2024
A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation.
Liu W, Lowrey H, Xu A, Leung C, Adamchek C, He J, Du J, Chen M, Gendron J. A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408322121. PMID: 39163340, PMCID: PMC11363348, DOI: 10.1073/pnas.2408322121.Peer-Reviewed Original ResearchConceptsPhytochrome-interacting factorsF-boxRed-light photoreceptor phytochrome BPhotoreceptor phytochrome BCircadian clock outputE3 ubiquitin ligaseDownstream biological processesPhyB signalingGrowth-regulating mechanismsTranscriptional connectionsPhytochrome BClock's roleRhythmic transcriptionUbiquitin ligaseClock regulationGenetic evidenceMonochromatic red lightProtein stabilityCircadian clockPhyBBiological processesPlant growthClock outputCircadian expressionRegulation mechanismPlants distinguish different photoperiods to independently control seasonal flowering and growth
Wang Q, Liu W, Leung C, Tarté D, Gendron J. Plants distinguish different photoperiods to independently control seasonal flowering and growth. Science 2024, 383: eadg9196. PMID: 38330117, PMCID: PMC11134419, DOI: 10.1126/science.adg9196.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian RhythmFlowersGene Expression Regulation, PlantMyo-Inositol-1-Phosphate SynthasePhotoperiodSeasonsConceptsPhotoperiodic growthSeasonal floweringControl expression of genesDuration of photosynthetic activityGrowth-regulating pathwaysExpression of genesPhotosynthetic periodMeasure photoperiodPhotoperiodic floweringPhotosynthetic activityControl expressionFlowering mechanismRegulation pathwaysSeasonal growthFlowersLong daysDifferent photoperiodsPhotoperiodLight intensityPlantsGrowthMutantsGenesPathway
2023
Phosphoproteome analyses pinpoint the F‐box protein SLOW MOTION as a regulator of warm temperature‐mediated hypocotyl growth in Arabidopsis
Zhu S, Pan L, Vu L, Xu X, Orosa‐Puente B, Zhu T, Neyt P, van de Cotte B, Jacobs T, Gendron J, Spoel S, Gevaert K, De Smet I. Phosphoproteome analyses pinpoint the F‐box protein SLOW MOTION as a regulator of warm temperature‐mediated hypocotyl growth in Arabidopsis. New Phytologist 2023, 241: 687-702. PMID: 37950543, PMCID: PMC11091872, DOI: 10.1111/nph.19383.Peer-Reviewed Original ResearchArabidopsis Tubby domain‐containing F‐box proteins positively regulate immunity by modulating PI4Kβ protein levels
Devendrakumar K, Copeland C, Adamchek C, Zhong X, Huang X, Gendron J, Li X. Arabidopsis Tubby domain‐containing F‐box proteins positively regulate immunity by modulating PI4Kβ protein levels. New Phytologist 2023, 240: 354-371. PMID: 37571862, PMCID: PMC11114105, DOI: 10.1111/nph.19187.Peer-Reviewed Original ResearchMeSH Keywords1-Phosphatidylinositol 4-KinaseAnimalsArabidopsisArabidopsis ProteinsCytoplasmF-Box ProteinsMiceConceptsTubby-like proteinsN-terminal F-box domainF-box E3 ligase complexesImmunoprecipitation-mass spectrometry analysisArabidopsis Immune ResponsesPlant immune responsesProtein levelsDomain-containing proteinsF-box domainF-box proteinsE3 ligase complexProteasome-dependent mannerRedundant homologsOverexpression linesTubby domainUbiquitination substratesSkp1-CullinTLP functionsLigase complexTubby proteinBiosynthesis enzymesDouble mutantMass spectrometry analysisProtein 6Novel mechanism
2022
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana
Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, Kamran M, Khosla A, Liu W, Gendron JM, Gutjahr C, Waters MT, Nelson DC. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2112820119. PMID: 35254909, PMCID: PMC8931227, DOI: 10.1073/pnas.2112820119.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsFuransGene Expression Regulation, PlantGenes, PlantHydrolasesPyransSeedlingsSignal TransductionConceptsKAI2-ligandsF-BOX 1Fire-prone environmentsArabidopsis thalianaNegative feedback loopKarrikinsNegative feedback regulationFeedback regulationExpression increasesPlantsGerminationLigand metabolismFeedback loopFurther activationMetabolismThalianaBiosynthesisGenesSpeciesRegulationPathwayActivationDiscoveryResponseGrowth
2021
A metabolic daylength measurement system mediates winter photoperiodism in plants
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Developmental Cell 2021, 56: 2501-2515.e5. PMID: 34407427, PMCID: PMC8440495, DOI: 10.1016/j.devcel.2021.07.016.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian ClocksCircadian RhythmFlowersGene Expression Regulation, PlantPhotoperiodSeasonsConceptsPhotoperiodic floweringPlant fitnessCellular healthMetabolic networksStudy systemPhotoperiodic regulationWinter-like photoperiodsVegetative healthPhotoperiodic expressionsSucrose levelsPlantsStarch productionFloweringPhotoperiodismArabidopsisPhotosynthesisGenesPromoterFlowersBioinformaticsReporterLuciferaseFitnessRegulationPhotoperiodA microProtein repressor complex in the shoot meristem controls the transition to flowering
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. Plant Physiology 2021, 187: 187-202. PMID: 34015131, PMCID: PMC8418433, DOI: 10.1093/plphys/kiab235.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsFlorigenFlowersJumonji Domain-Containing Histone DemethylasesMeristemConceptsShoot apical meristemEarly flowering phenotypeGenetic suppressor screenPost-translational regulatorFloral repressionSuppressor screenChromatin modificationsFloral transitionFloral meristemRepressive complexesShoot meristemRepressor complexGenetic interactionsApical meristemCONSTANSEarly floweringShoot apexUndifferentiated stateJMJ14Sequencing studiesMeristemAdditional roleSum1MicroproteinsPlantsFunctional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function
Feke A, Vanderwall M, Liu W, Gendron JM. Functional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function. PLOS ONE 2021, 16: e0235938. PMID: 33730063, PMCID: PMC7968664, DOI: 10.1371/journal.pone.0235938.Peer-Reviewed Original ResearchConceptsLOV KELCH PROTEIN 2Kelch repeat domainRepeat domainLOV domainsF-BOX PROTEIN 1Protein-protein interaction domainsPlant circadian clockFLAVIN-BINDING KELCHProtein domain architecturePotential interacting partnerE3 ubiquitin ligasesInteracting partnerDomain architectureProtein complexesUbiquitin ligasesKelch proteinProtein familyTransgenic linesFlowering timeKelch familyProtein domainsZEITLUPEInteraction domainClock functionUnique photoreceptor
2020
A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis
Feke AM, Hong J, Liu W, Gendron JM. A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 2020, 215: 699-712. PMID: 32434795, PMCID: PMC7337086, DOI: 10.1534/genetics.120.303199.Peer-Reviewed Original ResearchConceptsE3 ubiquitin ligasesUbiquitin ligasesU-box E3 ubiquitin ligasesReproductive developmentReverse genetic screenMOS4-associated complexDominant-negative strategyGenetic redundancyGenetic screenTransgenic populationsTargeted degradationLigasesUnidentified regulatorDevelopmental transitionsBiological processesGenetic characterizationU-boxBiochemical studiesWidespread importanceRegulatorArabidopsisOrganismsPlantsProteinComplexesSame Concept Different Outcomes: Sugars Determine Circadian Clock Protein Fate in Animals and Plants
Liu W, Gendron J. Same Concept Different Outcomes: Sugars Determine Circadian Clock Protein Fate in Animals and Plants. Molecular Plant 2020, 13: 360-362. PMID: 32092448, DOI: 10.1016/j.molp.2020.02.013.Peer-Reviewed Original Research
2019
GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex
Lee CM, Li MW, Feke A, Liu W, Saffer AM, Gendron JM. GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex. Nature Communications 2019, 10: 3750. PMID: 31434902, PMCID: PMC6704089, DOI: 10.1038/s41467-019-11769-7.Peer-Reviewed Original ResearchConceptsDeubiquitylating enzymesCircadian clockTarget proteinsE3 ubiquitin ligase activityPlant circadian clockUbiquitin-specific protease 12Post-transcriptional mechanismsUbiquitin ligase activityPhotoreceptor complexZTL proteinProtein ubiquitylationInteracting partnerProtein complexesLigase activityZEITLUPEUBP12Gi protein levelsUBP13Enzyme typeLight conditionsGiganteaProtein levelsProteinEnzymeDay light conditionsDecoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function
Feke A, Liu W, Hong J, Li MW, Lee CM, Zhou EK, Gendron JM. Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. ELife 2019, 8: e44558. PMID: 30950791, PMCID: PMC6483598, DOI: 10.7554/elife.44558.Peer-Reviewed Original ResearchConceptsE3 ubiquitin ligasesUbiquitin ligasesCircadian clockCircadian functionPlant E3 ubiquitin ligasesTransgenic Arabidopsis plantsNew potential regulatorsArabidopsis plantsRegulated degradationPlant developmentClock proteinsClock regulatorsFunctional redundancyE3 ubiquitinProtein degradationGenetic challengesLigasesPotential regulatorCircadian periodScreening platformUbiquitinRegulatorDecoysSplicingClock
2018
Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins
Lee CM, Feke A, Li MW, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. Plant Physiology 2018, 177: 1170-1186. PMID: 29794020, PMCID: PMC6052990, DOI: 10.1104/pp.18.00331.Peer-Reviewed Original ResearchConceptsLOV KELCH PROTEIN2Target proteinsCircadian clockEukaryotic circadian clocksF-box proteinsE3 ubiquitin ligasesUbiquitin-proteasome systemDominant-negative formImmunoprecipitation-mass spectrometryMutant plantsF-BOX1Genetic redundancyChe proteinsKELCH REPEATClock proteinsUbiquitin ligasesZEITLUPEFlowering timeFKF1Proteasome systemFlavin bindingBiochemical roleProteinLight conditionsUbiquitylation
2012
Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis
Gendron JM, Liu JS, Fan M, Bai MY, Wenkel S, Springer PS, Barton MK, Wang ZY. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 21152-21157. PMID: 23213257, PMCID: PMC3529081, DOI: 10.1073/pnas.1210799110.Peer-Reviewed Original ResearchConceptsShoot apical meristemOrgan boundary formationIdentity genesOrgan primordiaApical meristemGene expressionTranscription factor BZR1Architecture of plantsBR-insensitive mutantsBoundary formationSpatiotemporal controlOrgan boundariesStem cell nicheWT plantsUnderlying signaling mechanismsFusion phenotypeBrassinosteroidsCell nicheSignaling mechanismMeristemCentral meristemBZR1MutantsPrimordiaGenesArabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3167-3172. PMID: 22315425, PMCID: PMC3286946, DOI: 10.1073/pnas.1200355109.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsisArabidopsis ProteinsBase SequenceCircadian ClocksDNA, PlantDNA-Binding ProteinsGene Expression Regulation, PlantGenes, PlantMolecular Sequence DataPromoter Regions, GeneticProtein BindingProtein Structure, TertiaryRepressor ProteinsTranscription FactorsTranscription, GeneticConceptsCIRCADIAN CLOCK ASSOCIATED 1CCT domainTranscription factorsDNA-binding transcription factorsGAL4/UAS systemCAB EXPRESSION 1MYB transcription factorsArabidopsis circadian clockCCA1/LHYDNA-binding domainSpecific genomic regionsCircadian clock proteinsGeneral transcriptional repressorGenetic data supportChemical inductionLHY promoterPlant clockTOC1 promoterArabidopsis seedlingsRepression activityGenomic scaleClock proteinsLHY expressionTranscriptional repressorGenomic regions
2011
PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1
Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology 2011, 13: 124-131. PMID: 21258370, PMCID: PMC3077550, DOI: 10.1038/ncb2151.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsisArabidopsis ProteinsDNA-Binding ProteinsGene Expression Regulation, PlantMolecular Sequence DataNuclear ProteinsPhosphorylationPlant Growth RegulatorsPlants, Genetically ModifiedProtein Phosphatase 2Sequence AlignmentSignal TransductionTriazolesTwo-Hybrid System Techniques
2008
Chemical Genetic Dissection of Brassinosteroid–Ethylene Interaction
Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang ZY. Chemical Genetic Dissection of Brassinosteroid–Ethylene Interaction. Molecular Plant 2008, 1: 368-379. PMID: 19825546, PMCID: PMC2975526, DOI: 10.1093/mp/ssn005.Peer-Reviewed Original ResearchConceptsChemical inhibitorsChemical-genetic dissectionEthylene-insensitive mutantsChemical genetic screenApical hook formationBrassinosteroid actionBR biosynthesisBR synthesisEthylene mutantsGenetic screenEthylene pathwayEthylene responseGenetic dissectionPlant growthEthylene perceptionApical hookReporter geneBR treatmentHypocotyl lengthHook formationEthylene treatmentChemical librariesHormone interactionsMutantsSmall molecules
2007
Multiple mechanisms modulate brassinosteroid signaling
Gendron JM, Wang ZY. Multiple mechanisms modulate brassinosteroid signaling. Current Opinion In Plant Biology 2007, 10: 436-441. PMID: 17904409, PMCID: PMC2093957, DOI: 10.1016/j.pbi.2007.08.015.Peer-Reviewed Original ResearchConceptsTranscription factorsCell surface receptor kinaseSubsequent biochemical studiesBR perceptionNuclear transcription factorPlant growthMultiple mechanismsReceptor kinaseGene expressionIntracellular kinasesGenetic studiesBiochemical studiesCell surfaceEssential hormoneKinasePathwayRecent studiesBRI1BAK1BrassinosteroidsEndosomesMajor gapsPhosphorylationKey componentProteinAn Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis
Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY. An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis. Developmental Cell 2007, 13: 177-189. PMID: 17681130, PMCID: PMC2000337, DOI: 10.1016/j.devcel.2007.06.009.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAmino Acid SequenceArabidopsisArabidopsis ProteinsBinding SitesCell NucleusDNA, PlantDNA-Binding ProteinsDown-RegulationModels, BiologicalMolecular Sequence DataMutationNuclear ProteinsPhosphorylationPlant LeavesProtein BindingProtein KinasesProtein TransportSignal TransductionSteroids, HeterocyclicConceptsPlant growthTranscription factorsNuclear localizationGene expressionBZR2/BES1Brassinosteroid signal transductionSignal transduction pathwaysKey transcription factorRapid nuclear localizationBZR1 proteinCell surface receptorsBR regulationBR deficiencyTransgenic plantsGSK3 kinaseBR responsesCytoplasmic retentionSignal transductionTransduction pathwaysCytoplasmic localizationDNA bindingBrassinosteroidsBR treatmentBZR1Essential hormone
2005
BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses
He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY. BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science 2005, 307: 1634-1638. PMID: 15681342, PMCID: PMC2925132, DOI: 10.1126/science.1107580.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsBase SequenceBinding SitesChromatin ImmunoprecipitationDNA-Binding ProteinsFeedback, PhysiologicalGene Expression Regulation, PlantGenes, PlantGenes, ReporterHomeostasisLightMutationNuclear ProteinsOligonucleotide Array Sequence AnalysisPhenotypePlant Growth RegulatorsPlants, Genetically ModifiedPromoter Regions, GeneticRecombinant Fusion ProteinsRepressor ProteinsSignal TransductionSteroidsTranscription, GeneticConceptsBrassinosteroid homeostasisTranscriptional repressorCell surface receptor kinaseBR biosynthetic genesDevelopment of plantsGrowth responseBR homeostasisBR biosynthesisBiosynthetic genesBZR1Dual roleReceptor kinaseAdditional potential targetsGene expressionMicroarray analysisUnknown DNARepressorNormal growthHomeostasisPotential targetPhysiological studiesDephosphorylationBiosynthesisKinaseGenes