2025
Reduced DJ-1-F1Fo ATP synthase association correlates with midbrain dopaminergic neuron vulnerability in idiopathic Parkinson’s disease
Abulimiti A, Bae H, Ali A, Balakrishnan S, Tsujishita M, Gveric D, Tierney T, Jonas E, Smith P, Gentleman S, Alavian K. Reduced DJ-1-F1Fo ATP synthase association correlates with midbrain dopaminergic neuron vulnerability in idiopathic Parkinson’s disease. Science Advances 2025, 11: eads3051. PMID: 40479058, PMCID: PMC12143374, DOI: 10.1126/sciadv.ads3051.Peer-Reviewed Original ResearchConceptsProximity ligation assayVentral tegmental areaF1Fo-ATP synthaseProximity ligation assay signalsMetabolic efficiencyVentral tegmental area neuronsMitochondrial metabolic efficiencyProtein productionLigation assayMitochondrial activityMetabolic homeostasisIntracellular compartmentsMitochondrial efficiencyDistal neuritesParkinson's diseaseControl postmortem brainsImpaired mitochondrial efficiencySubstantia nigra pars compactaDopaminergic neuron vulnerabilityMesDA neuronsMesencephalic dopaminergicNeuronal vulnerabilityTegmental areaNeuronal subpopulationsIdiopathic Parkinson's disease
2017
The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease
Jonas E, Porter G, Beutner G, Mnatsakanyan N, Park H, Mehta N, Chen R, Alavian K. The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease. Biological And Medical Physics, Biomedical Engineering 2017, 69-105. DOI: 10.1007/978-3-319-55539-3_3.Peer-Reviewed Original ResearchMitochondrial permeability transition porePermeability transition poreCell deathTransition poreMitochondrial inner membraneInner mitochondrial membraneC subunitATP synthaseInner membraneOuter membraneMitochondrial membraneCardiac developmentRegulatory mechanismsOxidative phosphorylationATP productionMitochondrial functionMolecular componentsMitochondrial efficiencyOsmotic dysregulationCell functionLarge conductanceRecent findingsPersistent openingMembraneIon transport
2011
Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nature Cell Biology 2011, 13: 1224-1233. PMID: 21926988, PMCID: PMC3186867, DOI: 10.1038/ncb2330.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsbcl-2 Homologous Antagonist-Killer Proteinbcl-2-Associated X Proteinbcl-X ProteinBiphenyl CompoundsCarbonyl Cyanide p-TrifluoromethoxyphenylhydrazoneCells, CulturedEnergy MetabolismEnzyme InhibitorsHippocampusHydrolysisMembrane Potential, MitochondrialMitochondriaMitochondrial MembranesMitochondrial Proton-Translocating ATPasesNeuronsNitrophenolsOligomycinsOxygen ConsumptionPatch-Clamp TechniquesPiperazinesProton IonophoresRatsRecombinant Fusion ProteinsRNA InterferenceSulfonamidesSynapsesTime FactorsTransfectionConceptsBcl-xLSynthase complexATP synthaseMitochondrial F1Fo-ATP synthaseAnti-apoptotic BCL2 family proteinsF1Fo-ATP synthaseATP synthase complexF1FO-ATPase activityBcl-xL activityATPase activityBcl-xL proteinBCL2 family proteinsEndogenous Bcl-xLPresence of ATPFamily proteinsATPase complexNormal neuronal functionMembrane leak conductanceSubmitochondrial vesiclesΒ-subunitProtect cellsGenetic inhibitionMitochondrial efficiencyF1FoApoptotic molecules
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply