2024
Plants distinguish different photoperiods to independently control seasonal flowering and growth
Wang Q, Liu W, Leung C, Tarté D, Gendron J. Plants distinguish different photoperiods to independently control seasonal flowering and growth. Science 2024, 383: eadg9196. PMID: 38330117, PMCID: PMC11134419, DOI: 10.1126/science.adg9196.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian RhythmFlowersGene Expression Regulation, PlantMyo-Inositol-1-Phosphate SynthasePhotoperiodSeasonsConceptsPhotoperiodic growthSeasonal floweringControl expression of genesDuration of photosynthetic activityGrowth-regulating pathwaysExpression of genesPhotosynthetic periodMeasure photoperiodPhotoperiodic floweringPhotosynthetic activityControl expressionFlowering mechanismRegulation pathwaysSeasonal growthFlowersLong daysDifferent photoperiodsPhotoperiodLight intensityPlantsGrowthMutantsGenesPathway
2023
Phosphoproteome analyses pinpoint the F‐box protein SLOW MOTION as a regulator of warm temperature‐mediated hypocotyl growth in Arabidopsis
Zhu S, Pan L, Vu L, Xu X, Orosa‐Puente B, Zhu T, Neyt P, van de Cotte B, Jacobs T, Gendron J, Spoel S, Gevaert K, De Smet I. Phosphoproteome analyses pinpoint the F‐box protein SLOW MOTION as a regulator of warm temperature‐mediated hypocotyl growth in Arabidopsis. New Phytologist 2023, 241: 687-702. PMID: 37950543, PMCID: PMC11091872, DOI: 10.1111/nph.19383.Peer-Reviewed Original ResearchNew Horizons in Plant Photoperiodism
Gendron J, Staiger D. New Horizons in Plant Photoperiodism. Annual Review Of Plant Biology 2023, 74: 481-509. PMID: 36854481, PMCID: PMC11114106, DOI: 10.1146/annurev-arplant-070522-055628.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisCircadian RhythmGene Expression Regulation, PlantPhotoperiodPlantsReproductionConceptsPlant photoperiodismRecent molecular genetic studiesGene regulatory networksMolecular genetic studiesPhotoperiodic floweringPlant speciesRegulatory networksDevelopmental processesMetabolic networksGenetic studiesPhotoperiodismSeasonal changesOrganismsPlantsPotential rolePhotoperiodClimate changeLatitudinal migrationTranscriptomicsFloweringSpeciesGrowthMigrationReproductionRice
2022
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana
Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, Kamran M, Khosla A, Liu W, Gendron JM, Gutjahr C, Waters MT, Nelson DC. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2112820119. PMID: 35254909, PMCID: PMC8931227, DOI: 10.1073/pnas.2112820119.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsFuransGene Expression Regulation, PlantGenes, PlantHydrolasesPyransSeedlingsSignal TransductionConceptsKAI2-ligandsF-BOX 1Fire-prone environmentsArabidopsis thalianaNegative feedback loopKarrikinsNegative feedback regulationFeedback regulationExpression increasesPlantsGerminationLigand metabolismFeedback loopFurther activationMetabolismThalianaBiosynthesisGenesSpeciesRegulationPathwayActivationDiscoveryResponseGrowth
2021
A metabolic daylength measurement system mediates winter photoperiodism in plants
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Developmental Cell 2021, 56: 2501-2515.e5. PMID: 34407427, PMCID: PMC8440495, DOI: 10.1016/j.devcel.2021.07.016.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian ClocksCircadian RhythmFlowersGene Expression Regulation, PlantPhotoperiodSeasonsConceptsPhotoperiodic floweringPlant fitnessCellular healthMetabolic networksStudy systemPhotoperiodic regulationWinter-like photoperiodsVegetative healthPhotoperiodic expressionsSucrose levelsPlantsStarch productionFloweringPhotoperiodismArabidopsisPhotosynthesisGenesPromoterFlowersBioinformaticsReporterLuciferaseFitnessRegulationPhotoperiod
2020
A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis
Feke AM, Hong J, Liu W, Gendron JM. A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 2020, 215: 699-712. PMID: 32434795, PMCID: PMC7337086, DOI: 10.1534/genetics.120.303199.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsFlowersGene Expression Regulation, DevelopmentalGene Expression Regulation, PlantReverse GeneticsUbiquitin-Protein LigasesConceptsE3 ubiquitin ligasesUbiquitin ligasesU-box E3 ubiquitin ligasesReproductive developmentReverse genetic screenMOS4-associated complexDominant-negative strategyGenetic redundancyGenetic screenTransgenic populationsTargeted degradationLigasesUnidentified regulatorDevelopmental transitionsBiological processesGenetic characterizationU-boxBiochemical studiesWidespread importanceRegulatorArabidopsisOrganismsPlantsProteinComplexes
2019
GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex
Lee CM, Li MW, Feke A, Liu W, Saffer AM, Gendron JM. GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex. Nature Communications 2019, 10: 3750. PMID: 31434902, PMCID: PMC6704089, DOI: 10.1038/s41467-019-11769-7.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian ClocksEndopeptidasesGene Expression Regulation, PlantMutationTranscription FactorsUbiquitinationUbiquitin-Protein LigasesConceptsDeubiquitylating enzymesCircadian clockTarget proteinsE3 ubiquitin ligase activityPlant circadian clockUbiquitin-specific protease 12Post-transcriptional mechanismsUbiquitin ligase activityPhotoreceptor complexZTL proteinProtein ubiquitylationInteracting partnerProtein complexesLigase activityZEITLUPEUBP12Gi protein levelsUBP13Enzyme typeLight conditionsGiganteaProtein levelsProteinEnzymeDay light conditionsDecoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function
Feke A, Liu W, Hong J, Li MW, Lee CM, Zhou EK, Gendron JM. Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. ELife 2019, 8: e44558. PMID: 30950791, PMCID: PMC6483598, DOI: 10.7554/elife.44558.Peer-Reviewed Original ResearchConceptsE3 ubiquitin ligasesUbiquitin ligasesCircadian clockCircadian functionPlant E3 ubiquitin ligasesTransgenic Arabidopsis plantsNew potential regulatorsArabidopsis plantsRegulated degradationPlant developmentClock proteinsClock regulatorsFunctional redundancyE3 ubiquitinProtein degradationGenetic challengesLigasesPotential regulatorCircadian periodScreening platformUbiquitinRegulatorDecoysSplicingClock
2018
Characterization of Two Growth Period QTLs Reveals Modification of PRR3 Genes During Soybean Domestication
Li MW, Liu W, Lam HM, Gendron JM. Characterization of Two Growth Period QTLs Reveals Modification of PRR3 Genes During Soybean Domestication. Plant And Cell Physiology 2018, 60: 407-420. PMID: 30418611, DOI: 10.1093/pcp/pcy215.Peer-Reviewed Original ResearchMeSH KeywordsDomesticationGene Expression Regulation, PlantGenes, PlantPhylogenyPlant ProteinsQuantitative Trait LociSoybeansTranscription FactorsConceptsQuantitative trait lociTranscription repressor complexMultiple interval mappingCCT domainSoybean domesticationSoybean orthologsGrowth periodRepressor complexTrait lociGenomic regionsSoybean improvementGenetic networksSubcellular localizationInterval mappingTranscription factorsShort growth periodLociGp12GmFT2aGmFT5aE locusE2 locusGp11High expressionMutationsDecoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins
Lee CM, Feke A, Li MW, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. Plant Physiology 2018, 177: 1170-1186. PMID: 29794020, PMCID: PMC6052990, DOI: 10.1104/pp.18.00331.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCircadian ClocksFlowersGene Expression Regulation, PlantPlants, Genetically ModifiedProtein DomainsProtein Interaction MapsRepressor ProteinsUbiquitinationConceptsLOV KELCH PROTEIN2Target proteinsCircadian clockEukaryotic circadian clocksF-box proteinsE3 ubiquitin ligasesUbiquitin-proteasome systemDominant-negative formImmunoprecipitation-mass spectrometryMutant plantsF-BOX1Genetic redundancyChe proteinsKELCH REPEATClock proteinsUbiquitin ligasesZEITLUPEFlowering timeFKF1Proteasome systemFlavin bindingBiochemical roleProteinLight conditionsUbiquitylation
2012
Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis
Gendron JM, Liu JS, Fan M, Bai MY, Wenkel S, Springer PS, Barton MK, Wang ZY. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 21152-21157. PMID: 23213257, PMCID: PMC3529081, DOI: 10.1073/pnas.1210799110.Peer-Reviewed Original ResearchConceptsShoot apical meristemOrgan boundary formationIdentity genesOrgan primordiaApical meristemGene expressionTranscription factor BZR1Architecture of plantsBR-insensitive mutantsBoundary formationSpatiotemporal controlOrgan boundariesStem cell nicheWT plantsUnderlying signaling mechanismsFusion phenotypeBrassinosteroidsCell nicheSignaling mechanismMeristemCentral meristemBZR1MutantsPrimordiaGenesArabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3167-3172. PMID: 22315425, PMCID: PMC3286946, DOI: 10.1073/pnas.1200355109.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsisArabidopsis ProteinsBase SequenceCircadian ClocksDNA, PlantDNA-Binding ProteinsGene Expression Regulation, PlantGenes, PlantMolecular Sequence DataPromoter Regions, GeneticProtein BindingProtein Structure, TertiaryRepressor ProteinsTranscription FactorsTranscription, GeneticConceptsCIRCADIAN CLOCK ASSOCIATED 1CCT domainTranscription factorsDNA-binding transcription factorsGAL4/UAS systemCAB EXPRESSION 1MYB transcription factorsArabidopsis circadian clockCCA1/LHYDNA-binding domainSpecific genomic regionsCircadian clock proteinsGeneral transcriptional repressorGenetic data supportChemical inductionLHY promoterPlant clockTOC1 promoterArabidopsis seedlingsRepression activityGenomic scaleClock proteinsLHY expressionTranscriptional repressorGenomic regions
2011
PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1
Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology 2011, 13: 124-131. PMID: 21258370, PMCID: PMC3077550, DOI: 10.1038/ncb2151.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsisArabidopsis ProteinsDNA-Binding ProteinsGene Expression Regulation, PlantMolecular Sequence DataNuclear ProteinsPhosphorylationPlant Growth RegulatorsPlants, Genetically ModifiedProtein Phosphatase 2Sequence AlignmentSignal TransductionTriazolesTwo-Hybrid System Techniques
2009
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
Hazen SP, Naef F, Quisel T, Gendron JM, Chen H, Ecker JR, Borevitz JO, Kay SA. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biology 2009, 10: r17. PMID: 19210792, PMCID: PMC2688271, DOI: 10.1186/gb-2009-10-2-r17.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisCircadian RhythmExonsGene Expression ProfilingGene Expression Regulation, PlantGenome, PlantIntronsRNA, UntranslatedTranscription, GeneticConceptsArabidopsis genomeCircadian clockCircadian clock regulationPlant circadian rhythmsSmall nucleolar RNAsGenome tiling arraysRhythmic expression patternCircadian rhythmClock regulationTranscriptional landscapeTiling arraysIntergenic regionNucleolar RNAsAntisense transcriptsUnbiased interrogationWhole genomeNoncoding regionsExpression patternsGenomeSense strandTranscriptsGenesProteinUnbiased analysisIntrons
2005
BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses
He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY. BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science 2005, 307: 1634-1638. PMID: 15681342, PMCID: PMC2925132, DOI: 10.1126/science.1107580.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsBase SequenceBinding SitesChromatin ImmunoprecipitationDNA-Binding ProteinsFeedback, PhysiologicalGene Expression Regulation, PlantGenes, PlantGenes, ReporterHomeostasisLightMutationNuclear ProteinsOligonucleotide Array Sequence AnalysisPhenotypePlant Growth RegulatorsPlants, Genetically ModifiedPromoter Regions, GeneticRecombinant Fusion ProteinsRepressor ProteinsSignal TransductionSteroidsTranscription, GeneticConceptsBrassinosteroid homeostasisTranscriptional repressorCell surface receptor kinaseBR biosynthetic genesDevelopment of plantsGrowth responseBR homeostasisBR biosynthesisBiosynthetic genesBZR1Dual roleReceptor kinaseAdditional potential targetsGene expressionMicroarray analysisUnknown DNARepressorNormal growthHomeostasisPotential targetPhysiological studiesDephosphorylationBiosynthesisKinaseGenes
2002
The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis
He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99: 10185-10190. PMID: 12114546, PMCID: PMC126645, DOI: 10.1073/pnas.152342599.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCalcium-Calmodulin-Dependent Protein KinasesDNA-Binding ProteinsGene Expression Regulation, PlantGlycogen Synthase Kinase 3Glycogen Synthase KinasesGreen Fluorescent ProteinsLuminescent ProteinsNuclear ProteinsPhosphorylationPhytosterolsPlants, Genetically ModifiedProtein KinasesSignal TransductionConceptsPositive regulatorBZR2/BES1Two-hybrid assayBZR1 proteinReceptor BRI1BZR1Proteasome machineryBrassinosteroidsBIN2 activityNegative regulatorBIN2Protein accumulationRegulatorNormal growthDephosphorylationProteasome inhibitorsAccumulationBES1BRI1ArabidopsisPhosphorylatesSteroid hormonesMG132YeastPhosphorylationNuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis
Wang Z, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J. Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell 2002, 2: 505-513. PMID: 11970900, DOI: 10.1016/s1534-5807(02)00153-3.Peer-Reviewed Original ResearchConceptsBR biosynthesisBR signal transduction pathwayCell surface receptor kinasePlant steroid hormonesSignal transduction pathwaysBZR1 proteinBrassinosteroid biosynthesisBR responsesPositive regulatorReceptor kinaseTransduction pathwaysBrassinosteroidsBZR1Gene expressionDominant mutationsFeedback regulationBiosynthesisNuclear componentsMutationsRegulationPathwayBRI1Steroid hormonesKinaseHypocotyls