2020
Chaperonin-assisted protein folding: a chronologue
Horwich AL, Fenton WA. Chaperonin-assisted protein folding: a chronologue. Quarterly Reviews Of Biophysics 2020, 53: e4. PMID: 32070442, DOI: 10.1017/s0033583519000143.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino AcidsAnimalsCarbon DioxideChaperoninsCytosolDimerizationHeat-Shock ProteinsHumansHydrophobic and Hydrophilic InteractionsKineticsMiceMitochondriaMutationNeurosporaProtein ConformationProtein DenaturationProtein FoldingRibonuclease, PancreaticRibulose-Bisphosphate CarboxylaseSurface PropertiesTemperature
2012
3.10 Chaperones and Protein Folding
Horwich A, Buchner J, Smock R, Gierasch L, Saibil H. 3.10 Chaperones and Protein Folding. 2012, 212-237. DOI: 10.1016/b978-0-12-374920-8.00313-1.Peer-Reviewed Original ResearchSubstrate proteinsMolecular chaperonesSolvent-exposed hydrophobic surfaceSmall heat shock proteinsChaperone-bound proteinsProtein binding domainsNon-native conformationsNon-native statesHeat shock proteinsBinding of ATPSpecialized proteinsProtein foldingChaperonesBinding domainsOligomeric assembliesBiophysical methodsShock proteinsConformational changesPolypeptide chainStress conditionsNative stateProteinCurrent understandingFoldingMultimolecular aggregates
2011
The GroEL/GroES Chaperonin Machine
Horwich A, Saibil H. The GroEL/GroES Chaperonin Machine. 2011, 191-207. DOI: 10.1017/cbo9781139003704.012.Peer-Reviewed Original ResearchChaperonin machinePhage infectionKingdoms of lifeATP-dependent proteinEukaryotic organellesBacterial operonsGroE operonMutant cellsDouble-ring architectureProtein foldingCellular metabolismRing assemblyPhage headOperonIdentical subunitsNative stateBroader roleProteinE. coliGenetic deficiencyBiological actionsParticle assemblyAssemblyEubacteriaGroESGroEL/GroES‐mediated protein folding
Horwich A, Tyagi N, Clare D, Saibil H. GroEL/GroES‐mediated protein folding. The FASEB Journal 2011, 25: 319.3-319.3. DOI: 10.1096/fasebj.25.1_supplement.319.3.Peer-Reviewed Original ResearchProtein foldingGroEL/GroES chaperonin systemGroE chaperonin systemSubstrate protein bindingNon-native speciesChaperonin systemGroEL ringApical domainConformational trajectoryDomain movementsGroES bindingGroESHydrophobic contactsGroELFoldingInitial associationBindingProtein bindingOpen ringCryoEMSpeciesATPDomainNumber of approaches
2001
Mechanisms of protein folding
Grantcharova V, Alm E, Baker D, Horwich A. Mechanisms of protein folding. Current Opinion In Structural Biology 2001, 11: 70-82. PMID: 11179895, DOI: 10.1016/s0959-440x(00)00176-7.Peer-Reviewed Original ResearchConceptsEscherichia coli chaperonin GroELNon-native proteinsATP-dependent formationCo-chaperonin GroESLowest free energy pathChaperonin GroELProtein foldingUnfolded proteinsLarge proteinsGroELNative stateNative structureContact orderProteinChaperoninKinetic trapsFoldingChaperonesGroESFree energy pathPolypeptideComplexesAllostery and protein substrate conformational change during GroEL/GroES-mediated protein folding
Saibil H, Horwich A, Fenton W. Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Advances In Protein Chemistry 2001, 59: 45-72. PMID: 11868280, DOI: 10.1016/s0065-3233(01)59002-6.Peer-Reviewed Original ResearchConceptsProtein foldingATP-dependent protein foldingChloroplasts of eukaryotesDouble-ring complexesCo-chaperonin GroESC-terminal portionChaperonin machineProtein folding reactionChaperonin systemSubstrate polypeptidesChaperonin complexGroEL-GroESHeptameric ringsGroEL subunitStructural biologyBiophysical approachesEquatorial domainATPase mechanismConformational changesSubstrate conformational changesFolding reactionNative formGroESFoldingGroEL
1999
Chaperone rings in protein folding and degradation
Horwich A, Weber-Ban E, Finley D. Chaperone rings in protein folding and degradation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 11033-11040. PMID: 10500119, PMCID: PMC34237, DOI: 10.1073/pnas.96.20.11033.Peer-Reviewed Original ResearchConceptsSubstrate proteinsNon-native formsProcess of foldingCellular proteinsDegradation chamberProtein foldingStep of recognitionProteolytic complexRing assemblyDivergent fatesConformational changesNative stateProteinChaperoninFoldingCentral cavityCooperative interactionsATPPolypeptideFateChaperonesCompartmentalizationVital roleMotifProtease
1998
STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING
Sigler P, Xu Z, Rye H, Burston S, Fenton W, Horwich A. STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Review Of Biochemistry 1998, 67: 581-608. PMID: 9759498, DOI: 10.1146/annurev.biochem.67.1.581.Peer-Reviewed Original ResearchConceptsProtein foldingNative stateMechanism of chaperoninsCis ternary complexAsymmetric conformational changesFinal native stateNonnative polypeptidesCochaperonin GroESGroEL ringTrans ringATP hydrolysisGenetic informationChaperonin moleculesConformational changesFolding processFoldingTernary complexPolypeptideGroESATPBiochemical investigationsFinal stepChaperoninGroELComplexesChaperone Action in Folding Newly-Translated Cytosolic Proteins in Bacteria and Eukaryotes
Horwich A. Chaperone Action in Folding Newly-Translated Cytosolic Proteins in Bacteria and Eukaryotes. NATO ASI Series 1998, 41-63. DOI: 10.1007/978-3-642-51463-0_4.Peer-Reviewed Original ResearchNon-native conformationsNative statePrimary amino acid sequenceAmino acid sequenceNon-native statesSubstrate proteinsChaperone functionMolecular chaperonesBiogenesis stepsChaperone actionSpecialized proteinsCofactor bindingProtein foldingAction of nucleotidesPathway stepsMutational alterationsCytosolic proteinsAcid sequenceChaperonesSteric informationFolding processSuch hydrophobic interactionsProteinNative formEssential nature
1997
The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
Xu Z, Horwich A, Sigler P. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 1997, 388: 741-750. PMID: 9285585, DOI: 10.1038/41944.Peer-Reviewed Original ResearchConceptsGroEL-GroESApical domainCis ringMulti-subunit protein assembliesCo-chaperonin GroESRings of subunitsPeptide-binding residuesChaperonin complexConsumption of ATPProtein foldingGroEL subunitProtein assembliesTrans ringAllosteric mechanismGroESEquatorial domainBloc movementDouble toroidSecond GroESEscherichia coliOutward tiltAsymmetric intermediatesCentral cavitySubunitsInward tiltGroEL‐Mediated protein folding
Fenton W, Horwich A. GroEL‐Mediated protein folding. Protein Science 1997, 6: 743-760. PMID: 9098884, PMCID: PMC2144759, DOI: 10.1002/pro.5560060401.Peer-Reviewed Original ResearchConceptsGroEL-GroESNonnative polypeptidesSubstrate proteinsATP bindingProtein foldingHomologous proteinsNonnative formsPrimary structureConformational changesGroELTernary complexPolypeptideAssociation 5FoldingProteinBindingChaperonesGroESConformationEnergy landscapeRole of hydrophobicityPathway 3RolePathwayComplex C.
1996
Putting a lid on protein folding: structure and function of the co-chaperonin, GroES
Fenton W, Weissman J, Horwich A. Putting a lid on protein folding: structure and function of the co-chaperonin, GroES. Cell Chemical Biology 1996, 3: 157-161. PMID: 8807841, DOI: 10.1016/s1074-5521(96)90257-4.Peer-Reviewed Original ResearchCharacterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction
Weissman J, Rye H, Fenton W, Beechem J, Horwich A. Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell 1996, 84: 481-490. PMID: 8608602, DOI: 10.1016/s0092-8674(00)81293-3.Peer-Reviewed Original ResearchConceptsCis ternary complexProtein foldingRelease of GroESAddition of GroESFolding reactionTernary complexNonhydrolyzable ATP analogGroES releaseProtein folding reactionSubstrate proteinsPresence of ATPGroEL mutantGroEL-GroESGroEL complexNonnative substratesATP hydrolysisGroESComplete foldingSubstrate flexibilityATP analogFoldingFluorescence anisotropyActive stateATPRecent studies5 Structure and Function of Chaperonins in Archaebacteria and Eukaryotic Cytosol
Willison K, Horwich A. 5 Structure and Function of Chaperonins in Archaebacteria and Eukaryotic Cytosol. 1996, 107-136. DOI: 10.1016/b978-012237455-5/50006-3.Peer-Reviewed Original ResearchChaperonin-containing TCP-1Eukaryotic cytosolEukaryotic cellsTCP-1Protein foldingUnfolded proteinsChaperoninCytoskeletal proteinsSubunit speciesFunctional analysisGeneral functionProteinArchaebacteriaGeneral affinityCytosolFoldingSpecific affinityGenesSpeciesAffinityActinTubulinFunctionCellsUnusual type
1992
Chapter 26 Chaperonin-mediated protein folding
Horwich A, Caplan S, Wall J, Hartl F. Chapter 26 Chaperonin-mediated protein folding. New Comprehensive Biochemistry 1992, 22: 329-337. DOI: 10.1016/s0167-7306(08)60103-9.Peer-Reviewed Original ResearchFunction of GroELPrimary amino acid sequenceAmino acid sequenceLinear genomic DNAActive tertiary structureRelated organellesProtein foldingCentral dogmaAcid sequenceGenetic informationGenomic DNAQuaternary structureRNA messageSpontaneous foldingPrimary structureActive conformationDNA templateIntact cellsTertiary structureMolecular biologyPolypeptide chainAmino acidsBiological membranesProteinChaperonin
1991
Protein folding causes an arrest of preprotein translocation into mitochondria in vivo.
Wienhues U, Becker K, Schleyer M, Guiard B, Tropschug M, Horwich A, Pfanner N, Neupert W. Protein folding causes an arrest of preprotein translocation into mitochondria in vivo. Journal Of Cell Biology 1991, 115: 1601-1609. PMID: 1757464, PMCID: PMC2289212, DOI: 10.1083/jcb.115.6.1601.Peer-Reviewed Original ResearchMeSH KeywordsAminopterinBiological TransportIntracellular MembranesKineticsL-Lactate DehydrogenaseL-Lactate Dehydrogenase (Cytochrome)Membrane PotentialsMitochondriaProtein ConformationProtein PrecursorsProtein Processing, Post-TranslationalRecombinant Fusion ProteinsSaccharomyces cerevisiaeTetrahydrofolate DehydrogenaseConceptsMitochondrial protein uptakeTranslocation contact sitesAmino-terminal thirdStable tertiary structureDihydrofolate reductase domainImport pathwayPreprotein translocationHybrid proteinProtein foldingMitochondrial membraneTranslocation sitesContact sitesCytochrome b2Fusion proteinPolypeptide segmentsYeast cellsReductase domainTertiary structureProtein uptakeDihydrofolate reductaseProteinMitochondriaMembraneVivoFolding
1989
Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis
Ostermann J, Horwich A, Neupert W, Hartl F. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 1989, 341: 125-130. PMID: 2528694, DOI: 10.1038/341125a0.Peer-Reviewed Original Research