern R, Ransom B, Waxman S. White Matter Stroke: Autoprotective Mechanisms with Therapeutic Implications Cerebrovascular Diseases 1996, 6: 59-65. DOI: 10.1159/000107999.
- Autoprotective mechanisms in the CNSFern R, Ransom B, Waxman S. Autoprotective mechanisms in the CNS Journal Of Molecular Neuroscience 1996, 27: 107-129. PMID: 8962597, DOI: 10.1007/bf02815088.
- Mechanisms of Paresthesiae, Dysesthesiae, and Hyperesthesiae: Role of Na+ Channel HeterogeneityRizzo M, Kocsis J, Waxman S. Mechanisms of Paresthesiae, Dysesthesiae, and Hyperesthesiae: Role of Na+ Channel Heterogeneity European Neurology 1996, 36: 3-12. PMID: 8719643, DOI: 10.1159/000117192.
- Chapter 35 Clinical observations on the emotional motor systemWaxman S. Chapter 35 Clinical observations on the emotional motor system 1996, 107: 595-604. PMID: 8782544, DOI: 10.1016/s0079-6123(08)61889-0.
- Na+ channel β1 subunit mRNA expression in developing rat central nervous systemSashihara S, Oh Y, Black J, Waxman S. Na+ channel β1 subunit mRNA expression in developing rat central nervous system Brain Research 1995, 34: 239-250. PMID: 8750827, DOI: 10.1016/0169-328x(95)00168-r.
- An orphan nuclear receptor, mROR α, and its spatial expression in adult mouse brainMatsui T, Sashihara S, Oh Y, Waxman S. An orphan nuclear receptor, mROR α, and its spatial expression in adult mouse brain Brain Research 1995, 33: 217-226. PMID: 8750880, DOI: 10.1016/0169-328x(95)00126-d.
- Expression of sodium channel α- and β-subunits in the nervous system of themyelin-deficient ratFelts P, Black J, Waxman S. Expression of sodium channel α- and β-subunits in the nervous system of themyelin-deficient rat Brain Cell Biology 1995, 24: 654-666. PMID: 7500121, DOI: 10.1007/bf01179816.
- SL-2 Ion channels and nerve conductionWaxman S. SL-2 Ion channels and nerve conduction Electroencephalography And Clinical Neurophysiology/Electromyography And Motor Control 1995, 97: s1. DOI: 10.1016/0924-980x(95)92427-n.
- Clivus and cervical spinal osteomyelitis with epidural abscess presenting with multiple cranial neuropathiesAzizi S, Fayad P, Fulbright R, Giroux M, Waxman S. Clivus and cervical spinal osteomyelitis with epidural abscess presenting with multiple cranial neuropathies Clinical Neurology And Neurosurgery 1995, 97: 239-244. PMID: 7586856, DOI: 10.1016/0303-8467(95)00036-j.
- Na+ channel β1 subunit mRNA: differential expression in rat spinal sensory neuronsOh Y, Sashihara S, Black J, Waxman S. Na+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons Brain Research 1995, 30: 357-361. PMID: 7637585, DOI: 10.1016/0169-328x(95)00052-t.
- Letters to the editorVital C, Coquet M, Mazat J, Valberg S, Nelson D, Chaudhry V, Crawford T, Clouston P, Triggs W, Gilmore R, Burke D, Miller T, Kiernan M, Mogyoros I, Stys P, Waxman S. Letters to the editor Muscle & Nerve 1995, 18: 673-677. PMID: 7753132, DOI: 10.1002/mus.880180619.
- The oligodendrocyte, the perinodal astrocyte, and the central node of RanvierBLACK J, SONTHEIMER H, OH Y, WAXMAN S. The oligodendrocyte, the perinodal astrocyte, and the central node of Ranvier 1995, 116-143. DOI: 10.1093/acprof:oso/9780195082937.003.0006.
- Ion pumps and exchangersSTYS P, WAXMAN S, RANSOM B. Ion pumps and exchangers 1995, 296-310. DOI: 10.1093/acprof:oso/9780195082937.003.0015.
- Pathophysiology of demyelinated axonsWAXMAN S, KOCSIS J, BLACK J. Pathophysiology of demyelinated axons 1995, 438-461. DOI: 10.1093/acprof:oso/9780195082937.003.0023.
- Anoxic/ischemic injury in axonsSTYS P, RANSOM B, BLACK J, WAXMAN S. Anoxic/ischemic injury in axons 1995, 462-479. DOI: 10.1093/acprof:oso/9780195082937.003.0024.
- Voltage-gated ion channels in axons: Localization, function, and developmentWAXMAN S. Voltage-gated ion channels in axons: Localization, function, and development 1995, 218-243. DOI: 10.1093/acprof:oso/9780195082937.003.0011.
- Differential up-regulation of sodium channel α- and β1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGFZur K, Oh Y, Waxman S, Black J. Differential up-regulation of sodium channel α- and β1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF Brain Research 1995, 30: 97-105. PMID: 7609649, DOI: 10.1016/0169-328x(94)00283-k.
- Sodium channel blockade by antibodies: A new mechanism of neurological disease?Waxman S. Sodium channel blockade by antibodies: A new mechanism of neurological disease? Annals Of Neurology 1995, 37: 421-423. PMID: 7717678, DOI: 10.1002/ana.410370403.
- Selective loss of slow and enhancement of fast Na+currents in cutaneous afferent dorsal root ganglion neurones following axotomyRizzo M, Kocsis J, Waxman S. Selective loss of slow and enhancement of fast Na+currents in cutaneous afferent dorsal root ganglion neurones following axotomy Neurobiology Of Disease 1995, 2: 87-96. PMID: 8980012, DOI: 10.1006/nbdi.1995.0009.
- Differential Na+ channel β1 subunit mRNA expression in stellate and flat astrocytes cultured from rat cortex and cerebellum: A combined in situ hybridization and immunocytochemistry studyOh Y, Waxman S. Differential Na+ channel β1 subunit mRNA expression in stellate and flat astrocytes cultured from rat cortex and cerebellum: A combined in situ hybridization and immunocytochemistry study Glia 1995, 13: 166-173. PMID: 7782102, DOI: 10.1002/glia.440130303.
- Endogenous GABA attenuates CNS white matter dysfunction following anoxiaFern R, Waxman S, Ransom B. Endogenous GABA attenuates CNS white matter dysfunction following anoxia Journal Of Neuroscience 1995, 15: 699-708. PMID: 7823173, PMCID: PMC6578328, DOI: 10.1523/jneurosci.15-01-00699.1995.
- An Introduction to The NeuroscientistWaxman S. An Introduction to The Neuroscientist The Neuroscientist 1995, 1: 1-2. DOI: 10.1177/107385849500100101.
- Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observationsBlack J, Westenbroek R, Ransom B, Catterall W, Waxman S. Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations Glia 1994, 12: 219-227. PMID: 7851989, DOI: 10.1002/glia.440120307.
- Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiologyStys P, Waxman S. Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology Muscle & Nerve 1994, 17: 969-974. PMID: 7520532, DOI: 10.1002/mus.880170902.
- Rat brain Na+ channel mRNAs in non‐excitable Schwann cellsOh Y, Black J, Waxman S. Rat brain Na+ channel mRNAs in non‐excitable Schwann cells FEBS Letters 1994, 350: 342-346. PMID: 8070590, DOI: 10.1016/0014-5793(94)00807-8.
- In situ hybridization localization of the Na+ channel β1 subunit mRNA in rat CNS neuronsOh Y, Sashihara S, Waxman S. In situ hybridization localization of the Na+ channel β1 subunit mRNA in rat CNS neurons Neuroscience Letters 1994, 176: 119-122. PMID: 7970226, DOI: 10.1016/0304-3940(94)90885-0.
- Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axonsWaxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.
- Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activitySontheimer H, Fernandez-Marques E, Ullrich N, Pappas C, Waxman S. Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity Journal Of Neuroscience 1994, 14: 2464-2475. PMID: 8182422, PMCID: PMC6577452, DOI: 10.1523/jneurosci.14-05-02464.1994.
- The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytesOh Y, Black J, Waxman S. The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes Brain Research 1994, 23: 57-65. PMID: 8028484, DOI: 10.1016/0169-328x(94)90211-9.
- Intracellular calcium mobilization and neurite outgrowth in mammalian neuronsKocsis J, Rand M, Lankford K, Waxman S. Intracellular calcium mobilization and neurite outgrowth in mammalian neurons Developmental Neurobiology 1994, 25: 252-264. PMID: 8195789, DOI: 10.1002/neu.480250306.
- Chapter 14 Nuclear calcium elevation may initiate neurite outgrowth in mammalian neuronsKocsis J, Rand M, Lankford K, Waxman S. Chapter 14 Nuclear calcium elevation may initiate neurite outgrowth in mammalian neurons 1994, 103: 137-151. PMID: 7886202, DOI: 10.1016/s0079-6123(08)61134-6.
- Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissueUtzschneider D, Rand M, Waxman S, Kocsis J. Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissue Brain Research 1994, 635: 231-237. PMID: 8173960, DOI: 10.1016/0006-8993(94)91444-3.
- Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic MechanismsRansom B, Waxman S, Stys P. Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms 1994, 77-90. DOI: 10.1007/978-3-642-78151-3_9.
- Painless aortic dissection presenting as a progressive myelopathyHolloway S, Fayad P, Kalb R, Guarnaccia J, Waxman S. Painless aortic dissection presenting as a progressive myelopathy Journal Of The Neurological Sciences 1993, 120: 141-144. PMID: 8138802, DOI: 10.1016/0022-510x(93)90265-z.
- Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calciumWaxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.
- MYELINATION OF MYELIN DEFICIENT RAT AXONS BY TRANSPLANTED GUA RESTORES CONDUCTIONDuncan I, Utzschneider D, Archer P, Kocsis J, Waxman S. MYELINATION OF MYELIN DEFICIENT RAT AXONS BY TRANSPLANTED GUA RESTORES CONDUCTION Journal Of Neuropathology & Experimental Neurology 1993, 52: 287. DOI: 10.1097/00005072-199305000-00108.
- Molecular dissection of the myelinated axonWaxman S, Ritchie J. Molecular dissection of the myelinated axon Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.
- Peripheral nerve abnormalities in multiple sclerosisWaxman S. Peripheral nerve abnormalities in multiple sclerosis Muscle & Nerve 1993, 16: 1-5. PMID: 8380899, DOI: 10.1002/mus.880160102.
- The Perinodal Astrocyte: Functional and Developmental ConsiderationsWaxman S. The Perinodal Astrocyte: Functional and Developmental Considerations 1993, 15-25. DOI: 10.1007/978-1-4757-9486-1_2.
- Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White MatterStys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.
- Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerveWaxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.
- Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchangerStys P, Waxman S, Ransom B. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger Journal Of Neuroscience 1992, 12: 430-439. PMID: 1311030, PMCID: PMC6575619, DOI: 10.1523/jneurosci.12-02-00430.1992.
- Chapter 8: The expression of sodium channels in astrocytes in situ and in vitroBlack J, Sontheimer H, Minturn J, Ransom B, Waxman S. Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro 1992, 94: 89-107. PMID: 1337617, DOI: 10.1016/s0079-6123(08)61742-2.
- Reverse Operation of the Na+ ‐Ca2+ Exchanger Mediates Ca 2+ Influx during Anoxia in Mammalian CNS White MatteraSTYS P, WAXMAN S, RANSOM B. Reverse Operation of the Na+ ‐Ca2+ Exchanger Mediates Ca 2+ Influx during Anoxia in Mammalian CNS White Mattera Annals Of The New York Academy Of Sciences 1991, 639: 328-332. PMID: 1785859, DOI: 10.1111/j.1749-6632.1991.tb17321.x.
- Lhermitte's sign in a patient with herpes zosterVollmer T, Brass L, Waxman S. Lhermitte's sign in a patient with herpes zoster Journal Of The Neurological Sciences 1991, 106: 153-157. PMID: 1802963, DOI: 10.1016/0022-510x(91)90252-3.
- The pathophysiology of anoxic injury in mammalian central white matterRansom B, Waxman S, Stys P. The pathophysiology of anoxic injury in mammalian central white matter Journal Of The Neurological Sciences 1991, 106: 118. DOI: 10.1016/0022-510x(91)90237-2.
- Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matterWaxman S, Ransom B, Stys P. Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter Trends In Neurosciences 1991, 14: 461-468. PMID: 1722366, DOI: 10.1016/0166-2236(91)90046-w.
- Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matterStys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.
- Tea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerveGardon T, Kocsis J, Waxman S. Tea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerve Muscle & Nerve 1991, 14: 640-646. PMID: 1922170, DOI: 10.1002/mus.880140707.
- Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axonsUtzschneider D, Kocsis J, Waxman S. Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons Brain Research 1991, 551: 136-141. PMID: 1913145, DOI: 10.1016/0006-8993(91)90924-k.
- Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysisStys P, Ransom B, Waxman S. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis Brain Research 1991, 546: 18-32. PMID: 1855148, DOI: 10.1016/0006-8993(91)91154-s.
- Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampusO'Regan M, Kocsis J, Waxman S. Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus Brain Research 1990, 527: 181-191. PMID: 1701335, DOI: 10.1016/0006-8993(90)91136-5.
- Trophic influence of the distal nerve segment on GABAA receptor expression in axotomized adult sensory neuronsBhisitkul R, Kocsis J, Gordon T, Waxman S. Trophic influence of the distal nerve segment on GABAA receptor expression in axotomized adult sensory neurons Experimental Neurology 1990, 109: 273-278. PMID: 2170161, DOI: 10.1016/s0014-4886(05)80017-2.
- Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerveWaxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.
- Emotional facial paresis with striatocapsular infarctionTrosch R, Sze G, Brass L, Waxman S. Emotional facial paresis with striatocapsular infarction Journal Of The Neurological Sciences 1990, 98: 195-201. PMID: 2243229, DOI: 10.1016/0022-510x(90)90260-t.
- Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxiaStys P, Ransom B, Waxman S. Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia Neuroscience Letters 1990, 115: 293-299. PMID: 2234507, DOI: 10.1016/0304-3940(90)90471-k.
- Ion channel organization of the myelinated fiberBlack J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.
- Immuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitroBlack J, Friedman B, Cornell-Bell A, Angelides K, Ritchie J, Waxman S. Immuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitro 1990, 81-97. DOI: 10.1007/978-3-642-83968-9_6.
- Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerveGordon T, Kocsis J, Waxman S. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve Brain Research 1989, 502: 252-257. PMID: 2555026, DOI: 10.1016/0006-8993(89)90620-3.
- Demyelination in spinal cord injuryWaxman S. Demyelination in spinal cord injury Journal Of The Neurological Sciences 1989, 91: 1-14. PMID: 2664092, DOI: 10.1016/0022-510x(89)90072-5.
- Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structureWaxman S, Black J. Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure Brain Research 1988, 453: 337-343. PMID: 3401771, DOI: 10.1016/0006-8993(88)90174-6.
- Temporary adhesions between axons and myelin-forming processesSims T, Gilmore S, Waxman S. Temporary adhesions between axons and myelin-forming processes Brain Research 1988, 40: 223-232. DOI: 10.1016/0165-3806(88)90134-4.
- Evidence for the presence of two types of potassium channels in the rat optic nerveGordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.
- Regional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probesFields R, Waxman S. Regional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probes Brain Research 1988, 443: 231-242. PMID: 3359268, DOI: 10.1016/0006-8993(88)91617-4.
- Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical courseHume A, Waxman S. Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical course Journal Of The Neurological Sciences 1988, 83: 191-210. PMID: 3128646, DOI: 10.1016/0022-510x(88)90068-8.
- The perinodal astrocyteBlack J, Waxman S. The perinodal astrocyte Glia 1988, 1: 169-183. PMID: 2976037, DOI: 10.1002/glia.440010302.
- Thalamic Amnesia: Clinical and Experimental AspectsWaxman S. Thalamic Amnesia: Clinical and Experimental Aspects 1988, 29: 245-257. PMID: 3042664, DOI: 10.1016/s0074-7742(08)60088-4.
- Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous SystemWaxman S. Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous System Neurorehabilitation And Neural Repair 1988, 2: 1-6. DOI: 10.1177/136140968800200101.
- Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibersBowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.
- Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cordAnderson M, Waxman S, Lee Y, Eng L. Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord Brain Research 1987, 2: 131-136. PMID: 3113659, DOI: 10.1016/0169-328x(87)90006-4.
- Physiological properties of regenerated rat sciatic nerve following lesions at different postnatal agesBowe C, Kocsis J, Waxman S, Hildebrand C. Physiological properties of regenerated rat sciatic nerve following lesions at different postnatal ages Brain Research 1987, 34: 123-131. DOI: 10.1016/0165-3806(87)90201-x.
- DyslexiaShaywitz B, Waxman S. Dyslexia New England Journal Of Medicine 1987, 316: 1268-1270. PMID: 3574387, DOI: 10.1056/nejm198705143162008.
- Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemmaFields R, Black J, Waxman S. Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma Brain Research 1987, 404: 21-32. PMID: 3567567, DOI: 10.1016/0006-8993(87)91351-5.
- Carbonic anhydrase activity develops postnatally in the rat optic nerveDavis P, Carlini W, Ransom B, Black J, Waxman S. Carbonic anhydrase activity develops postnatally in the rat optic nerve Brain Research 1987, 31: 291-298. DOI: 10.1016/0165-3806(87)90126-x.
- Myelin sheath remodelling in regenerated rat sciatic nerveHildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve Pain 1987, 28: 275. DOI: 10.1016/0304-3959(87)90138-2.
- Macromolecular structure of the Schwann cell membrane Perinodal microvilliWaxman S, Black J. Macromolecular structure of the Schwann cell membrane Perinodal microvilli Journal Of The Neurological Sciences 1987, 77: 23-34. PMID: 3806135, DOI: 10.1016/0022-510x(87)90203-6.
- Chapter 11 Rules governing membrane reorganization and axon—glial interactions during the development of myelinated fibersWaxman S. Chapter 11 Rules governing membrane reorganization and axon—glial interactions during the development of myelinated fibers 1987, 71: 121-141. PMID: 3588937, DOI: 10.1016/s0079-6123(08)61819-1.
- Molecular Organization of the Cell Membrane in Normal and Pathological Axons: Relation to Glial ContactWaxman S. Molecular Organization of the Cell Membrane in Normal and Pathological Axons: Relation to Glial Contact 1987, 709-736. DOI: 10.1007/978-3-642-71381-1_43.
- Changes in synaptic morphology associated with presynaptic and postsynaptic activity: An in vitro study of the electrosensory organ of the thornback rayFields R, Ellisman M, Waxman S. Changes in synaptic morphology associated with presynaptic and postsynaptic activity: An in vitro study of the electrosensory organ of the thornback ray Synapse 1987, 1: 335-346. PMID: 2901790, DOI: 10.1002/syn.890010407.
- Chapter 8 Ionic channel organization of normal and regenerating mammalian axonsKocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.
- Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases.Waxman S. Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases. Proceedings Of The Association For Research In Nervous And Mental Disease 1987, 65: 7-37. PMID: 2455313.
- Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observationsHildebrand C, Mustafa G, Waxman S. Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observations Brain Cell Biology 1986, 15: 681-692. PMID: 3819776, DOI: 10.1007/bf01625187.
- Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cordBlack J, Waxman S, Sims T, Gilmore S. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord Brain Cell Biology 1986, 15: 745-761. PMID: 3819778, DOI: 10.1007/bf01625192.
- Mammalian optic nerve fibers display two pharmacologically distinct potassium channelsKocsis J, Gordon T, Waxman S. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels Brain Research 1986, 383: 357-361. PMID: 2429732, DOI: 10.1016/0006-8993(86)90040-5.
- Thalamic hemorrhage with neglect and memory disorderWaxman S, Ricaurte G, Tucker S. Thalamic hemorrhage with neglect and memory disorder Journal Of The Neurological Sciences 1986, 75: 105-112. PMID: 3746338, DOI: 10.1016/0022-510x(86)90053-5.
- A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerveBlack J, Waxman S, Ransom B, Feliciano M. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve Brain Research 1986, 380: 122-135. PMID: 2428420, DOI: 10.1016/0006-8993(86)91436-8.
- Selforganization of ependyma in regenerating teleost spinal cord: evidence from serial section reconstructionsAnderson M, Choy C, Waxman S. Selforganization of ependyma in regenerating teleost spinal cord: evidence from serial section reconstructions J Embryol Exp Morph 1986, 96: 1-18. PMID: 3805978, DOI: 10.1242/dev.96.1.1.
- Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerveBlack J, Waxman S. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve Developmental Biology 1986, 115: 301-312. PMID: 2423398, DOI: 10.1016/0012-1606(86)90251-4.
- Differences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral rootsFields R, Black J, Bowe C, Kocsis J, Waxman S. Differences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral roots Neuroscience Letters 1986, 67: 13-18. PMID: 2425295, DOI: 10.1016/0304-3940(86)90200-4.
- The astrocyte as a component of the node of RanvierWaxman S. The astrocyte as a component of the node of Ranvier Trends In Neurosciences 1986, 9: 250-253. DOI: 10.1016/0166-2236(86)90069-x.
- Different effects of 4-aminopyridine on sensory and motor fibers: pathogenesis of paresthesias.Kocsis J, Bowe C, Waxman S. Different effects of 4-aminopyridine on sensory and motor fibers: pathogenesis of paresthesias. Neurology 1986, 36: 117-20. PMID: 3001584, DOI: 10.1212/wnl.36.1.117.
- Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cordWaxman S, Anderson M. Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord Developmental Biology 1985, 112: 338-344. PMID: 4076546, DOI: 10.1016/0012-1606(85)90404-x.
- Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model SystemaANDERSON M, WAXMAN S. Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model Systema Annals Of The New York Academy Of Sciences 1985, 457: 213-233. PMID: 3913365, DOI: 10.1111/j.1749-6632.1985.tb20807.x.
- Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structureBlack J, Waxman S, Hildebrand C. Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure Brain Cell Biology 1985, 14: 887-907. PMID: 3831245, DOI: 10.1007/bf01224803.
- Myelin sheath remodelling in regenerated rat sciatic nerveHildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.
- Membrane structure of vesiculotubular complexes in developing axons in rat optic nerve: freeze—fracture evidence for sequential membrane assemblyWaxman S, Black J. Membrane structure of vesiculotubular complexes in developing axons in rat optic nerve: freeze—fracture evidence for sequential membrane assembly Proceedings Of The Royal Society B 1985, 225: 357-363. PMID: 2865731, DOI: 10.1098/rspb.1985.0066.
- Retrograde labeling of regenerated electromotor neurons with HRP in a teleost fish, Sternarchus albifrons: Relation to cell deathAnderson M, Fong H, Waxman S. Retrograde labeling of regenerated electromotor neurons with HRP in a teleost fish, Sternarchus albifrons: Relation to cell death Cell And Tissue Research 1985, 241: 237-240. PMID: 2411410, DOI: 10.1007/bf00217166.
- Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observationsHildebrand C, Remahl S, Waxman S. Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations Brain Cell Biology 1985, 14: 597-617. PMID: 4067610, DOI: 10.1007/bf01200800.
- Dorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats.Sims T, Gilmore S, Waxman S, Klinge E. Dorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats. Journal Of Neuropathology & Experimental Neurology 1985, 44: 415-29. PMID: 4009209, DOI: 10.1097/00005072-198507000-00005.
- Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cordSims T, Waxman S, Black J, Gilmore S. Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord Brain Research 1985, 337: 321-331. PMID: 4027576, DOI: 10.1016/0006-8993(85)90069-1.
- Organization of Ion Channels in the Myelinated Nerve FiberWaxman S, Ritchie J. Organization of Ion Channels in the Myelinated Nerve Fiber Science 1985, 228: 1502-1507. PMID: 2409596, DOI: 10.1126/science.2409596.
- Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal developmentRansom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.
- Neurogenesis in tissue cultures of adult teleost spinal cordAnderson M, Waxman S. Neurogenesis in tissue cultures of adult teleost spinal cord Brain Research 1985, 20: 203-212. DOI: 10.1016/0165-3806(85)90107-5.
- Glial proliferation in the irradiated rat spinal cordSims T, Waxman S, Gilmore S. Glial proliferation in the irradiated rat spinal cord Acta Neuropathologica 1985, 68: 169-172. PMID: 4072625, DOI: 10.1007/bf00688641.
- Neurogenesis in tissue cultures of adult teleost spinal cord.Anderson M, Waxman S. Neurogenesis in tissue cultures of adult teleost spinal cord. Brain Research 1985, 352: 203-12. PMID: 4027666.
- Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturationBowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.
- Norman Geschwind, M.D. 1926–1984Waxman S. Norman Geschwind, M.D. 1926–1984 Journal Of The Neurological Sciences 1985, 69: 113-115. DOI: 10.1016/0022-510x(85)90012-7.
- Specialization of astrocytic membrane at glia limitans in rat optic nerve: Freeze-fracture observationsBlack J, Waxman S. Specialization of astrocytic membrane at glia limitans in rat optic nerve: Freeze-fracture observations Neuroscience Letters 1985, 55: 371-378. PMID: 4011040, DOI: 10.1016/0304-3940(85)90464-1.
- Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductanceWaxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.
- Membrane ultrastructure of developing axons in glial cell deficient rat spinal cordBlack J, Sims T, Waxman S, Gilmore S. Membrane ultrastructure of developing axons in glial cell deficient rat spinal cord Brain Cell Biology 1985, 14: 79-104. PMID: 4009213, DOI: 10.1007/bf01150264.
- Glial fibrillary acidic protein in regenerating teleost spinal cord.Anderson M, Swanson K, Waxman S, Eng L. Glial fibrillary acidic protein in regenerating teleost spinal cord. Journal Of Histochemistry & Cytochemistry 1984, 32: 1099-1106. PMID: 6481149, DOI: 10.1177/32.10.6481149.
- Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctionsWaxman S, Black J. Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions Brain Research 1984, 308: 77-87. PMID: 6434150, DOI: 10.1016/0006-8993(84)90919-3.
- Donald C.ChangIchijiTasakiWilliam J.AdelmanJrH. RichardLeuchtagStructure and Function in Excitable Cells1983Plenum Press0 306 41338 8xv + 499Waxman S. Donald C.ChangIchijiTasakiWilliam J.AdelmanJrH. RichardLeuchtagStructure and Function in Excitable Cells1983Plenum Press0 306 41338 8xv + 499 Trends In Neurosciences 1984, 7: 263. DOI: 10.1016/s0166-2236(84)80224-6.
- Membrane specialization and axo-glial association in the rat retinal nerve fibre layer: freeze-fracture observationsBlack J, Waxman S, Hildebrand C. Membrane specialization and axo-glial association in the rat retinal nerve fibre layer: freeze-fracture observations Brain Cell Biology 1984, 13: 417-430. PMID: 6481406, DOI: 10.1007/bf01148332.
- Cell death of asynaptic neurons in regenerating spinal cordAnderson M, Waxman S, Tadlock C. Cell death of asynaptic neurons in regenerating spinal cord Developmental Biology 1984, 103: 443-455. PMID: 6724138, DOI: 10.1016/0012-1606(84)90332-4.
- Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relationsHildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.
- Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segments and preterminal fibersWaxman S, Wood S. Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segments and preterminal fibers Brain Research 1984, 294: 111-122. PMID: 6697227, DOI: 10.1016/0006-8993(84)91314-3.
- Specificity in central myelination: evidence for local regulation of myelin thicknessWaxman S, Sims T. Specificity in central myelination: evidence for local regulation of myelin thickness Brain Research 1984, 292: 179-185. PMID: 6697207, DOI: 10.1016/0006-8993(84)90905-3.
- NODELIKE MEMBRANE AT EXTRANODAL SITES: COMPARATIVE MORPHOLOGY AND PHYSIOLOGYWAXMAN S. NODELIKE MEMBRANE AT EXTRANODAL SITES: COMPARATIVE MORPHOLOGY AND PHYSIOLOGY 1984, 311-351. DOI: 10.1016/b978-0-12-775230-3.50016-9.
- Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agentsKocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.
- Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine applicationKocsis J, Ruiz J, Waxman S. Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application Journal Of Neurophysiology 1983, 50: 449-463. PMID: 6310062, DOI: 10.1152/jn.1983.50.2.449.
- Myelin protein metabolism in demyelination and remyelination in the sciatic nerveSmith M, Kocsis J, Waxman S. Myelin protein metabolism in demyelination and remyelination in the sciatic nerve Brain Research 1983, 270: 37-44. PMID: 6871715, DOI: 10.1016/0006-8993(83)90789-8.
- The supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]oMalenka R, Kocsis J, Waxman S. The supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]o Pflügers Archiv - European Journal Of Physiology 1983, 397: 176-183. PMID: 6878005, DOI: 10.1007/bf00584354.
- Temporal profile resembling TIA in the setting of cerebral infarction.Waxman S, Toole J. Temporal profile resembling TIA in the setting of cerebral infarction. Stroke 1983, 14: 433-437. PMID: 6658915, DOI: 10.1161/01.str.14.3.433.
- Freeze-fracture ultrastructure of developing and adult non-myelinated ganglion cell axolemma in the retinal nerve fibre layerBlack J, Foster R, Waxman S. Freeze-fracture ultrastructure of developing and adult non-myelinated ganglion cell axolemma in the retinal nerve fibre layer Brain Cell Biology 1983, 12: 201-212. PMID: 6842274, DOI: 10.1007/bf01148462.
- Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosumPreston R, Waxman S, Kocsis J. Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum Experimental Neurology 1983, 79: 808-820. PMID: 6825765, DOI: 10.1016/0014-4886(83)90044-4.
- Major morbidity related to hyperthermia in multiple sclerosisWaxman S, Geschwind N. Major morbidity related to hyperthermia in multiple sclerosis Annals Of Neurology 1983, 13: 348-348. PMID: 6847156, DOI: 10.1002/ana.410130331.
- Caudal spinal cord of the teleost Sternarchus albifrons resembles regenerating cordAnderson M, Waxman S. Caudal spinal cord of the teleost Sternarchus albifrons resembles regenerating cord The Anatomical Record 1983, 205: 85-92. PMID: 6837938, DOI: 10.1002/ar.1092050111.
- Spinal Cord Reconstruction edited by Carl C. Kao, Richard P. Bunge and Paul J. Reier, Raven Press, 1983. $93.00 (xix + 490 pages) ISBN 0 890 04538 0Waxman S. Spinal Cord Reconstruction edited by Carl C. Kao, Richard P. Bunge and Paul J. Reier, Raven Press, 1983. $93.00 (xix + 490 pages) ISBN 0 890 04538 0 Trends In Neurosciences 1983, 6: 477. DOI: 10.1016/0166-2236(83)90228-x.
- ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.
- Ontogenesis of the Axolemma and Axoglial Relationships in Myelinated Fibers: Electrophysiological and Freeze-Fracture Correlates of Membrane PlasticityWaxman S, Black J, Foster R. Ontogenesis of the Axolemma and Axoglial Relationships in Myelinated Fibers: Electrophysiological and Freeze-Fracture Correlates of Membrane Plasticity 1983, 24: 433-484. PMID: 6360938, DOI: 10.1016/s0074-7742(08)60226-3.
- Fine structure of regenerated ependyma and spinal cord in Sternarchus albifronsAnderson M, Waxman S, Laufer M. Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons The Anatomical Record 1983, 205: 73-83. PMID: 6837937, DOI: 10.1002/ar.1092050110.
- Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum.Kocsis J, Malenka R, Waxman S. Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum. The Journal Of Physiology 1983, 334: 225-244. PMID: 6864558, PMCID: PMC1197311, DOI: 10.1113/jphysiol.1983.sp014491.
- Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layerHildebrand C, Waxman S. Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layer Brain Research 1983, 258: 23-32. PMID: 24010160, DOI: 10.1016/0006-8993(83)91222-2.
- Action potential propagation and conduction velocity — new perspectives and questionsWaxman S. Action potential propagation and conduction velocity — new perspectives and questions Trends In Neurosciences 1983, 6: 157-161. DOI: 10.1016/0166-2236(83)90075-9.
- Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.Anderson M, Waxman S. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects. Journal Für Hirnforschung 1983, 24: 371-98. PMID: 6643991.
- Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductanceKocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.
- Rat optic nerve: Freeze-fracture studies during development of myelinated axonsBlack J, Foster R, Waxman S. Rat optic nerve: Freeze-fracture studies during development of myelinated axons Brain Research 1982, 250: 1-20. PMID: 7139310, DOI: 10.1016/0006-8993(82)90948-9.
- Diabetic Radiculoneuropathy: Clinical patterns of sensory loss and distal paresthesiasWaxman S. Diabetic Radiculoneuropathy: Clinical patterns of sensory loss and distal paresthesias Acta Diabetologica 1982, 19: 199-207. PMID: 7148327, DOI: 10.1007/bf02624679.
- Membrane transport and neuroreceptors. Edited by Dale Oxender, Arthur Blume, Ivan Diamond, C. Fred Fox, 450 pp, Alan R. Liss, Inc., New York, NY, 1981. $68.00Waxman S. Membrane transport and neuroreceptors. Edited by Dale Oxender, Arthur Blume, Ivan Diamond, C. Fred Fox, 450 pp, Alan R. Liss, Inc., New York, NY, 1981. $68.00 Muscle & Nerve 1982, 5: 571-571. DOI: 10.1002/mus.880050713.
- Membranes, Myelin, and the Pathophysiology of Multiple SclerosisWaxman S. Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis New England Journal Of Medicine 1982, 306: 1529-1533. PMID: 7043271, DOI: 10.1056/nejm198206243062505.
- Spatial heterogeneity of the axolemma of non-myelinated fibers in the optic disc of the adult ratBlack J, Waxman S, Foster R. Spatial heterogeneity of the axolemma of non-myelinated fibers in the optic disc of the adult rat Cell And Tissue Research 1982, 224: 239-246. PMID: 7105135, DOI: 10.1007/bf00216871.
- Intra-axonal recordings in rat dorsal column axons: membrane hyperpolarization and decreased excitability precede the primary afferent depolarizationKocsis J, Waxman S. Intra-axonal recordings in rat dorsal column axons: membrane hyperpolarization and decreased excitability precede the primary afferent depolarization Brain Research 1982, 238: 222-227. PMID: 6282392, DOI: 10.1016/0006-8993(82)90787-9.
- Retrograde axon reaction following section of asynaptic nerve fibersWaxman S, Anderson M. Retrograde axon reaction following section of asynaptic nerve fibers Cell And Tissue Research 1982, 223: 487-492. PMID: 7093992, DOI: 10.1007/bf00218470.
- Freeze-fracture heterogeneity of the axolemma of premyelinated fibers in the CNS.Waxman S, Black J, Foster R. Freeze-fracture heterogeneity of the axolemma of premyelinated fibers in the CNS. Neurology 1982, 32: 418-21. PMID: 7199667, DOI: 10.1212/wnl.32.4.418.
- Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during developmentFoster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.
- Conduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequencyWood S, Waxman S, Kocsis J. Conduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency Neuroscience 1982, 7: 423-430. PMID: 7078731, DOI: 10.1016/0306-4522(82)90276-7.
- Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemmaBlack J, Foster R, Waxman S. Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma Brain Cell Biology 1981, 10: 981-993. PMID: 7310484, DOI: 10.1007/bf01258525.
- Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular PotassiumMalenka R, Kocsis J, Ransom B, Waxman S. Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular Potassium Science 1981, 214: 339-341. PMID: 7280695, DOI: 10.1126/science.7280695.
- Basic and clinical electrophysiology of demyelinating diseases.Ritchie J, Waxman S, Waksman B. Basic and clinical electrophysiology of demyelinating diseases. Neurology 1981, 31: 1308-10. PMID: 6287348, DOI: 10.1212/wnl.31.10.1308.
- Morphology of regenerated spinal cord in Sternarchus albifronsAnderson M, Waxman S. Morphology of regenerated spinal cord in Sternarchus albifrons Cell And Tissue Research 1981, 219: 1-8. PMID: 7285088, DOI: 10.1007/bf00210014.
- Impulse entrainment: Computer simulations and studies on the parallel fibers of the cerebellumKocsis J, Cummins K, Waxman S, Malenka R. Impulse entrainment: Computer simulations and studies on the parallel fibers of the cerebellum Experimental Neurology 1981, 72: 628-637. PMID: 7238712, DOI: 10.1016/0014-4886(81)90011-x.
- Frequency of hypergraphia in temporal lobe epilepsy: an index of interictal behaviour syndrome.Sachdev H, Waxman S. Frequency of hypergraphia in temporal lobe epilepsy: an index of interictal behaviour syndrome. Journal Of Neurology Neurosurgery & Psychiatry 1981, 44: 358. PMID: 7241165, PMCID: PMC490963, DOI: 10.1136/jnnp.44.4.358.
- Enhanced parallel fiber frequency-following after reduction of postsynaptic activityKocsis J, Malenka R, Waxman S. Enhanced parallel fiber frequency-following after reduction of postsynaptic activity Brain Research 1981, 207: 321-331. PMID: 6258738, DOI: 10.1016/0006-8993(81)90367-x.
- Effects of variations in temperature on impulse conduction along nonmyelinated axons in the mammalian brainSwadlow H, Waxman S, Weyand T. Effects of variations in temperature on impulse conduction along nonmyelinated axons in the mammalian brain Experimental Neurology 1981, 71: 383-389. PMID: 7449905, DOI: 10.1016/0014-4886(81)90096-0.
- Diabetic Truncal PolyneuropathyWaxman S, Sabin T. Diabetic Truncal Polyneuropathy JAMA Neurology 1981, 38: 46-47. PMID: 7458723, DOI: 10.1001/archneur.1981.00510010072013.
- Population response characteristics of fiber tracts in central white matter.Kocsis J, Malenka R, Connors B, Waxman S, Cummins K. Population response characteristics of fiber tracts in central white matter. Progress In Clinical And Biological Research 1981, 52: 17-32. PMID: 7232442.
- Clinicopathological correlations in multiple sclerosis and related diseases.Waxman S. Clinicopathological correlations in multiple sclerosis and related diseases. Advances In Neurology 1981, 31: 169-82. PMID: 7325041.
- Plasticity in the ontogeny and pathophysiology of myelinated fibers.Waxman S. Plasticity in the ontogeny and pathophysiology of myelinated fibers. Advances In Neurology 1981, 31: 69-92. PMID: 7325049.
- Cytochemical heterogeneity of the axon membraneWaxman S. Cytochemical heterogeneity of the axon membrane Trends In Neurosciences 1981, 4: 7-9. DOI: 10.1016/0166-2236(81)90004-7.
- Action potential electrogenesis in mammalian central axons.Kocsis J, Waxman S. Action potential electrogenesis in mammalian central axons. Advances In Neurology 1981, 31: 299-312. PMID: 6275668.
- Electrophysiology of demyelinating diseases: future directions and questions.Waxman S, Ritchie J. Electrophysiology of demyelinating diseases: future directions and questions. Advances In Neurology 1981, 31: 511-13. PMID: 6275675.
- Cellular aspects of conduction in myelinated nerve fibers in relation to clinical deficit.Waxman S. Cellular aspects of conduction in myelinated nerve fibers in relation to clinical deficit. Progress In Clinical And Biological Research 1981, 52: 1-15. PMID: 7232439.
- Remyelination following viral‐induced demyelination: Ferric ion—ferrocyanide staining of nodes of ranvier within the CNSWeiner L, Waxman S, Stohlman S, Kwan A. Remyelination following viral‐induced demyelination: Ferric ion—ferrocyanide staining of nodes of ranvier within the CNS Annals Of Neurology 1980, 8: 580-583. PMID: 6260010, DOI: 10.1002/ana.410080606.
- Reorganization of the Axon Membrane in Demyelinated Peripheral Nerve Fibers: Morphological EvidenceFoster R, Whalen C, Waxman S. Reorganization of the Axon Membrane in Demyelinated Peripheral Nerve Fibers: Morphological Evidence Science 1980, 210: 661-663. PMID: 6159685, DOI: 10.1126/science.6159685.
- Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous systemWaxman S, Waxman M, Pappas G. Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system Neuroscience Letters 1980, 20: 141-146. PMID: 7443064, DOI: 10.1016/0304-3940(80)90136-6.
- Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observationsFoster R, Kocsis J, Malenka R, Waxman S. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations Journal Of The Neurological Sciences 1980, 48: 221-231. PMID: 7431040, DOI: 10.1016/0022-510x(80)90202-6.
- Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers.Waxman S, Foster R. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Research 1980, 203: 205-34. PMID: 6253027.
- Development of the axon membrane during differentiation of myelinated fibres in spinal nerve rootsWaxman S, Foster R. Development of the axon membrane during differentiation of myelinated fibres in spinal nerve roots Proceedings Of The Royal Society B 1980, 209: 441-446. PMID: 6161376, DOI: 10.1098/rspb.1980.0105.
- Absence of potassium conductance in central myelinated axonsKocsis J, Waxman S. Absence of potassium conductance in central myelinated axons Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.
- Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortexKocsis J, Malenka R, Waxman S. Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex Brain Research 1980, 195: 511-516. PMID: 6249447, DOI: 10.1016/0006-8993(80)90090-6.
- Myoelectric silence following unopposed passive stretch in normal man.Angel R, Waxman S, Kocsis J. Myoelectric silence following unopposed passive stretch in normal man. Journal Of Neurology Neurosurgery & Psychiatry 1980, 43: 705. PMID: 7431031, PMCID: PMC490642, DOI: 10.1136/jnnp.43.8.705.
- Regeneration of spinal electrocyte fibers in Sternarchus albifrons: Development of axon-schwann cell relationships and nodes of RanvierWaxman S, Anderson M. Regeneration of spinal electrocyte fibers in Sternarchus albifrons: Development of axon-schwann cell relationships and nodes of Ranvier Cell And Tissue Research 1980, 208: 343-352. PMID: 7397760, DOI: 10.1007/bf00233869.
- Modulation of Impulse Conduction Along the Axonal TreeSwadlow H, Kocsis J, Waxman S. Modulation of Impulse Conduction Along the Axonal Tree Annual Review Of Biophysics And Bioengineering 1980, 9: 143-179. PMID: 6994588, DOI: 10.1146/annurev.bb.09.060180.001043.
- Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibersWaxman S, Foster R. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers Brain Research Reviews 1980, 2: 205-in2. DOI: 10.1016/0165-0173(80)90008-9.
- Determinants of conduction velocity in myelinated nerve fibersWaxman S. Determinants of conduction velocity in myelinated nerve fibers Muscle & Nerve 1980, 3: 141-150. PMID: 6245357, DOI: 10.1002/mus.880030207.
- Small-Diameter Nonmyelinated Axons in the Primate Corpus CallosumSwadlow H, Waxman S, Geschwind N. Small-Diameter Nonmyelinated Axons in the Primate Corpus Callosum JAMA Neurology 1980, 37: 114-115. PMID: 6766715, DOI: 10.1001/archneur.1980.00500510072016.
- Pathophysiology of nerve conduction: relation to diabetic neuropathy.WAXMAN S. Pathophysiology of nerve conduction: relation to diabetic neuropathy. Annals Of Internal Medicine 1980, 92: 297-301. PMID: 6243892, DOI: 10.7326/0003-4819-92-2-297.
- Dependence of refractory period measurements on conduction distance: A computer simulation analysisWaxman S, Kocsis J, Brill M, Swadlow H. Dependence of refractory period measurements on conduction distance: A computer simulation analysis Clinical Neurophysiology 1979, 47: 717-724. PMID: 91501, DOI: 10.1016/0013-4694(79)90299-2.
- Ultrastructure of synapses and cellular relationships in the oculomotor nucleus of the rhesus monkeyWaxman S, Pappas G. Ultrastructure of synapses and cellular relationships in the oculomotor nucleus of the rhesus monkey Cell And Tissue Research 1979, 204: 161-169. PMID: 119578, DOI: 10.1007/bf00234630.
- Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observationsWaxman S, Kocsis J, Nitta K. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observations Journal Of The Neurological Sciences 1979, 44: 45-53. PMID: 512691, DOI: 10.1016/0022-510x(79)90221-1.
- Ultrastructural and cytochemical observations in a case of dominantly inherited hypertrophic (Charcot-Marie-Tooth) neuropathy.Waxman S, Ouellette E. Ultrastructural and cytochemical observations in a case of dominantly inherited hypertrophic (Charcot-Marie-Tooth) neuropathy. Journal Of Neuropathology & Experimental Neurology 1979, 38: 586-95. PMID: 533859, DOI: 10.1097/00005072-197911000-00003.
- The flexion-adduction sign in neuralgic amyotrophy.Waxman S. The flexion-adduction sign in neuralgic amyotrophy. Neurology 1979, 29: 1301-4. PMID: 573411, DOI: 10.1212/wnl.29.9_part_1.1301.
- Electron microscopy of synapses in reptile spinal cordWaxman S. Electron microscopy of synapses in reptile spinal cord Neuroscience Letters 1979, 13: 237-242. PMID: 530475, DOI: 10.1016/0304-3940(79)91500-3.
- Variation in conduction velocity during the relative refractory and supernormal periods: A mechanism for impulse entrainment in central axonsKocsis J, Swadlow H, Waxman S, Brill M. Variation in conduction velocity during the relative refractory and supernormal periods: A mechanism for impulse entrainment in central axons Experimental Neurology 1979, 65: 230-236. PMID: 262231, DOI: 10.1016/0014-4886(79)90263-2.
- Commissural Transmission in HumansSwadlow H, Geschwind N, Waxman S. Commissural Transmission in Humans Science 1979, 204: 530-531. PMID: 432661, DOI: 10.1126/science.432661.
- Neurobiology of the mauthner cell. Edited by Donald S. Faber and Henri Korn, 303 pp, illus, Raven Press, New York, NY, 1978. $25.00Waxman S. Neurobiology of the mauthner cell. Edited by Donald S. Faber and Henri Korn, 303 pp, illus, Raven Press, New York, NY, 1978. $25.00 Muscle & Nerve 1979, 2: 161-161. DOI: 10.1002/mus.880020213.
- Physiology and Pathobiology of AxonsWaxman S, Byers M. Physiology and Pathobiology of Axons Anesthesiology 1979, 50: 179. DOI: 10.1097/00000542-197902000-00041.
- Ultrastructure and Conduction Properties of Visual Callosal Axons of the RabbitSwadlow H, Waxman S. Ultrastructure and Conduction Properties of Visual Callosal Axons of the Rabbit 1979, 195-210. DOI: 10.1007/978-1-349-03645-5_15.
- The cells of origin of the corpus callosum in rabbit visual cortexSwadlow H, Weyand T, Waxman S. The cells of origin of the corpus callosum in rabbit visual cortex Brain Research 1978, 156: 129-134. PMID: 81092, DOI: 10.1016/0006-8993(78)90088-4.
- Catabolism of 2-deoxyglucose by phagocytic leukocytes in the presence of 12-O-tetradecanoyl phorbol-13-acetate.Zabos P, Kyner D, Mendelsohn N, Schreiber C, Waxman S, Christman J, Acs G. Catabolism of 2-deoxyglucose by phagocytic leukocytes in the presence of 12-O-tetradecanoyl phorbol-13-acetate. Proceedings Of The National Academy Of Sciences Of The United States Of America 1978, 75: 5422-5426. PMID: 310120, PMCID: PMC392976, DOI: 10.1073/pnas.75.11.5422.
- Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkeySwadlow H, Rosene D, Waxman S. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey Experimental Brain Research 1978, 33: 455-467. PMID: 103739, DOI: 10.1007/bf00235567.
- Prerequisites for conduction in demyelinated fibers.Waxman S. Prerequisites for conduction in demyelinated fibers. Neurology 1978, 28: 27-33. PMID: 568749, DOI: 10.1212/wnl.28.9_part_2.27.
- Latency variability and the identification of antidromically activated neurons in mammalian brainSwadlow H, Waxman S, Rosene D. Latency variability and the identification of antidromically activated neurons in mammalian brain Experimental Brain Research 1978, 32: 439-443. PMID: 98342, DOI: 10.1007/bf00238715.
- Organization of the axolemma in amyelinated axons: a cytochemical study in dy/dy dystrophic miceWaxman S, Bradley W, Hartwieg E. Organization of the axolemma in amyelinated axons: a cytochemical study in dy/dy dystrophic mice Proceedings Of The Royal Society B 1978, 201: 301-308. PMID: 27805, DOI: 10.1098/rspb.1978.0047.
- Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes.Waxman S, Brill M. Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes. Journal Of Neurology Neurosurgery & Psychiatry 1978, 41: 408. PMID: 660202, PMCID: PMC493046, DOI: 10.1136/jnnp.41.5.408.
- Intra-axonal ferric ion-ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibersWaxman S, Quick D. Intra-axonal ferric ion-ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibers Brain Research 1978, 144: 1-10. PMID: 76497, DOI: 10.1016/0006-8993(78)90430-4.
- Demyelination of Sternarchus electrocyte fibers by injection of diphtheria toxinQuick D, Waxman S. Demyelination of Sternarchus electrocyte fibers by injection of diphtheria toxin Journal Of The Neurological Sciences 1978, 35: 235-241. PMID: 632832, DOI: 10.1016/0022-510x(78)90006-0.
- Progress in neurobiology, Vol. 7. Edited by G. A. Kerkut and J. W. Phillis, 398 pp, illus, Pergamon Press, Oxford, England, 1977. $50Waxman S. Progress in neurobiology, Vol. 7. Edited by G. A. Kerkut and J. W. Phillis, 398 pp, illus, Pergamon Press, Oxford, England, 1977. $50 Muscle & Nerve 1978, 1: 82-82. DOI: 10.1002/mus.880010114.
- Ferric ion, ferrocyanide, and inorganic phosphate as cytochemical reactants at peripheral nodes of RanvierQuick D, Waxman S. Ferric ion, ferrocyanide, and inorganic phosphate as cytochemical reactants at peripheral nodes of Ranvier Brain Cell Biology 1977, 6: 555-570. PMID: 72787, DOI: 10.1007/bf01205219.
- Conduction in Myelinated, Unmyelinated, and Demyelinated FibersWaxman S. Conduction in Myelinated, Unmyelinated, and Demyelinated Fibers JAMA Neurology 1977, 34: 585-589. PMID: 907529, DOI: 10.1001/archneur.1977.00500220019003.
- Evidence for inorganic phosphate binding at nodes of Ranvier in peripheral nervesQuick D, Waxman S. Evidence for inorganic phosphate binding at nodes of Ranvier in peripheral nerves Journal Of The Neurological Sciences 1977, 33: 207-211. PMID: 903783, DOI: 10.1016/0022-510x(77)90194-0.
- Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance.Brill M, Waxman S, Moore J, Joyner R. Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. Journal Of Neurology Neurosurgery & Psychiatry 1977, 40: 769. PMID: 925697, PMCID: PMC492833, DOI: 10.1136/jnnp.40.8.769.
- The clinical and physiological implications of hepatoma B12-binding proteins.Waxman S, Liu C, Schreiber C, Helson L. The clinical and physiological implications of hepatoma B12-binding proteins. Cancer Research 1977, 37: 1908-14. PMID: 66988.
- Cytochemical differentiation of the axon membrane in A- and C-fibres.Waxman S, Quick D. Cytochemical differentiation of the axon membrane in A- and C-fibres. Journal Of Neurology Neurosurgery & Psychiatry 1977, 40: 379. PMID: 327027, PMCID: PMC492705, DOI: 10.1136/jnnp.40.4.379.
- Recapitulation of normal neuro-glial relations in dissociated cell cultures of dorsal root gangliaWaxman S, Dichter M, Hartwieg E, Matheson J. Recapitulation of normal neuro-glial relations in dissociated cell cultures of dorsal root ganglia Brain Research 1977, 122: 344-350. PMID: 837233, DOI: 10.1016/0006-8993(77)90300-6.
- Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanideQuick D, Waxman S. Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide Journal Of The Neurological Sciences 1977, 31: 1-11. PMID: 64593, DOI: 10.1016/0022-510x(77)90002-8.
- The conduction properties of axons in central white matterWaxman S, Swadlow H. The conduction properties of axons in central white matter Progress In Neurobiology 1977, 8: 297-324. PMID: 335441, DOI: 10.1016/0301-0082(77)90009-0.
- Ultrastructure of visual callosal axons in the rabbitWaxman S, Swadlow H. Ultrastructure of visual callosal axons in the rabbit Experimental Neurology 1976, 53: 115-127. PMID: 964332, DOI: 10.1016/0014-4886(76)90287-9.
- Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbitSwadlow H, Waxman S. Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit Experimental Neurology 1976, 53: 128-150. PMID: 964334, DOI: 10.1016/0014-4886(76)90288-0.
- Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathiesWaxman S, Brill M, Geschwind N, Sabin T, Lettvin J. Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies Journal Of The Neurological Sciences 1976, 29: 39-53. PMID: 181541, DOI: 10.1016/0022-510x(76)90079-4.
- Progressive multifocal neurologic deficit with disseminated subpial demyelination.Galaburda A, Waxman S, Kemper T, Jones H. Progressive multifocal neurologic deficit with disseminated subpial demyelination. Journal Of Neuropathology & Experimental Neurology 1976, 35: 481-94. PMID: 182927, DOI: 10.1097/00005072-197609000-00001.
- Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axonsWaxman S, Swadlow H. Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons Brain Research 1976, 113: 179-187. PMID: 953725, DOI: 10.1016/0006-8993(76)90017-2.
- Acute confusional states with right middle cerebral artery infarctions.Mesulam M, Waxman S, Geschwind N, Sabin T. Acute confusional states with right middle cerebral artery infarctions. Journal Of Neurology Neurosurgery & Psychiatry 1976, 39: 84. PMID: 1255216, PMCID: PMC492219, DOI: 10.1136/jnnp.39.1.84.
- Observations on impulse conduction along central axons.Swadlow H, Waxman S. Observations on impulse conduction along central axons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 5156-5159. PMID: 1061101, PMCID: PMC388895, DOI: 10.1073/pnas.72.12.5156.
- The Interictal Behavior Syndrome of Temporal Lobe EpilepsyWaxman S, Geschwind N. The Interictal Behavior Syndrome of Temporal Lobe Epilepsy JAMA Psychiatry 1975, 32: 1580-1586. PMID: 1200777, DOI: 10.1001/archpsyc.1975.01760300118011.
- Ultrastructural observations on branching patterns of central axonsWaxman S. Ultrastructural observations on branching patterns of central axons Neuroscience Letters 1975, 1: 251-256. PMID: 19604786, DOI: 10.1016/0304-3940(75)90039-7.
- Electron-microscopic observations on preterminal fibers in the oculomotor nucleus of the cat With special reference to the relation between axon diameter and myelin thickness in mammalian gray matterWaxman S. Electron-microscopic observations on preterminal fibers in the oculomotor nucleus of the cat With special reference to the relation between axon diameter and myelin thickness in mammalian gray matter Journal Of The Neurological Sciences 1975, 26: 395-400. PMID: 1185239, DOI: 10.1016/0022-510x(75)90210-5.
- Isolation and characterization of a novel vitamin B12-binding protein associated with hepatocellular carcinoma.Burger R, Waxman S, Gilbert H, Mehlman C, Allen R. Isolation and characterization of a novel vitamin B12-binding protein associated with hepatocellular carcinoma. Journal Of Clinical Investigation 1975, 56: 1262-1270. PMID: 171283, PMCID: PMC301989, DOI: 10.1172/jci108202.
- Morphology of spinal electromotor neurons and presynaptic coupling in the gymnotidSternarchus albifronsPappas G, Waxman S, Bennett M. Morphology of spinal electromotor neurons and presynaptic coupling in the gymnotidSternarchus albifrons Brain Cell Biology 1975, 4: 469-478. PMID: 1151441, DOI: 10.1007/bf01261376.
- Integrative Properties and Design Principles of AxonsWaxman S. Integrative Properties and Design Principles of Axons 1975, 18: 1-40. PMID: 1107245, DOI: 10.1016/s0074-7742(08)60032-x.
- Ongoing activity in peripheral nerve: Injury dischargeWall P, Waxman S, Basbaum A. Ongoing activity in peripheral nerve: Injury discharge Experimental Neurology 1974, 45: 576-589. PMID: 4435078, DOI: 10.1016/0014-4886(74)90163-0.
- Subacute brain-stem encephalitisWaxman S, Sabin T, Embree L. Subacute brain-stem encephalitis Journal Of Neurology Neurosurgery & Psychiatry 1974, 37: 811. PMID: 4854509, PMCID: PMC494788, DOI: 10.1136/jnnp.37.7.811.
- Hypergraphia in temporal lobe epilepsy.WAXMAN S, GESCHWIND N. Hypergraphia in temporal lobe epilepsy. Neurology 1974, 24: 629-36. PMID: 4209727, DOI: 10.1212/wnl.24.7.629.
- Ultrastructural differentiation of the axon membrane at synaptic and non-synaptic central nodes of RanvierWaxman S. Ultrastructural differentiation of the axon membrane at synaptic and non-synaptic central nodes of Ranvier Brain Research 1974, 65: 338-342. PMID: 4472521, DOI: 10.1016/0006-8993(74)90046-8.
- Features associated with paranodal demyelination at a specialized site in the non-pathological nervous systemWaxman S. Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system Journal Of The Neurological Sciences 1973, 19: 357-362. PMID: 4716850, DOI: 10.1016/0022-510x(73)90099-3.
- Regional differentiation of the axon: A review with special reference to the concept of the multiplex neuronWaxman S. Regional differentiation of the axon: A review with special reference to the concept of the multiplex neuron Brain Research 1972, 47: 269-288. PMID: 4345196, DOI: 10.1016/0006-8993(72)90639-7.
- Relative Conduction Velocities of Small Myelinated and Non-myelinated Fibres in the Central Nervous SystemWAXMAN S, BENNETT M. Relative Conduction Velocities of Small Myelinated and Non-myelinated Fibres in the Central Nervous System Nature 1972, 238: 217-219. PMID: 4506206, DOI: 10.1038/newbio238217a0.
- MORPHOLOGICAL CORRELATES OF FUNCTIONAL DIFFERENTIATION OF NODES OF RANVIER ALONG SINGLE FIBERS IN THE NEUROGENIC ELECTRIC ORGAN OF THE KNIFE FISH STERNARCHUSWaxman S, Pappas G, Bennett M. MORPHOLOGICAL CORRELATES OF FUNCTIONAL DIFFERENTIATION OF NODES OF RANVIER ALONG SINGLE FIBERS IN THE NEUROGENIC ELECTRIC ORGAN OF THE KNIFE FISH STERNARCHUS Journal Of Cell Biology 1972, 53: 210-224. PMID: 5013596, PMCID: PMC2108696, DOI: 10.1083/jcb.53.1.210.
- An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian speciesWaxman S, Pappas G. An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species The Journal Of Comparative Neurology 1971, 143: 41-71. PMID: 4329004, DOI: 10.1002/cne.901430105.
- Closely spaced nodes of Ranvier in the mammalian brainWaxman S, Melker R. Closely spaced nodes of Ranvier in the mammalian brain Brain Research 1971, 32: 445-448. PMID: 5134587, DOI: 10.1016/0006-8993(71)90337-4.
- An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cordWaxman S. An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord Brain Research 1971, 27: 189-201. PMID: 5552167, DOI: 10.1016/0006-8993(71)90248-4.
- Closely Spaced Nodes of Ranvier in the Teleost BrainWAXMAN S. Closely Spaced Nodes of Ranvier in the Teleost Brain Nature 1970, 227: 283-284. PMID: 5428197, DOI: 10.1038/227283a0.
- Oculomotor Neurons in Fish: Electrotonic Coupling and Multiple Sites of Impulse InitiationKriebel M, Bennett M, Waxman S, Pappas G. Oculomotor Neurons in Fish: Electrotonic Coupling and Multiple Sites of Impulse Initiation Science 1969, 166: 520-524. PMID: 4309628, DOI: 10.1126/science.166.3904.520.
- Pyrimethamine Effect on Folate MetabolismHerbert V, Waxman S. Pyrimethamine Effect on Folate Metabolism New England Journal Of Medicine 1969, 281: 564-565. PMID: 5800521, DOI: 10.1056/nejm196909042811024.
- Pinocytosis at postsynaptic membranes: electron microscopic evidenceWaxman S, Pappas G. Pinocytosis at postsynaptic membranes: electron microscopic evidence Brain Research 1969, 14: 240-244. PMID: 5783114, DOI: 10.1016/0006-8993(69)90048-1.
- Information Content of Ensembles of HypothesesWaxman S. Information Content of Ensembles of Hypotheses Psychological Reports 1969, 24: 367-371. DOI: 10.2466/pr0.1969.24.2.367.
- Micropinocytotic invaginations in the axolemma of peripheral nervesWaxman S. Micropinocytotic invaginations in the axolemma of peripheral nerves Cell And Tissue Research 1968, 86: 571-573. PMID: 5707296, DOI: 10.1007/bf00324867.
- Procedure for Determination of Contextual Links within ModelsWaxman S. Procedure for Determination of Contextual Links within Models Psychological Reports 1968, 23: 1261-1262. DOI: 10.2466/pr0.1968.23.3f.1261.
- Peripheral nerve axon processes sharing common myelin sheathsWaxman S. Peripheral nerve axon processes sharing common myelin sheaths Brain Research 1968, 7: 469-473. PMID: 5639612, DOI: 10.1016/0006-8993(68)90016-4.
- Contextual Categorization by Lateral InhibitionWaxman S. Contextual Categorization by Lateral Inhibition IEEE Transactions On Systems Science And Cybernetics 1968, 4: 191-192. DOI: 10.1109/tssc.1968.300149.