Skip to Main Content

Lawrence B. Cohen, PhD

Professor of Cellular And Molecular Physiology; Principal Scientist, Korea Institute of Science and Technology

Contact Information

Lawrence B. Cohen, PhD

Mailing Address

  • Cellular & Molecular Physiology

    PO Box 208026, 333 Cedar Street

    New Haven, CT 06520-8026

    United States

Research Summary

One reason the brain is difficult to study is that many individual neurons or brain areas are active at once; conventional techniques allow one to monitor only one or a few neurons or locations at a time. We have worked on two optical methods for measuring brain activity; both utilize voltage-sensitive or Calcium-sensitive dyes and a fast camera with frame rates of 1 kHz or a 2-photon microscope. In the first variation, we use the dyes and a 2-photon microscope to follow the spike activity of individual neurons, and in favorable preparations about 500 individual neurons can be monitored simultaneously. We hope that monitoring many neurons simultaneously will improve our understanding about how nervous systems are organized to generate behaviors. In the second variation, each pixel in the recording receives light from a large number of neurons and processes (e.g. from an area of cortex 20 um x 20 um) and thus each signal represents the average of a population of neurons. There are several interesting aspects of vertebrate brain function where populations are involved.

Specialized Terms: Brain; Central Nervous System; Neurons; Vertebrate Physiology; Olfaction; Olfactory Bulb; Protein Sensors of Voltage and Calcium

Extensive Research Description

One active area is the development of fluorescent protein sensors of membrane potential. At present the voltage signals are just large enough to be useful in monitoring activity in invertebrate and mammalian nervous systems. We hope to find sensors that are both faster and have larger signals.

A second area is understanding the role of the mammalian olfactory bulb in olfactory processing. We have started comparing the input (from the nose) and the output (carried by mitral/tufted cells) to determine the olfactory transformation carried out by the bulb. We also want to know what the interneurons do to carry out this transformation.


Research Interests


Selected Publications