2024
Multimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI
Ma C, Han P, Marin T, Zhuo Y, Shih H, Fakhri G. Multimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10656528.Peer-Reviewed Original ResearchList-mode dataMR spectroscopic imagingSpatial resolutionAccurate brain tumor delineationMR physicsIsotropic resolutionBrain tumor delineationImprove treatment planningSpectroscopic imagingTumor delineationSignal-to-noise ratioIntact blood-brain barrierImaging speedAmino acid radiotracerImaging timeMR signalHigher proliferation activityStructural MRTreatment planningBlood-brain barrierMR spectroscopic imaging dataMolecular imaging of brain tumorsTumor involvementTumor infiltrationTumor marginsPET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR
Mounime I, Marin T, Han P, Ouyang J, Gori P, Angelini E, Fakhri G, Ma C. PET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657647.Peer-Reviewed Original ResearchOrdered-subset expectation maximizationMotion correctionGated reconstructionsMotion-corrected PET reconstructionsPET eventsCardiac motion phasesMotion correction methodCardiac motionMotion phaseReconstructed dynamic imagesPET reconstructionReal-time MR imagingSimultaneous PET/MRPatient motionSoft tissue contrastDynamic MR image reconstructionReference phaseMitigate artifactsLow-rank propertyMR image reconstructionPositron emission tomographyManifold learning frameworkSpatial resolutionBlurring artifactsImage reconstructionFree‐breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model
Lee W, Han P, Marin T, Mounime I, Eslahi S, Djebra Y, Chi D, Bijari F, Normandin M, Fakhri G, Ma C. Free‐breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model. Magnetic Resonance In Medicine 2024 PMID: 39402014, DOI: 10.1002/mrm.30284.Peer-Reviewed Original ResearchExtracellular volume mappingContrast agent injectionExtracellular volumeGradient echo readoutECV mapsAgent injectionWhole heartEcho readoutExtracellular volume valuesVoxel-by-voxelInversion recovery sequenceSpatial resolutionScan timeImaging timeIn vivo studiesHealthy volunteersModel-based methodsRecovery sequenceInjectionReadout
2022
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling
Djebra Y, Marin T, Han P, Bloch I, Fakhri G, Ma C. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling. IEEE Transactions On Medical Imaging 2022, 42: 158-169. PMID: 36121938, PMCID: PMC10024645, DOI: 10.1109/tmi.2022.3207774.Peer-Reviewed Original ResearchConceptsSpace alignmentSampled k-space dataState-of-the-art methodsIntrinsic low-dimensional manifold structureNumerical simulation studyLow-dimensional manifold structureState-of-the-artLinear subspace modelSparsity modelModel-based frameworkSubspace modelManifold structureMathematical modelManifold modelSparse samplingImage reconstructionMRI applicationsDynamic magnetic resonance imagingSpatiotemporal signalsSpatial resolutionPerformanceSimulation studyImagesMethodSparsityFree-running Simultaneous 3D Cardiac T1 Mapping and Cine Imaging Using a Linear Tangent Space Alignment Model
Djebra Y, Marin T, Han P, Bloch I, Fakhri G, Ma C. Free-running Simultaneous 3D Cardiac T1 Mapping and Cine Imaging Using a Linear Tangent Space Alignment Model. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2022 DOI: 10.58530/2022/4440.Peer-Reviewed Original Research
2021
Free‐breathing 3D cardiac T1 mapping with transmit B1 correction at 3T
Han P, Marin T, Djebra Y, Landes V, Zhuo Y, Fakhri G, Ma C. Free‐breathing 3D cardiac T1 mapping with transmit B1 correction at 3T. Magnetic Resonance In Medicine 2021, 87: 1832-1845. PMID: 34812547, PMCID: PMC8810588, DOI: 10.1002/mrm.29097.Peer-Reviewed Original ResearchConceptsFlip-angle estimationCardiac T<sub>1</sub> mappingGradient echo readoutThrough-plane spatial resolutionImaging timePractical imaging timesFree breathingPhantom studyB1 correctionAccelerated imagingIn-planeT)-spaceMyocardial T<sub>1</sub> valuesSubspace-based methodsSpatial resolutionImaging experimentsAcquisition schemeT)-space dataSubject-specific timeCorrectionModified Look-Locker inversion recoveryLook-Locker inversion recoveryTime of data acquisitionAverage imaging timeInversion-recovery sequence
2019
Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning
Gong K, Han P, Fakhri G, Ma C, Li Q. Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning. NMR In Biomedicine 2019, 35: e4224. PMID: 31865615, PMCID: PMC7306418, DOI: 10.1002/nbm.4224.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioImage denoisingReconstruction frameworkDeep learning-based image denoisingDeep learning-based denoisersMR image denoisingLearning-based denoisingLow signal-to-noise ratioK-space dataNoisy imagesTraining labelsTraining pairsNetwork inputNeural networkDenoisingIn vivo experiment dataSuperior performanceImaging speedReconstruction processImage qualityLong imaging timesNetworkFrameworkImagesSpatial resolutionMR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging
Petibon Y, Sun T, Han P, Ma C, Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging. Physics In Medicine And Biology 2019, 64: 195009. PMID: 31394518, PMCID: PMC7007962, DOI: 10.1088/1361-6560/ab39c2.Peer-Reviewed Original ResearchConceptsMR-based motion correctionRespiratory motion correctionMotion correctionImproved spatial resolutionReconstructed activity concentrationCardiac PET dataSpatial resolutionCoincidence eventsMR-basedPET imagingContrast-to-noise ratioCardiac PET imagingRespiratory phasesMC dataImprove image qualityMR acquisitionQuantitative accuracyCardiac PETPET dataActivity concentrationsMyocardium wallF-FDG PETDynamics studiesImage qualityMotion artifacts
2016
High‐resolution 1H‐MRSI of the brain using SPICE: Data acquisition and image reconstruction
Lam F, Ma C, Clifford B, Johnson C, Liang Z. High‐resolution 1H‐MRSI of the brain using SPICE: Data acquisition and image reconstruction. Magnetic Resonance In Medicine 2016, 76: spcone-spcone. DOI: 10.1002/mrm.26460.Peer-Reviewed Original ResearchImage reconstructionSubspace structureSpectroscopic imaging sequenceSubspace modelImage sequencesEdge-preserving regularizationReconstruction methodThrough-plane resolutionData acquisitionImage reconstruction methodIn-planeIn vivo brain experimentsEncoding schemeField inhomogeneity correctionIn-plane resolutionTwo-dimensional (2DImaging frameworkInhomogeneity correctionData setsSubspaceHybrid data setsSpectroscopic imagingSpatial resolutionBrain experimentsImages
2015
High‐resolution 1H‐MRSI of the brain using SPICE: Data acquisition and image reconstruction
Lam F, Ma C, Clifford B, Johnson C, Liang Z. High‐resolution 1H‐MRSI of the brain using SPICE: Data acquisition and image reconstruction. Magnetic Resonance In Medicine 2015, 76: 1059-1070. PMID: 26509928, PMCID: PMC4848237, DOI: 10.1002/mrm.26019.Peer-Reviewed Original ResearchConceptsSubspace structureSpectroscopic imaging sequenceImage reconstructionSubspace modelImage sequencesImage reconstruction purposesEdge-preserving regularizationData acquisitionReconstruction methodThrough-plane resolutionImage reconstruction methodIn-planeIn vivo brain experimentsEncoding schemeField inhomogeneity correctionIn-plane resolutionTwo-dimensional (2DImaging frameworkInhomogeneity correctionData setsSubspaceHigh-resolutionHybrid data setsSpatial resolutionBrain experiments