Lynn Cooley, PhD
Research & Publications
Biography
News
Locations
Research Summary
We are interested in the cellular mechanisms that underlie polarity and cell growth during development. Our research is focused on understanding how maternal components are made and delivered to oocytes during Drosophila oogenesis. Using mutants with incomplete oocyte growth, we have discovered key roles for the actin cytoskeleton. For example, the ring canals connecting growing oocytes with their nurse cells are stabilized by a special population of bundled actin filaments.
The dramatic growth of ring canals during oogenesis requires both actin polymerization and depolymerization, making ring canals a valuable model for in vivo actin dynamics. The polarized movement of maternal mRNA and protein through ring canals from nurse cells to the oocyte is highly regulated. We identified proteins specifically targeted to the oocyte by GFP protein trapping; we are determining the mechanism of targeting using both live imaging and molecular dissection of the proteins to identify localization signals.
Specialized Terms: Molecular Genetics of Drosophila Oogenesis; Actin Cytoskeleton Regulation; Drosophila; Oogenesis; Ring Canal; Ovarian Muscle Function
Extensive Research Description
Early germline development in animals, including flies, relies on a non-canonical form of mitosis. Daughters of germline stem cells undergo a tightly controlled number of mitotic cell divisions with incomplete cytokinesis so that bridges of cytoplasm remain to connect clusters of sister cells. These residual connections are transformed into stable intercellular junctions called ring canals, which are needed for oocyte growth.
In females, this transformation involves recruiting a highly dynamic actin cytoskeleton and many associated actin-binding proteins. Using a variety of genetic and molecular approaches, we have identified many ring canal proteins, and we are actively working toward characterizing their functions. We are also studying the role of ring canals in the polarized transport of maternal mRNAs, proteins and organelles from nurse cells and to the oocyte.
While ring canals are ubiquitous in germline cells, their presence and function in somatic cells are largely unexplored. In order to understand how these fascinating structures contribute to the biology of non-germline cells, we are characterizing somatic ring canals in epithelial cells of the Drosophila ovary and imaginal discs using cell biology and genetics.
Recently we discovered a novel muscle type in the Drosophila ovary that contains striated sarcomeres, but only a single nucleus. This indicates the muscles did not form by typical myoblast fusion. Importantly, the presence of one nucleus means we can use powerful genetic clonal analysis to analyze the effects of mutations affecting muscle proteins, including those associated with human musclular dystrophy. In addition, we can study proliferation of these muscles in adults and the pool of progenitor stem cells that supply new muscle cells in adults.
Coauthors
Research Interests
Biology; Cell Biology; Drosophila; Genetics; Actin Cytoskeleton; Molecular Biology; Oogenesis
Selected Publications
- Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesisPrice K, Tharakan D, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Developmental Cell 2023, 58: 474-488.e5. PMID: 36898376, PMCID: PMC10059090, DOI: 10.1016/j.devcel.2023.02.008.
- Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolutionHao X, Allgeyer ES, Lee DR, Antonello J, Watters K, Gerdes JA, Schroeder LK, Bottanelli F, Zhao J, Kidd P, Lessard MD, Rothman JE, Cooley L, Biederer T, Booth MJ, Bewersdorf J. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nature Methods 2021, 18: 688-693. PMID: 34059828, PMCID: PMC7610943, DOI: 10.1038/s41592-021-01149-9.
- Tissue-specific dynamic codon redefinition in DrosophilaHudson AM, Szabo NL, Loughran G, Wills NM, Atkins JF, Cooley L. Tissue-specific dynamic codon redefinition in Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2012793118. PMID: 33500350, PMCID: PMC7865143, DOI: 10.1073/pnas.2012793118.
- HtsRC-Mediated Accumulation of F-actin Regulates Ring Canal Size During Drosophila melanogaster OogenesisGerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020, 216: genetics.303629.2020. PMID: 32883702, PMCID: PMC7648574, DOI: 10.1534/genetics.120.303629.
- HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis.Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020, 216: 717-734. PMID: 33954589, DOI: 10.1534/genetics.120.303629.
- Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusomeKaufman RS, Price KL, Mannix KM, Ayers KM, Hudson AM, Cooley L. Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome. Development 2020, 147: dev190140. PMID: 33033119, PMCID: PMC7687857, DOI: 10.1242/dev.190140.
- Proximity labeling reveals novel interactomes in live Drosophila tissueMannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019, 146: dev176644. PMID: 31208963, PMCID: PMC6679357, DOI: 10.1242/dev.176644.
- Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansionHudson AM, Mannix KM, Gerdes JA, Kottemann MC, Cooley L. Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion. Development 2018, 146: dev169219. PMID: 30559276, PMCID: PMC6340150, DOI: 10.1242/dev.169219.
- Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 LigaseHudson AM, Mannix KM, Cooley L. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase. Genetics 2015, 201: 1117-1131. PMID: 26384358, PMCID: PMC4649639, DOI: 10.1534/genetics.115.181289.
- Corrigendum to: “Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers” [Dev. Biol. 398 (2) (2015) 206–217]Burn K, Shimada Y, Ayers K, Lu F, Hudson A, Cooley L. Corrigendum to: “Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers” [Dev. Biol. 398 (2) (2015) 206–217]. Developmental Biology 2015, 405: 340. DOI: 10.1016/j.ydbio.2015.07.016.
- The Transgenic RNAi Project at Harvard Medical School: Resources and ValidationPerkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu LP, Jiang X, Huan-Huan Q, Wang X, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni JQ, Perrimon N. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015, 201: 843-852. PMID: 26320097, PMCID: PMC4649654, DOI: 10.1534/genetics.115.180208.
- Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambersBurn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson A, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Developmental Biology 2014, 398: 206-217. PMID: 25481758, PMCID: PMC4340711, DOI: 10.1016/j.ydbio.2014.11.021.
- Antivirulence Properties of an Antifreeze ProteinHeisig M, Abraham N, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari J, Killiam C, Walker W, Cooley L, Flavell R, Agaisse H, Fikrig E. Antivirulence Properties of an Antifreeze Protein. Cell Reports 2014, 9: 2344. DOI: 10.1016/j.celrep.2014.12.003.
- Antivirulence Properties of an Antifreeze ProteinHeisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence Properties of an Antifreeze Protein. Cell Reports 2014, 9: 417-424. PMID: 25373896, PMCID: PMC4223805, DOI: 10.1016/j.celrep.2014.09.034.
- A Regulatory Network of Drosophila Germline Stem Cell Self-RenewalYan D, Neumüller RA, Buckner M, Ayers K, Li H, Hu Y, Yang-Zhou D, Pan L, Wang X, Kelley C, Vinayagam A, Binari R, Randklev S, Perkins LA, Xie T, Cooley L, Perrimon N. A Regulatory Network of Drosophila Germline Stem Cell Self-Renewal. Developmental Cell 2014, 28: 459-473. PMID: 24576427, PMCID: PMC3998650, DOI: 10.1016/j.devcel.2014.01.020.
- Methods for studying oogenesisHudson AM, Cooley L. Methods for studying oogenesis. Methods 2014, 68: 207-217. PMID: 24440745, PMCID: PMC4048766, DOI: 10.1016/j.ymeth.2014.01.005.
- Bridging the divideMcLean PF, Cooley L. Bridging the divide. Fly 2013, 8: 13-18. PMID: 24406334, PMCID: PMC3974888, DOI: 10.4161/fly.27016.
- Protein Equilibration Through Somatic Ring Canals in DrosophilaMcLean PF, Cooley L. Protein Equilibration Through Somatic Ring Canals in Drosophila. Science 2013, 340: 1445-1447. PMID: 23704373, PMCID: PMC3819220, DOI: 10.1126/science.1234887.
- Determination of two- photon photoactivation rates of fluorescent proteinsHartwich TM, Subach FV, Cooley L, Verkhusha VV, Bewersdorf J. Determination of two- photon photoactivation rates of fluorescent proteins. Physical Chemistry Chemical Physics 2013, 15: 14868-14872. PMID: 23852136, PMCID: PMC3819216, DOI: 10.1039/c3cp51035b.
- Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogasterNeelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.
- Intercellular protein movement in syncytial Drosophila follicle cellsAiroldi S, McLean P, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. Development 2012, 139: e207-e207. DOI: 10.1242/dev.077784.
- Intercellular protein movement in syncytial Drosophila follicle cellsAiroldi SJ, McLean PF, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. Journal Of Cell Science 2011, 124: 4077-4086. PMID: 22135360, PMCID: PMC3244987, DOI: 10.1242/jcs.090456.
- Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesisShimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Developmental Biology 2011, 355: 250-262. PMID: 21570389, PMCID: PMC3118931, DOI: 10.1016/j.ydbio.2011.04.022.
- Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeletonHudson AM, Cooley L. Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton. Journal Of Cell Biology 2010, 188: 29-37. PMID: 20065088, PMCID: PMC2812842, DOI: 10.1083/jcb.200909017.
- Phylogenetic, Structural and Functional Relationships between WD- and Kelch-Repeat ProteinsHudson AM, Cooley L. Phylogenetic, Structural and Functional Relationships between WD- and Kelch-Repeat Proteins. 2008, 48: 6-19. PMID: 18925367, DOI: 10.1007/978-0-387-09595-0_2.
- Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein trapsHudson AM, Petrella LN, Tanaka AJ, Cooley L. Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Developmental Biology 2007, 314: 329-340. PMID: 18199432, PMCID: PMC2293129, DOI: 10.1016/j.ydbio.2007.11.029.
- Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesisLee S, Cooley L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. Journal Of Cell Biology 2007, 176: 941-952. PMID: 17389229, PMCID: PMC2064080, DOI: 10.1083/jcb.200701048.
- Exploring Strategies for Protein Trapping in DrosophilaQuiñones-Coello A, Petrella LN, Ayers K, Melillo A, Mazzalupo S, Hudson AM, Wang S, Castiblanco C, Buszczak M, Hoskins RA, Cooley L. Exploring Strategies for Protein Trapping in Drosophila. Genetics 2007, 175: 1089-1104. PMID: 17179094, PMCID: PMC1840052, DOI: 10.1534/genetics.106.065995.
- The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesisPetrella LN, Smith-Leiker T, Cooley L. The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis. Development 2007, 134: 703-712. PMID: 17215303, DOI: 10.1242/dev.02766.
- Illuminating the role of caspases during Drosophila oogenesisMazzalupo S, Cooley L. Illuminating the role of caspases during Drosophila oogenesis. Cell Death & Differentiation 2006, 13: 1950-1959. PMID: 16528381, DOI: 10.1038/sj.cdd.4401892.
- Drosophila myosin V is required for larval development and spermatid individualizationMermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology 2005, 286: 238-255. PMID: 16126191, DOI: 10.1016/j.ydbio.2005.07.028.
- Flytrap, a database documenting a GFP protein‐trap insertion screen in Drosophila melanogasterKelso RJ, Buszczak M, Quiñones AT, Castiblanco C, Mazzalupo S, Cooley L. Flytrap, a database documenting a GFP protein‐trap insertion screen in Drosophila melanogaster. Nucleic Acids Research 2004, 32: d418-d420. PMID: 14681446, PMCID: PMC308749, DOI: 10.1093/nar/gkh014.
- Drosophila filamin is required for follicle cell motility during oogenesisSokol NS, Cooley L. Drosophila filamin is required for follicle cell motility during oogenesis. Developmental Biology 2003, 260: 260-272. PMID: 12885568, DOI: 10.1016/s0012-1606(03)00248-3.
- UNDERSTANDING THE FUNCTION OF ACTIN-BINDING PROTEINS THROUGH GENETIC ANALYSIS OF DROSOPHILA OOGENESISHudson AM, Cooley L. UNDERSTANDING THE FUNCTION OF ACTIN-BINDING PROTEINS THROUGH GENETIC ANALYSIS OF DROSOPHILA OOGENESIS. Annual Review Of Genetics 2002, 36: 455-488. PMID: 12429700, DOI: 10.1146/annurev.genet.36.052802.114101.
- Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in DrosophilaTekotte H, Berdnik D, Török T, Buszczak M, Jones LM, Cooley L, Knoblich JA, Davis I. Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in Drosophila. Developmental Biology 2002, 244: 396-406. PMID: 11944946, DOI: 10.1006/dbio.2002.0612.
- Arp2/3-Dependent Psuedocleavage Furrow Assembly in Syncytial Drosophila EmbryosStevenson V, Hudson A, Cooley L, Theurkauf WE. Arp2/3-Dependent Psuedocleavage Furrow Assembly in Syncytial Drosophila Embryos. Current Biology 2002, 12: 705-711. PMID: 12007413, DOI: 10.1016/s0960-9822(02)00807-2.
- Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase.Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. Genetics 2002, 160: 1511-8. PMID: 11973306, PMCID: PMC1462074, DOI: 10.1093/genetics/160.4.1511.
- Control of DNA Replication and Chromosome Ploidy by Geminin and Cyclin AMihaylov IS, Kondo T, Jones L, Ryzhikov S, Tanaka J, Zheng J, Higa LA, Minamino N, Cooley L, Zhang H. Control of DNA Replication and Chromosome Ploidy by Geminin and Cyclin A. Molecular And Cellular Biology 2002, 22: 1868-1880. PMID: 11865064, PMCID: PMC135598, DOI: 10.1128/mcb.22.6.1868-1880.2002.
- A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complexHudson AM, Cooley L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. Journal Of Cell Biology 2002, 156: 677-687. PMID: 11854308, PMCID: PMC2174088, DOI: 10.1083/jcb.200109065.
- SCAR is a primary regulator of Arp2/3-dependent morphological events in DrosophilaZallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. Journal Of Cell Biology 2002, 156: 689-701. PMID: 11854309, PMCID: PMC2174092, DOI: 10.1083/jcb.200109057.
- Drosophila Kelch regulates actin organization via Src64-dependent tyrosine phosphorylationKelso RJ, Hudson AM, Cooley L. Drosophila Kelch regulates actin organization via Src64-dependent tyrosine phosphorylation. Journal Of Cell Biology 2002, 156: 703-713. PMID: 11854310, PMCID: PMC2174084, DOI: 10.1083/jcb.200110063.
- Comparative Aspects of Animal OogenesisMatova N, Cooley L. Comparative Aspects of Animal Oogenesis. Developmental Biology 2001, 231: 291-320. PMID: 11237461, DOI: 10.1006/dbio.2000.0120.
- Filamins as integrators of cell mechanics and signallingStossel T, Condeelis J, Cooley L, Hartwig J, Noegel A, Schleicher M, Shapiro S. Filamins as integrators of cell mechanics and signalling. Nature Reviews Molecular Cell Biology 2001, 2: 138-145. PMID: 11252955, DOI: 10.1038/35052082.
- Eggs to die for: cell death during Drosophila oogenesisBuszczak M, Cooley L. Eggs to die for: cell death during Drosophila oogenesis. Cell Death & Differentiation 2000, 7: 1071-1074. PMID: 11139280, DOI: 10.1038/sj.cdd.4400755.
- Physical and genetic interaction of filamin with presenilin in DrosophilaGuo Y, Zhang S, Sokol N, Cooley L, Boulianne G. Physical and genetic interaction of filamin with presenilin in Drosophila. Journal Of Cell Science 2000, 113: 3499-3508. PMID: 10984440, DOI: 10.1242/jcs.113.19.3499.
- The kelch repeat superfamily of proteins: propellers of cell functionAdams J, Kelso R, Cooley L, Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends In Cell Biology 2000, 10: 17-24. PMID: 10603472, DOI: 10.1016/s0962-8924(99)01673-6.
- Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cellsMatova N, Mahajan-Miklos S, Mooseker M, Cooley L. Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 1999, 126: 5645-5657. PMID: 10572041, DOI: 10.1242/dev.126.24.5645.
- Drosophila Filamin encoded by the cheerio locus is a component of ovarian ring canalsSokol N, Cooley L. Drosophila Filamin encoded by the cheerio locus is a component of ovarian ring canals. Current Biology 1999, 9: 1221-1230. PMID: 10556087, DOI: 10.1016/s0960-9822(99)80502-8.
- Ecdysone response genes govern egg chamber development during mid-oogenesis in DrosophilaBuszczak M, Freeman M, Carlson J, Bender M, Cooley L, Segraves W. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 1999, 126: 4581-4589. PMID: 10498692, DOI: 10.1242/dev.126.20.4581.
- Drosophila Ring Canal Growth Requires Src and Tec KinasesCooley L. Drosophila Ring Canal Growth Requires Src and Tec Kinases. Cell 1998, 93: 913-915. PMID: 9635420, DOI: 10.1016/s0092-8674(00)81196-4.
- Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiencyFoley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998, 125: 1075-1082. PMID: 9463354, DOI: 10.1242/dev.125.6.1075.
- Drosophila fascin mutants are rescued by overexpression of the villin-like protein, quailCant K, Knowles B, Mahajan-Miklos S, Heintzelman M, Cooley L. Drosophila fascin mutants are rescued by overexpression of the villin-like protein, quail. Journal Of Cell Science 1998, 111: 213-221. PMID: 9405306, DOI: 10.1242/jcs.111.2.213.
- GENETIC ANALYSIS OF THE ACTIN CYTOSKELETON IN THE DROSOPHILA OVARYRobinson D, Cooley L. GENETIC ANALYSIS OF THE ACTIN CYTOSKELETON IN THE DROSOPHILA OVARY. Annual Review Of Cell And Developmental Biology 1997, 13: 147-170. PMID: 9442871, DOI: 10.1146/annurev.cellbio.13.1.147.
- Drosophila Kelch Is an Oligomeric Ring Canal Actin OrganizerRobinson D, Cooley L. Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer. Journal Of Cell Biology 1997, 138: 799-810. PMID: 9265647, PMCID: PMC2138045, DOI: 10.1083/jcb.138.4.799.
- Formation of the Drosophila ovarian ring canal inner rim depends on cheerio.Robinson D, Smith-Leiker T, Sokol N, Hudson A, Cooley L. Formation of the Drosophila ovarian ring canal inner rim depends on cheerio. Genetics 1997, 145: 1063-72. PMID: 9093858, PMCID: PMC1207876, DOI: 10.1093/genetics/145.4.1063.
- Examination of the function of two kelch proteins generated by stop codon suppressionRobinson D, Cooley L. Examination of the function of two kelch proteins generated by stop codon suppression. Development 1997, 124: 1405-1417. PMID: 9118811, DOI: 10.1242/dev.124.7.1405.
- Using explicitly represented biological relationships for database navigation and searching via the World-Wide WebPanzer S, Cooley L, Miller P. Using explicitly represented biological relationships for database navigation and searching via the World-Wide Web. Bioinformatics 1997, 13: 281-290. PMID: 9183533, DOI: 10.1093/bioinformatics/13.3.281.
- Stable intercellular bridges in development: the cytoskeleton lining the tunnelRobinson D, Cooley L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends In Cell Biology 1996, 6: 474-479. PMID: 15157506, DOI: 10.1016/0962-8924(96)84945-2.
- Single amino acid mutations in Drosophila fascin disrupt actin bundling function in vivo.Cant K, Cooley L. Single amino acid mutations in Drosophila fascin disrupt actin bundling function in vivo. Genetics 1996, 143: 249-58. PMID: 8722779, PMCID: PMC1207258, DOI: 10.1093/genetics/143.1.249.
- Oogenesis: Variations on a themeCooley L. Oogenesis: Variations on a theme. Genesis 1995, 16: 1-5. PMID: 7758241, DOI: 10.1002/dvg.1020160103.
- Cytoskeletal Functions During Drosophila OogenesisCooley L, Theurkauf W. Cytoskeletal Functions During Drosophila Oogenesis. Science 1994, 266: 590-596. PMID: 7939713, DOI: 10.1126/science.7939713.
- Intercellular Cytoplasm Transport during Drosophila OogenesisMahajan-Miklos S, Cooley L. Intercellular Cytoplasm Transport during Drosophila Oogenesis. Developmental Biology 1994, 165: 336-351. PMID: 7958404, DOI: 10.1006/dbio.1994.1257.
- Morphogenesis of Drosophila ovarian ring canalsRobinson D, Cant K, Cooley L. Morphogenesis of Drosophila ovarian ring canals. Development 1994, 120: 2015-2025. PMID: 7925006, DOI: 10.1242/dev.120.7.2015.
- The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesisMahajan-Miklos S, Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 1994, 78: 291-301. PMID: 8044841, DOI: 10.1016/0092-8674(94)90298-4.
- The specialized cytoskeleton of theDrosophila egg chamberKnowles B, Cooley L. The specialized cytoskeleton of theDrosophila egg chamber. Trends In Genetics 1994, 10: 235-241. PMID: 8091503, DOI: 10.1016/0168-9525(94)90170-8.
- Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension.Cant K, Knowles BA, Mooseker MS, Cooley L. Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. Journal Of Cell Biology 1994, 125: 369-380. PMID: 8163553, PMCID: PMC2120035, DOI: 10.1083/jcb.125.2.369.
- Profilin mutations disrupt multiple actin-dependent processes during Drosophila developmentVerheyen E, Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 1994, 120: 717-728. PMID: 7600952, DOI: 10.1242/dev.120.4.717.
- Chapter 28 Looking at OogenesisVerheyen E, Cooley L. Chapter 28 Looking at Oogenesis. 1994, 44: 545-561. PMID: 7707970, DOI: 10.1016/s0091-679x(08)60931-0.
- Kelch encodes a component of intercellular bridges in Drosophila egg chambersXue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993, 72: 681-693. PMID: 8453663, DOI: 10.1016/0092-8674(93)90397-9.
- chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesisCooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992, 69: 173-184. PMID: 1339308, DOI: 10.1016/0092-8674(92)90128-y.
- Constructing deletions with defined endpoints in Drosophila.Cooley L, Thompson D, Spradling AC. Constructing deletions with defined endpoints in Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 3170-3. PMID: 2326275, PMCID: PMC53856, DOI: 10.1073/pnas.87.8.3170.
- Identifying and cloning Drosophila genes by single P element insertional mutagenesis.Cooley L, Berg C, Kelley R, McKearin D, Spradling A. Identifying and cloning Drosophila genes by single P element insertional mutagenesis. Progress In Nucleic Acid Research And Molecular Biology 1989, 36: 99-109. PMID: 2544018, DOI: 10.1016/s0079-6603(08)60164-6.
- Controlling P element insertional mutagenesis.Cooley L, Berg C, Spradling A. Controlling P element insertional mutagenesis. Trends In Genetics : TIG 1988, 4: 254-8. PMID: 2853469, DOI: 10.1016/0168-9525(88)90032-7.
- Insertional mutagenesis of the Drosophila genome with single P elements.Cooley L, Kelley R, Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements. Science (New York, N.Y.) 1988, 239: 1121-8. PMID: 2830671, DOI: 10.1126/science.2830671.
- Amplification of the X-linked Drosophila chorion gene cluster requires a region upstream from the s38 chorion gene.Spradling AC, de Cicco DV, Wakimoto BT, Levine JF, Kalfayan LJ, Cooley L. Amplification of the X-linked Drosophila chorion gene cluster requires a region upstream from the s38 chorion gene. The EMBO Journal 1987, 6: 1045-53. PMID: 3036489, PMCID: PMC553501.
- The additional guanylate at the 5' terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P.Orellana O, Cooley L, Söll D. The additional guanylate at the 5' terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Molecular And Cellular Biology 1986, 6: 525-529. PMID: 3023854, PMCID: PMC367542, DOI: 10.1128/mcb.6.2.525.
- Processing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation.Frendewey D, Dingermann T, Cooley L, Söll D. Processing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation. Journal Of Biological Chemistry 1985, 260: 449-454. PMID: 3843841, DOI: 10.1016/s0021-9258(18)89752-6.
- Structure and transcription of eukaryotic tRNA genes.Sharp SJ, Schaack J, Cooley L, Burke DJ, Söll D. Structure and transcription of eukaryotic tRNA genes. CRC Critical Reviews In Biochemistry 1985, 19: 107-44. PMID: 3905254, DOI: 10.3109/10409238509082541.
- Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene.Cooley L, Schaack J, Burke DJ, Thomas B, Söll D. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene. Molecular And Cellular Biology 1984, 4: 2714-2722. PMID: 6570190, PMCID: PMC369281, DOI: 10.1128/mcb.4.12.2714.
- The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation.Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D. The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation. Journal Of Biological Chemistry 1984, 259: 1461-1467. PMID: 6693417, DOI: 10.1016/s0021-9258(17)43429-6.
- Transcriptionally active and inactive gene repeats within the D. meianogaster 5S RNA gene clusterSharp S, Garcia A, Cooley L, Söll D. Transcriptionally active and inactive gene repeats within the D. meianogaster 5S RNA gene cluster. Nucleic Acids Research 1984, 12: 7617-7632. PMID: 6093044, PMCID: PMC320189, DOI: 10.1093/nar/12.20.7617.
- Organization and Expression of tRNA Genes in Drosophila MelanogasterSharp S, Cooley L, DeFranco D, Dingermann T, Söll D. Organization and Expression of tRNA Genes in Drosophila Melanogaster. 1983, 84: 1-14. PMID: 6405456, DOI: 10.1007/978-3-642-81947-6_1.
- Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiaeHottinger H, Pearson D, Yamao F, Gamulin V, Colley L, Cooper T, Söll D. Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiae. Molecular Genetics And Genomics 1982, 188: 219-224. PMID: 6818425, DOI: 10.1007/bf00332678.
- Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA.Cooley L, Appel B, Söll D. Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1982, 79: 6475-6479. PMID: 6292903, PMCID: PMC347149, DOI: 10.1073/pnas.79.21.6475.
- Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombeBarnitz J, Cramer J, Rownd R, Cooley L, Söll D. Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe. FEBS Letters 1982, 143: 129-132. PMID: 6288447, DOI: 10.1016/0014-5793(82)80288-3.
- Characterization of initiation factor eIF-3 from wheat germ.Checkley JW, Cooley L, Ravel JM. Characterization of initiation factor eIF-3 from wheat germ. The Journal Of Biological Chemistry 1981, 256: 1582-6. PMID: 6906354.
- Urease from the lugworm, Arenicola cristata.Cooley L, Crawford DR, Bishop SH. Urease from the lugworm, Arenicola cristata. The Biological Bulletin 1976, 151: 96-107. PMID: 963124, DOI: 10.2307/1540708.