Jon Morrow, PhD, MD
Research & Publications
Biography
News
Research Summary
Central to the integrated function of multicellular organisms is cell contact mediated signaling and the spatial organizations of specialized membrane-surface domains. While many factors contribute, recent evidence indicates that the spectrin based membrane skeleton plays a pivotal role in these processes. Current research in the laboratory is aimed at understanding three aspects of the spectrin membrane skeleton in erythrocytes, epithelial cells, and neurons: 1) The factors that mediate its polarized assembly with specific surface membrane receptor domains; 2) the nature of the proteins that interact with spectrin and their role in signal transduction, cell differentiation, vesicle trafficking, and topographic membrane assembly; and 3) the molecular basis of diseases that involve spectrin or any of its associated proteins, including contributions of the cortical cytoskeleton to the phenotypic alterations of malignant cells and the molecular pathology of acquired and inherited disorders involving this structure. Our studies on the erythrocyte focus on a molecular understanding of how specific proteins that cause human disease.
Specialized Terms: Hemolytic Disease; Degenerative Brain Disease; spectrin; Autopsy Pathology; Renal Pathology; Medical Informatics; Computer Aided Instruction (CAI); Telepathology
Extensive Research Description
Our research focuses on understanding the structure and function of the spectrin-ankyrin-actin cytoskeleton and the mechanisms by which it mediates membrane receptor and adhesion-complex organization; signal transduction; and vesicle trafficking from the ER to the plasma membrane. Our recent studies implicate a major and unexpected role for the spectrin skeleton in the pathways of vesicle trafficking and membrane assembly. In parallel studies we are seeking to understand the molecular basis of diseases arising from aberrant cytoskeletal function. Studies are carried out both in vitro utilizing functional and biophysical assays; in cell culture using genetically modified systems; and in transgenic animals. Areas of special interest include organization of the plasma membrane in erythrocytes; vesicle trafficking and the establishment of polarity in epithelial cells; and the control of receptor organization at the synapse.
Coauthors
Research Interests
Autopsy; Computer-Assisted Instruction; Medical Informatics; Pathology; Spectrin; Telepathology
Selected Publications
- CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppressionZhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, Zhang Y, An Y, Chen JF, Chan LH, Aoshima A, Lang SM, Tang Z, Che X, Li Y, Rutter SJ, Bossuyt V, Chen X, Morrow JS, Pusztai L, Rimm DL, Yin M, Yan Q. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Science Translational Medicine 2022, 14: eabf5473. PMID: 35108062, PMCID: PMC9003667, DOI: 10.1126/scitranslmed.abf5473.
- Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosisWilliams S, Smith A, Cianci C, Morrow J, Brown T. Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis 2003, 8: 353-361. PMID: 12815278, DOI: 10.1023/a:1024168901003.
- The Spectrin-Ankyrin Skeleton Controls CD45 Surface Display and Interleukin-2 ProductionPradhan D, Morrow J. The Spectrin-Ankyrin Skeleton Controls CD45 Surface Display and Interleukin-2 Production. Immunity 2002, 17: 303-315. PMID: 12354383, DOI: 10.1016/s1074-7613(02)00396-5.
- Calpain proteolysis of αII-spectrin in the normal adult human brainHuh G, Glantz S, Je S, Morrow J, Kim J. Calpain proteolysis of αII-spectrin in the normal adult human brain. Neuroscience Letters 2001, 316: 41-44. PMID: 11720774, DOI: 10.1016/s0304-3940(01)02371-0.
- Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domainZhang Z, Weed S, Gallagher P, Morrow J. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 2001, 98: 1645-1653. PMID: 11535493, DOI: 10.1182/blood.v98.6.1645.
- βIII Spectrin Binds to the Arp1 Subunit of Dynactin*Holleran E, Ligon L, Tokito M, Stankewich M, Morrow J, Holzbaur E. βIII Spectrin Binds to the Arp1 Subunit of Dynactin*. Journal Of Biological Chemistry 2001, 276: 36598-36605. PMID: 11461920, DOI: 10.1074/jbc.m104838200.
- Spectrin Oligomerization is Cooperatively Coupled to Membrane Assembly: A Linkage Targeted by Many Hereditary Hemolytic Anemias?Giorgi M, Cianci C, Gallagher P, Morrow J. Spectrin Oligomerization is Cooperatively Coupled to Membrane Assembly: A Linkage Targeted by Many Hereditary Hemolytic Anemias? Experimental And Molecular Pathology 2001, 70: 215-230. PMID: 11418000, DOI: 10.1006/exmp.2001.2377.
- Yale PathologyMorrow J. Yale Pathology. Experimental And Molecular Pathology 2001, 70: 175-177. DOI: 10.1006/exmp.2001.2389.
- Informatics and anatomic pathology: Meeting challenges and charting the futureSinard J, Morrow J. Informatics and anatomic pathology: Meeting challenges and charting the future. Human Pathology 2001, 32: 143-148. PMID: 11230700, DOI: 10.1053/hupa.2001.23057.
- Dynactin-Dependent, Dynein-Driven Vesicle Transport in the Absence of Membrane Proteins A Role for Spectrin and Acidic PhospholipidsMuresan V, Stankewich M, Steffen W, Morrow J, Holzbaur E, Schnapp B. Dynactin-Dependent, Dynein-Driven Vesicle Transport in the Absence of Membrane Proteins A Role for Spectrin and Acidic Phospholipids. Molecular Cell 2001, 7: 173-183. PMID: 11172722, DOI: 10.1016/s1097-2765(01)00165-4.
- [42] ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complexDe Matteis M, Morrow J. [42] ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complex. 2001, 329: 405-416. PMID: 11210560, DOI: 10.1016/s0076-6879(01)29101-0.
- Caspase Remodeling of the Spectrin Membrane Skeleton during Lens Development and Aging*Lee A, Morrow J, Fowler V. Caspase Remodeling of the Spectrin Membrane Skeleton during Lens Development and Aging*. Journal Of Biological Chemistry 2001, 276: 20735-20742. PMID: 11278555, DOI: 10.1074/jbc.m009723200.
- α-Catenin Binds Directly to Spectrin and Facilitates Spectrin-Membrane Assembly in Vivo *Pradhan D, Lombardo C, Roe S, Rimm D, Morrow J. α-Catenin Binds Directly to Spectrin and Facilitates Spectrin-Membrane Assembly in Vivo *. Journal Of Biological Chemistry 2000, 276: 4175-4181. PMID: 11069925, DOI: 10.1074/jbc.m009259200.
- Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosisNath R, Huggins M, Glantz S, Morrow J, McGinnis K, Nadimpalli R, Wang K. Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochemistry International 2000, 37: 351-361. PMID: 10825575, DOI: 10.1016/s0197-0186(00)00040-1.
- Identification and Characterization of βV Spectrin, a Mammalian Ortholog of Drosophila βHSpectrin* 210Stabach P, Morrow J. Identification and Characterization of βV Spectrin, a Mammalian Ortholog of Drosophila βHSpectrin* 210. Journal Of Biological Chemistry 2000, 275: 21385-21395. PMID: 10764729, DOI: 10.1074/jbc.c000159200.
- Spectrin tethers and mesh in the biosynthetic pathway.De Matteis M, Morrow J. Spectrin tethers and mesh in the biosynthetic pathway. Journal Of Cell Science 2000, 113 ( Pt 13): 2331-43. PMID: 10852813, DOI: 10.1242/jcs.113.13.2331.
- Identification and Characterization of Human SLP-2, a Novel Homologue of Stomatin (Band 7.2b) Present in Erythrocytes and Other Tissues*Wang Y, Morrow J. Identification and Characterization of Human SLP-2, a Novel Homologue of Stomatin (Band 7.2b) Present in Erythrocytes and Other Tissues*. Journal Of Biological Chemistry 2000, 275: 8062-8071. PMID: 10713127, DOI: 10.1074/jbc.275.11.8062.
- Brain and Muscle Express a Unique Alternative Transcript of αΙΙ Spectrin †Cianci C, Zhang Z, Pradhan D, Morrow J. Brain and Muscle Express a Unique Alternative Transcript of αΙΙ Spectrin †. Biochemistry 1999, 38: 15721-15730. PMID: 10625438, DOI: 10.1021/bi991458k.
- Transforming Growth Factor β Induces Caspase 3-independent Cleavage of αII-Spectrin (α-Fodrin) Coincident with Apoptosis*Brown T, Patil S, Cianci C, Morrow J, Howe P. Transforming Growth Factor β Induces Caspase 3-independent Cleavage of αII-Spectrin (α-Fodrin) Coincident with Apoptosis*. Journal Of Biological Chemistry 1999, 274: 23256-23262. PMID: 10438500, DOI: 10.1074/jbc.274.33.23256.
- Exclusion of the stomatin, α‐adducin and β‐adducin loci in a large kindred with dehydrated hereditary stomatocytosisInnes D, Sinard J, Gilligan D, Snyder L, Gallagher P, Morrow J. Exclusion of the stomatin, α‐adducin and β‐adducin loci in a large kindred with dehydrated hereditary stomatocytosis. American Journal Of Hematology 1999, 60: 72-74. PMID: 9883810, DOI: 10.1002/(sici)1096-8652(199901)60:1<72::aid-ajh13>3.0.co;2-8.
- A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesiclesStankewich M, Tse W, Peters L, Ch’ng Y, John K, Stabach P, Devarajan P, Morrow J, Lux S. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 14158-14163. PMID: 9826670, PMCID: PMC24343, DOI: 10.1073/pnas.95.24.14158.
- Simultaneous Degradation of αII- and βII-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells*Wang K, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian R, Glantz S, Morrow J. Simultaneous Degradation of αII- and βII-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells*. Journal Of Biological Chemistry 1998, 273: 22490-22497. PMID: 9712874, DOI: 10.1074/jbc.273.35.22490.
- The role of ankyrin and spectrin in membrane transport and domain formationDe Matteis M, Morrow J. The role of ankyrin and spectrin in membrane transport and domain formation. Current Opinion In Cell Biology 1998, 10: 542-549. PMID: 9719877, DOI: 10.1016/s0955-0674(98)80071-9.
- ADP ribosylation factor regulates spectrin binding to the Golgi complexGodi A, Santone I, Pertile P, Devarajan P, Stabach P, Morrow J, Di Tullio G, Polishchuk R, Petrucci T, Luini A, De Matteis M. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 8607-8612. PMID: 9671725, PMCID: PMC21123, DOI: 10.1073/pnas.95.15.8607.
- Structure of the Ankyrin-binding Domain of α-Na,K-ATPase*Zhang Z, Devarajan P, Dorfman A, Morrow J. Structure of the Ankyrin-binding Domain of α-Na,K-ATPase*. Journal Of Biological Chemistry 1998, 273: 18681-18684. PMID: 9668035, DOI: 10.1074/jbc.273.30.18681.
- Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1Sinard J, Stewart G, Stabach P, Argent A, Gilligan D, Morrow J. Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1. Biochimica Et Biophysica Acta 1998, 1396: 57-66. PMID: 9524222, DOI: 10.1016/s0167-4781(97)00167-x.
- Of Membrane Stability and Mosaics: The Spectrin CytoskeletonMorrow J, Rimm D, Kennedy S, Cianci C, Sinard J, Weed S. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. 1997, 485-540. DOI: 10.1002/cphy.cp140111.
- α-Catenin Can Form Asymmetric Homodimeric Complexes and/or Heterodimeric Complexes with ॆ-Catenin*Koslov E, Maupin P, Pradhan D, Morrow J, Rimm D. α-Catenin Can Form Asymmetric Homodimeric Complexes and/or Heterodimeric Complexes with ॆ-Catenin*. Journal Of Biological Chemistry 1997, 272: 27301-27306. PMID: 9341178, DOI: 10.1074/jbc.272.43.27301.
- Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin–ankyrin G119 skeleton in Madin Darby canine kidney cellsDevarajan P, Stabach P, De Matteis M, Morrow J. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin–ankyrin G119 skeleton in Madin Darby canine kidney cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 10711-10716. PMID: 9380700, PMCID: PMC23456, DOI: 10.1073/pnas.94.20.10711.
- A novel Golgi Spectrin is required for Na,K-ATPase targeting in renal epithelia. • 1644Devarajan P, Morrow J. A novel Golgi Spectrin is required for Na,K-ATPase targeting in renal epithelia. • 1644. Pediatric Research 1997, 41: 276-276. DOI: 10.1203/00006450-199704001-01663.
- Site-Directed Mutagenesis of αII Spectrin at Codon 1175 Modulates Its μ-Calpain Susceptibility †Stabach P, Cianci C, Glantz S, Zhang Z, Morrow J. Site-Directed Mutagenesis of αII Spectrin at Codon 1175 Modulates Its μ-Calpain Susceptibility †. Biochemistry 1997, 36: 57-65. PMID: 8993318, DOI: 10.1021/bi962034i.
- A NOVEL TRUNCATED RENAL-SPECIFIC ISOFORM OF ANKYRIN ASSOCIATES WITH THE GOLGI COMPLEX AND BINDS SPECTRIN. • 2142Devarajan P, Morrow J. A NOVEL TRUNCATED RENAL-SPECIFIC ISOFORM OF ANKYRIN ASSOCIATES WITH THE GOLGI COMPLEX AND BINDS SPECTRIN. • 2142. Pediatric Research 1996, 39: 360-360. DOI: 10.1203/00006450-199604001-02166.
- Entorhinal cortical innervation of parvalbumin‐containing neurons (basket and chandelier cells) in the rat ammon's hornKiss J, Buzsaki G, Morrow J, Glantz S, Leranth C. Entorhinal cortical innervation of parvalbumin‐containing neurons (basket and chandelier cells) in the rat ammon's horn. Hippocampus 1996, 6: 239-246. PMID: 8841824, DOI: 10.1002/(sici)1098-1063(1996)6:3<239::aid-hipo3>3.0.co;2-i.
- Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell MembranesDevarajan P, Morrow J. Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. 1996, 43: 97-128. DOI: 10.1016/s0070-2161(08)60386-x.
- Frequent alterations in E-cadherin and alpha- and beta-catenin expression in human breast cancer cell lines.Pierceall W, Woodard A, Morrow J, Rimm D, Fearon E. Frequent alterations in E-cadherin and alpha- and beta-catenin expression in human breast cancer cell lines. Oncogene 1995, 11: 1319-26. PMID: 7478552.
- Autoantibodies specific for villin found in patients with colon cancer and other colitidesRimm D, Holland T, Morrow J, Anderson J. Autoantibodies specific for villin found in patients with colon cancer and other colitides. Digestive Diseases And Sciences 1995, 40: 389-395. PMID: 7851204, DOI: 10.1007/bf02065426.
- Fatal Hemorrhage Following Laser HemorrhoidectomyGill J, Morrow J, West A. Fatal Hemorrhage Following Laser Hemorrhoidectomy. Journal Of Clinical Gastroenterology 1994, 19: 343-346. PMID: 7876522, DOI: 10.1097/00004836-199412000-00021.
- Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrinCepek K, Shaw S, Parker C, Russell G, Morrow J, Rimm D, Brenner M. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 1994, 372: 190-193. PMID: 7969453, DOI: 10.1038/372190a0.
- Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2).Lombardo C, Weed S, Kennedy S, Forget B, Morrow J. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). Journal Of Biological Chemistry 1994, 269: 29212-29219. PMID: 7961888, DOI: 10.1016/s0021-9258(19)62032-6.
- Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit.Devarajan P, Scaramuzzino D, Morrow J. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 2965-2969. PMID: 8159688, PMCID: PMC43495, DOI: 10.1073/pnas.91.8.2965.
- A partial structural repeat forms the heterodimer self-association site of all beta-spectrinsKennedy S, Weed S, Forget B, Morrow J. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. Journal Of Biological Chemistry 1994, 269: 11400-11408. PMID: 8157672, DOI: 10.1016/s0021-9258(19)78138-1.
- The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons.Malchiodi-Albedi F, Ceccarini M, Winkelmann J, Morrow J, Petrucci T. The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons. Journal Of Cell Science 1993, 106 ( Pt 1): 67-78. PMID: 8270644, DOI: 10.1242/jcs.106.1.67.
- Cloning of a Portion of the Chromosomal Gene and cDNA for Human β-Fodrin, the Nonerythroid Form of β-SpectrinChang J, Scarpa A, Eddy R, Byers M, Harris A, Morrow J, Watkins P, Shows T, Forget B. Cloning of a Portion of the Chromosomal Gene and cDNA for Human β-Fodrin, the Nonerythroid Form of β-Spectrin. Genomics 1993, 17: 287-293. PMID: 8406479, DOI: 10.1006/geno.1993.1323.
- Calmodulin-binding domain of recombinant erythrocyte beta-adducin.Scaramuzzino D, Morrow J. Calmodulin-binding domain of recombinant erythrocyte beta-adducin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 3398-3402. PMID: 8475088, PMCID: PMC46307, DOI: 10.1073/pnas.90.8.3398.
- Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycleWarren S, Landolfi A, Curtis C, Morrow J. Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle. Journal Of Cell Science 1992, 103: 381-388. PMID: 1478941, DOI: 10.1242/jcs.103.2.381.
- Karyoplasmic interaction selection strategy: a general strategy to detect protein-protein interactions in mammalian cells.Fearon E, Finkel T, Gillison M, Kennedy S, Casella J, Tomaselli G, Morrow J, Van Dang C. Karyoplasmic interaction selection strategy: a general strategy to detect protein-protein interactions in mammalian cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 7958-7962. PMID: 1387709, PMCID: PMC49834, DOI: 10.1073/pnas.89.17.7958.
- Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin.Kennedy S, Warren S, Forget B, Morrow J. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. Journal Of Cell Biology 1991, 115: 267-277. PMID: 1833409, PMCID: PMC2289929, DOI: 10.1083/jcb.115.1.267.
- Actin and tubulin binding domains of synapsins Ia and Ib.Petrucci T, Morrow J. Actin and tubulin binding domains of synapsins Ia and Ib. Biochemistry 1991, 30: 413-22. PMID: 1899024, DOI: 10.1021/bi00216a016.
- PrefaceMooseker M, Morrow J. Preface. 1991, 38: xvii-xviii. DOI: 10.1016/s0070-2161(08)60777-7.
- Chapter 14 Polarized Assembly of Spectrin and Ankyrin in Epithelial CellsMorrow J, Cianci C, Kennedy S, Warren S. Chapter 14 Polarized Assembly of Spectrin and Ankyrin in Epithelial Cells. 1991, 38: 227-244. DOI: 10.1016/s0070-2161(08)60791-1.
- PATHMASTER: Modelling differential diagnosis as “dynamic competition” between systematic analysis and disease-directed deductionFrohlich M, Miller P, Morrow J. PATHMASTER: Modelling differential diagnosis as “dynamic competition” between systematic analysis and disease-directed deduction. Journal Of Biomedical Informatics 1990, 23: 499-513. PMID: 2276261, DOI: 10.1016/0010-4809(90)90037-d.
- Radiolabel‐transfer cross‐linking demonstrates that protein 4.1 binds to the N‐terminal region of β spectrin and to actin in binary interactionsBECKER P, SCHWARTZ M, MORROW J, Samuel E. Radiolabel‐transfer cross‐linking demonstrates that protein 4.1 binds to the N‐terminal region of β spectrin and to actin in binary interactions. The FEBS Journal 1990, 193: 827-836. PMID: 2249696, DOI: 10.1111/j.1432-1033.1990.tb19406.x.
- Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.Harris A, Morrow J. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 3009-3013. PMID: 2326262, PMCID: PMC53823, DOI: 10.1073/pnas.87.8.3009.
- Automated bibliographic retrieval based on current topics in hepatology: HepatopixPowsner S, Riely C, Barwick K, Morrow J, Miller P. Automated bibliographic retrieval based on current topics in hepatology: Hepatopix. Journal Of Biomedical Informatics 1989, 22: 552-564. PMID: 2686929, DOI: 10.1016/0010-4809(89)90075-x.
- Fodrin as a differentiation marker. Redistributions in colonic neoplasia.Younes M, Harris A, Morrow J. Fodrin as a differentiation marker. Redistributions in colonic neoplasia. American Journal Of Pathology 1989, 135: 1197-212. PMID: 2596576, PMCID: PMC1880505.
- Calmodulin Regulates Fodrin Susceptibility to Cleavage by Calciumdependent Protease IHarris A, Croall D, Morrow J. Calmodulin Regulates Fodrin Susceptibility to Cleavage by Calciumdependent Protease I. Journal Of Biological Chemistry 1989, 264: 17401-17408. PMID: 2551900, DOI: 10.1016/s0021-9258(18)71508-1.
- Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells.Morrow J, Cianci C, Ardito T, Mann A, Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. Journal Of Cell Biology 1989, 108: 455-465. PMID: 2537316, PMCID: PMC2115445, DOI: 10.1083/jcb.108.2.455.
- The spectrin membrane skeleton: emerging conceptsMorrow J. The spectrin membrane skeleton: emerging concepts. Current Opinion In Cell Biology 1989, 1: 23-29. PMID: 2698206, DOI: 10.1016/s0955-0674(89)80032-8.
- An unusual beta-spectrin associated with clustered acetylcholine receptors.Bloch R, Morrow J. An unusual beta-spectrin associated with clustered acetylcholine receptors. Journal Of Cell Biology 1989, 108: 481-493. PMID: 2645300, PMCID: PMC2115447, DOI: 10.1083/jcb.108.2.481.
- Contributions of the β‐subunit to spectrin structure and functionColeman T, Fishkind D, Mooseker M, Morrow J. Contributions of the β‐subunit to spectrin structure and function. Cytoskeleton 1989, 12: 248-263. PMID: 2524283, DOI: 10.1002/cm.970120406.
- Functional diversity among spectrin isoformsColeman T, Fishkind D, Mooseker M, Morrow J. Functional diversity among spectrin isoforms. Cytoskeleton 1989, 12: 225-247. PMID: 2655937, DOI: 10.1002/cm.970120405.
- Capturing the semantic relationship between clinical terms with current MeSH bibliographic codingMiller P, Smith P, Morrow J, Riely C, Powsner S. Capturing the semantic relationship between clinical terms with current MeSH bibliographic coding. Computer Methods And Programs In Biomedicine 1988, 27: 205-211. PMID: 3063430, DOI: 10.1016/0169-2607(88)90084-3.
- The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site.Harris A, Croall D, Morrow J. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. Journal Of Biological Chemistry 1988, 263: 15754-15761. PMID: 2844821, DOI: 10.1016/s0021-9258(19)37652-5.
- Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3Cianci C, Giorgi M, Morrow J. Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3. Journal Of Cellular Biochemistry 1988, 37: 301-315. PMID: 2970468, DOI: 10.1002/jcb.240370305.
- Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive siteHarris A, Morrow J. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. Journal Of Neuroscience 1988, 8: 2640-2651. PMID: 3074159, PMCID: PMC6569499, DOI: 10.1523/jneurosci.08-07-02640.1988.
- Post-translational regulation of the erythrocyte cortical cytoskeletonMische S, Morrow J. Post-translational regulation of the erythrocyte cortical cytoskeleton. Protoplasma 1988, 145: 167-175. DOI: 10.1007/bf01349355.
- Semantically assisted medical bibliographic retrieval: an experimental computer system.Miller P, Morrow J, Powsner S, Riely C. Semantically assisted medical bibliographic retrieval: an experimental computer system. Journal Of The Medical Library Association 1988, 76: 131-6. PMID: 3285933, PMCID: PMC227164.
- Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasmsWest A, Isaac C, Carboni J, Morrow J, Mooseker M, Barwick K. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology 1988, 94: 343-352. PMID: 3335311, DOI: 10.1016/0016-5085(88)90421-0.
- Semantic relationships and medical bibliographic retrieval: A preliminary assessmentMiller P, Barwick K, Morrow J, Powsner S, Riely C. Semantic relationships and medical bibliographic retrieval: A preliminary assessment. Journal Of Biomedical Informatics 1988, 21: 64-77. PMID: 3278844, DOI: 10.1016/0010-4809(88)90043-2.
- A domain of synapsin I involved with actin bundling shares immunologic cross‐reactivity with villinPetrucci T, Mooseker M, Morrow J. A domain of synapsin I involved with actin bundling shares immunologic cross‐reactivity with villin. Journal Of Cellular Biochemistry 1988, 36: 25-35. PMID: 3125185, DOI: 10.1002/jcb.240360104.
- Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species.Leto T, Fortugno-Erikson D, Barton D, Yang-Feng T, Francke U, Harris A, Morrow J, Marchesi V, Benz E. Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species. Molecular And Cellular Biology 1988, 8: 1-9. PMID: 3336352, PMCID: PMC363070, DOI: 10.1128/mcb.8.1.1.
- Comparison of Nonerythroid α-Spectrin Genes Reveals Strict Homology among Diverse SpeciesLeto T, Fortugno-Erikson D, Barton D, Yang-Feng T, Francke U, Harris A, Morrow J, Marchesi V, Benz E. Comparison of Nonerythroid α-Spectrin Genes Reveals Strict Homology among Diverse Species. Molecular And Cellular Biology 1988, 8: 1-9. DOI: 10.1128/mcb.8.1.1-9.1988.
- Na,K-ATPase co-distributes with ankyrin and spectrin in renal tubular epithelial cells.Kashgarian M, Morrow J, Foellmer H, Mann A, Cianci C, Ardito T. Na,K-ATPase co-distributes with ankyrin and spectrin in renal tubular epithelial cells. Progress In Clinical And Biological Research 1988, 268B: 245-50. PMID: 2851802.
- Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding.Mische S, Mooseker M, Morrow J. Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. Journal Of Cell Biology 1987, 105: 2837-2845. PMID: 3693401, PMCID: PMC2114693, DOI: 10.1083/jcb.105.6.2837.
- Characterization of intestinal brush border cytoskeletal proteins of normal and neoplastic human epithelial cells. A comparison with the avian brush border.Carboni J, Howe C, West A, Barwick K, Mooseker M, Morrow J. Characterization of intestinal brush border cytoskeletal proteins of normal and neoplastic human epithelial cells. A comparison with the avian brush border. American Journal Of Pathology 1987, 129: 589-600. PMID: 3425692, PMCID: PMC1899811.
- Synapsin I: an actin-bundling protein under phosphorylation control.Petrucci T, Morrow J. Synapsin I: an actin-bundling protein under phosphorylation control. Journal Of Cell Biology 1987, 105: 1355-1363. PMID: 3115996, PMCID: PMC2114810, DOI: 10.1083/jcb.105.3.1355.
- Abnormal oxidant sensitivity and beta-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-protein 4.1 binding.Becker P, Morrow J, Lux S. Abnormal oxidant sensitivity and beta-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-protein 4.1 binding. Journal Of Clinical Investigation 1987, 80: 557-565. PMID: 3611357, PMCID: PMC442269, DOI: 10.1172/jci113104.
- The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding.Anderson J, Morrow J. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding. Journal Of Biological Chemistry 1987, 262: 6365-6372. PMID: 3571263, DOI: 10.1016/s0021-9258(18)45579-2.
- Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions.Coleman T, Harris A, Mische S, Mooseker M, Morrow J. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. Journal Of Cell Biology 1987, 104: 519-526. PMID: 3818791, PMCID: PMC2114562, DOI: 10.1083/jcb.104.3.519.
- Spectrin Is Associated With Membrane-Bound Actin Filaments in Platelets and Is Hydrolyzed by the Ca2+-Dependent Protease During Platelet ActivationFox J, Reynolds C, Morrow J, Phillips D. Spectrin Is Associated With Membrane-Bound Actin Filaments in Platelets and Is Hydrolyzed by the Ca2+-Dependent Protease During Platelet Activation. Blood 1987, 69: 537-545. DOI: 10.1182/blood.v69.2.537.537.
- Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinasesCroall D, Morrow J, DeMartino G. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases. Biochimica Et Biophysica Acta 1986, 882: 287-296. PMID: 3015225, DOI: 10.1016/0304-4165(86)90250-3.
- A calmodulin and α-subunit binding domain in human erythrocyte spectrinSears D, Marchesi V, Morrow J. A calmodulin and α-subunit binding domain in human erythrocyte spectrin. Biochimica Et Biophysica Acta 1986, 870: 432-442. PMID: 3697360, DOI: 10.1016/0167-4838(86)90251-7.
- Abnormal spectrin in hereditary elliptocytosis.Marchesi S, Knowles W, Morrow J, Bologna M, Marchesi V. Abnormal spectrin in hereditary elliptocytosis. Blood 1986, 67: 141-51. PMID: 3940543, DOI: 10.1182/blood.v67.1.141.bloodjournal671141.
- Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrinHarris A, Anderson J, Yurchenco P, Green L, Ainger K, Morrow J. Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin. Journal Of Cellular Biochemistry 1986, 30: 51-69. PMID: 2420811, DOI: 10.1002/jcb.240300107.
- Abnormal spectrin in hereditary elliptocytosisMarchesi S, Marchesi S, Knowles W, Knowles W, Morrow J, Morrow J, Bologna M, Bologna M, Marchesi V, Marchesi V. Abnormal spectrin in hereditary elliptocytosis. Blood 1986, 67: 141-151. DOI: 10.1182/blood.v67.1.141.141.
- Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins.Howe C, Sacramone L, Mooseker M, Morrow J. Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. Journal Of Cell Biology 1985, 101: 1379-1385. PMID: 2931438, PMCID: PMC2113910, DOI: 10.1083/jcb.101.4.1379.
- Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrinHarris A, Green L, Ainger K, Morrow J. Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin. Biochimica Et Biophysica Acta 1985, 830: 147-158. PMID: 2410030, DOI: 10.1016/0167-4838(85)90022-6.
- Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix.Pratt B, Harris A, Morrow J, Madri J. Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. American Journal Of Pathology 1984, 117: 349-54. PMID: 6507585, PMCID: PMC1900592.
- Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis.Knowles W, Morrow J, Speicher D, Zarkowsky H, Mohandas N, Mentzer W, Shohet S, Marchesi V. Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis. Journal Of Clinical Investigation 1983, 71: 1867-1877. PMID: 6863544, PMCID: PMC370392, DOI: 10.1172/jci110942.
- [23] Erythrocyte membrane proteins: Detection of spectrin oligomers by gel electrophoresisMorrow J, Haigh W. [23] Erythrocyte membrane proteins: Detection of spectrin oligomers by gel electrophoresis. 1983, 96: 298-304. PMID: 6656632, DOI: 10.1016/s0076-6879(83)96027-5.
- Molecular Features of the Cytoskeletal proteins of the Red Cell MembraneMarchesi V, Morrow J, Speicher D, Knowles W. Molecular Features of the Cytoskeletal proteins of the Red Cell Membrane. 1982, 699-712. DOI: 10.1515/9783110861051-062.
- A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains.Speicher D, Morrow J, Knowles W, Marchesi V. A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains. Journal Of Biological Chemistry 1982, 257: 9093-9101. PMID: 7096353, DOI: 10.1016/s0021-9258(18)34247-9.
- Monoclonal antibodies as probes of domain structure of the spectrin alpha subunit.Yurchenco P, Speicher D, Morrow J, Knowles W, Marchesi V. Monoclonal antibodies as probes of domain structure of the spectrin alpha subunit. Journal Of Biological Chemistry 1982, 257: 9102-9107. PMID: 7096354, DOI: 10.1016/s0021-9258(18)34248-0.
- The Polymeric State of Actin in the Human Erythrocyte CytoskeletonAtkinson M, Morrow J, Marchesi V. The Polymeric State of Actin in the Human Erythrocyte Cytoskeleton. Journal Of Cellular Biochemistry 1982, 18: 493-505. PMID: 7200988, DOI: 10.1002/jcb.1982.240180410.
- Molecular Features of the Cytoskeleton of the Red Cell MembraneMarchesi V, Morrow J, Speicher D, Knowles W. Molecular Features of the Cytoskeleton of the Red Cell Membrane. 1982, 421-426. DOI: 10.1007/978-1-4684-4085-0_61.
- Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton.Morrow J, Marchesi V. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. Journal Of Cell Biology 1981, 88: 463-468. PMID: 7204503, PMCID: PMC2111738, DOI: 10.1083/jcb.88.2.463.
- Spectrin oligomers: A structural feature of the erythrocyte cytoskeletonMorrow J, Haigh W, Marchesi V. Spectrin oligomers: A structural feature of the erythrocyte cytoskeleton. Journal Of Cellular Biochemistry 1981, 17: 275-287. PMID: 7328675, DOI: 10.1002/jsscb.380170308.
- [29] Measurement of CO2 binding: The 13C NMR methodMorrow J, Matthew J, Gurd F. [29] Measurement of CO2 binding: The 13C NMR method. 1981, 76: 496-511. PMID: 6799730, DOI: 10.1016/0076-6879(81)76139-1.
- Identification of functional domains of human erythrocyte spectrin.Morrow J, Speicher D, Knowles W, Hsu C, Marchesi V. Identification of functional domains of human erythrocyte spectrin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 6592-6596. PMID: 6935670, PMCID: PMC350332, DOI: 10.1073/pnas.77.11.6592.
- Identification of proteolytically resistant domains of human erythrocyte spectrin.Speicher D, Morrow J, Knowles W, Marchesi V. Identification of proteolytically resistant domains of human erythrocyte spectrin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 5673-5677. PMID: 7003593, PMCID: PMC350131, DOI: 10.1073/pnas.77.10.5673.
- The Carbamate Reaction with Proteins: Observation by 13C-NMR and Evaluation of Structural ConsequencesGurd F, Matthew J, Wittebort R, Morrow J, Friend S. The Carbamate Reaction with Proteins: Observation by 13C-NMR and Evaluation of Structural Consequences. 1980, 89-101. DOI: 10.1007/978-3-642-67572-0_10.
- Quantitative determination of carbamino adducts of alpha and beta chains in human adult hemoglobin in presence and absence of carbon monoxide and 2,3-diphosphoglycerate.Matthew J, Morrow J, Wittebort R, Gurd F. Quantitative determination of carbamino adducts of alpha and beta chains in human adult hemoglobin in presence and absence of carbon monoxide and 2,3-diphosphoglycerate. Journal Of Biological Chemistry 1977, 252: 2234-2244. PMID: 14958, DOI: 10.1016/s0021-9258(17)40546-1.
- Carbon 13 resonances of 13CO2 carbamino adducts of alpha and beta chains in human adult hemoglobin.Morrow J, Matthew J, Wittebort R, Gurd F. Carbon 13 resonances of 13CO2 carbamino adducts of alpha and beta chains in human adult hemoglobin. Journal Of Biological Chemistry 1976, 251: 477-484. PMID: 1395, DOI: 10.1016/s0021-9258(17)33904-2.
- Nuclear Magnetic Resonance Studies Of Hemoglobin: Functional State Correlations And Isotopic Enrichment StrategieMorrow J, Gurd F, Ho C. Nuclear Magnetic Resonance Studies Of Hemoglobin: Functional State Correlations And Isotopic Enrichment Strategie. Critical Reviews In Biochemistry 1975, 3: 221-287. PMID: 3388, DOI: 10.3109/10409237509105453.
- CO2 Adducts of Certain Amino Acids, Peptides, and Sperm Whale Myoglobin Studied by Carbon 13 and Proton Nuclear Magnetic ResonanceMorrow J, Keim P, Gurd F. CO2 Adducts of Certain Amino Acids, Peptides, and Sperm Whale Myoglobin Studied by Carbon 13 and Proton Nuclear Magnetic Resonance. Journal Of Biological Chemistry 1974, 249: 7484-7494. PMID: 4436319, DOI: 10.1016/s0021-9258(19)81264-4.
- Ligand-dependent aggregation of chicken hemoglobin AIMorrow J, Wittebort R, Gurd F. Ligand-dependent aggregation of chicken hemoglobin AI. Biochemical And Biophysical Research Communications 1974, 60: 1058-1065. PMID: 4429560, DOI: 10.1016/0006-291x(74)90420-3.
- Carbon 13 Nuclear Magnetic Resonance of Pentapeptides of Glycine Containing Central Residues of Methionine, Proline, Arginine, and LysineKeim P, Vigna R, Nigen A, Morrow J, Gurd F. Carbon 13 Nuclear Magnetic Resonance of Pentapeptides of Glycine Containing Central Residues of Methionine, Proline, Arginine, and Lysine. Journal Of Biological Chemistry 1974, 249: 4149-4156. PMID: 4850872, DOI: 10.1016/s0021-9258(19)42496-4.
- 13C NMR Studies of the Interaction of Hb and Carbonic Anhydrase with 13CO2Gurd F, Morrow J, Keim P, Visscher R, Marshall R. 13C NMR Studies of the Interaction of Hb and Carbonic Anhydrase with 13CO2. 1974, 48: 109-124. PMID: 4215298, DOI: 10.1007/978-1-4684-0943-7_6.
- Carbon 13 Nuclear Magnetic Resonance of Pentapeptides of Glycine Containing Central Residues of Serine, Threonine, Aspartic and Glutamic Acids, Asparagine, and GlutamineKeim P, Vigna R, Morrow J, Marshall R, Gurd F. Carbon 13 Nuclear Magnetic Resonance of Pentapeptides of Glycine Containing Central Residues of Serine, Threonine, Aspartic and Glutamic Acids, Asparagine, and Glutamine. Journal Of Biological Chemistry 1973, 248: 7811-7818. PMID: 4750428, DOI: 10.1016/s0021-9258(19)43261-4.
- Interaction of 13CO2 and Bicarbonate with Human Hemoglobin PreparationsMorrow J, Keim P, Visscher R, Marshall R, Gurd F. Interaction of 13CO2 and Bicarbonate with Human Hemoglobin Preparations. Proceedings Of The National Academy Of Sciences Of The United States Of America 1973, 70: 1414-1418. PMID: 4514311, PMCID: PMC433509, DOI: 10.1073/pnas.70.5.1414.
- Carbon 13 Nuclear Magnetic Resonance Spectroscopy of Myoglobins Carboxymethylated with Enriched [2-13C]BromoacetateNigen A, Keim P, Marshall R, Morrow J, Vigna R, Gurd F. Carbon 13 Nuclear Magnetic Resonance Spectroscopy of Myoglobins Carboxymethylated with Enriched [2-13C]Bromoacetate. Journal Of Biological Chemistry 1973, 248: 3724-3732. PMID: 4735715, DOI: 10.1016/s0021-9258(19)43986-0.
- Carbon 13 Nuclear Magnetic Resonance Spectroscopy of Myoglobins and Ribonuclease A Carboxymethylated with Enriched [2-13C]BromoacetateNigen A, Keim P, Marshall R, Morrow J, Gurd F. Carbon 13 Nuclear Magnetic Resonance Spectroscopy of Myoglobins and Ribonuclease A Carboxymethylated with Enriched [2-13C]Bromoacetate. Journal Of Biological Chemistry 1972, 247: 4100-4102. PMID: 5033404, DOI: 10.1016/s0021-9258(19)45145-4.