Fast-MC-PET: A Novel Deep Learning-Aided Motion Correction and Reconstruction Framework for Accelerated PET
Zhou B, Tsai Y, Zhang J, Guo X, Xie H, Chen X, Miao T, Lu Y, Duncan J, Liu C. Fast-MC-PET: A Novel Deep Learning-Aided Motion Correction and Reconstruction Framework for Accelerated PET. Lecture Notes In Computer Science 2023, 13939: 523-535. DOI: 10.1007/978-3-031-34048-2_40.Peer-Reviewed Original ResearchReconstruction frameworkMotion correctionMotion-compensated reconstructionHigh-quality imagesHigh-quality reconstruction imagesReconstruction moduleFrame reconstructionReconstruction outputMotion correction methodMotion modelingReconstructed imagesReconstruction methodImage qualityMotion typesImagesPatient motionExperimental resultsMotion-induced artifactsAcquisition dataReconstruction imagesLong acquisition timesFrameworkMultiple typesLow SNRPET acquisitionDirect respiratory motion correction of whole-body PET images using a deep learning framework incorporating spatial information
Miao T, Tsai Y, Zhou B, Menard D, Schleyer P, Hong I, Casey M, Liu C. Direct respiratory motion correction of whole-body PET images using a deep learning framework incorporating spatial information. Progress In Biomedical Optics And Imaging 2023, 12463: 124633x-124633x-9. DOI: 10.1117/12.2654472.Peer-Reviewed Original ResearchDeep learning frameworkRespiratory motion correctionMotion-corrected imagesLearning frameworkImage domainSpatial informationData-driven gating methodMotion correctionMotion detection techniqueGround truth imagesU-NetTruth imagesPET imagesData driving methodImage reconstructionWhole-body PET imagesMotion sensorsDetection techniquesExternal motion sensorsCross validationImagesConvenient mannerFrameworkRespiratory motionInformation