Effectiveness and Harms of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Spine Fusion: A Systematic Review and Meta-analysis

Executive Summary

Prepared for:

Yale Open Data Access (YODA) Project Center for Outcomes Research & Evaluation Yale School of Medicine 333 Cedar Street New Haven, CT 06510 http://medicine.yale.edu/core/projects/yodap/index.aspx

Prepared by:

Oregon Evidence-based Practice Center School of Medicine, Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University 3181 SW Sam Jackson Park Road, Mail code: BICC Portland, OR 97239-3098 http://www.ohsu.edu/epc

Investigators:

Rongwei Fu, PhD Shelley Selph, MD Marian McDonagh, PharmD Kimberly Peterson, MS Arpita Tiwari, MHS Roger Chou, MD Mark Helfand, MD, MS, MPH

June 2013

Introduction

Spinal fusion surgery is a procedure that unites (fuses) two or more vertebral bodies together. It is the most commonly performed surgery for chronic non-specific back pain caused by degenerative conditions,¹ to restrict spinal motion and remove the presumed cause of pain. A variety of fusion techniques are practiced. An interbody fusion, involving removal of a degenerated intervertebral disc and fusion of the adjacent vertebral bodies, can be performed via an anterior (anterior lumbar interbody fusion, ALIF), posterior (posterior lumbar interbody fusion, PLIF), or transforaminal (transforaminal lumbar interbody fusion, TLIF) approach. Posterolateral lumbar fusion (PLF) involves adjacent transverse processes. All techniques use a bone graft and/or bone graft substitute to promote fusion.

Traditionally, spinal fusions are performed by using graft material harvested from the iliac crest. Harvesting bone requires an additional surgery and may be inadequate for long spinal fusions or other difficult cases. Recombinant human bone morphogenetic protein-2, or rhBMP-2, an orthobiologic, is a bone graft substitute that was approved by the U.S. Food and Drug Administration (FDA) in 2002 for use in conjunction with an implant (LT-CAGETM) for single-level ALIF. In December 2003, the FDA approved the use of rhBMP-2 with another implant (INTER FIXTM) for similar indications.² In clinical practice, rhBMP-2 has primarily been used "off-label" in PLF and TLIF.³

Previous systematic reviews have found gaps in the evidence about rhBMP-2, which could have led to misleading conclusions about the balance of effectiveness and harms of rhBMP-2 compared with bone graft.^{4, 5} FDA documents summarizing Medtronic-sponsored trials appeared to indicate substantially more adverse events than reported in the journal publications. Observational studies confirmed that serious adverse events can occur with rhBMP-2 use in cervical spine fusion⁶⁻⁹ and a case series questioned its safety in off-label lumbar fusion.¹⁰ In June 2008, the FDA issued a public health notification of life-threatening complications associated with off-label use of rhBMP-2 in cervical spine fusion—swelling of the neck and throat resulting in compression of the airway and other structures.¹¹

To better understand the evidence on the effectiveness and harms of rhBMP-2, the Yale University Open Data Access (YODA) Project commissioned two independent centers to conduct systematic reviews of rhBMP-2, based on published as well as unpublished data for both FDA-approved and off-label uses. As part of this project, the manufacturer of INFUSETM Bone Graft/LT-CAGETM Lumbar Tapered Fusion Device, Medtronic Inc., the sole manufacturer of devices involving rhBMP-2 for spinal fusion, agreed to release all of the individual patient data (IPD) and relevant documents for studies of rhBMP-2 that it funded. The Oregon Evidence-based Practice Center was selected as one of the review centers. The primary aims of this report are 1) to estimate effectiveness and harms of rhBMP-2 in spinal fusion in a systematic review, using individual patient data (IPD) when available, and 2) to assess reporting biases in published articles of industry-sponsored studies.

Methods

We used four sources of data: 1) Medtronic IPD, related protocols, and data dictionaries; 2) Medtronic internal documents; 3) documents from the FDA web site; and 4) a broad-based literature search to identify a) additional studies on rhBMP-2 and b) publications related to Medtronic-sponsored studies. For aim 1, we used data from sources 1, 2 and 4(a), and for aim 2, we compared the journal publications of Medtronic-sponsored studies to other sources.

For data sources 1 and 2, the YODA Project provided de-identified patient-level data, protocols, data dictionaries, and Medtronic internal reports for all 17 Medtronic-funded studies of rhBMP-2 in spinal fusion completed or terminated by December 2011. The internal reports included summaries of study data and brief adverse event case histories.

For data sources 3 and 4, we searched MEDLINE® (1996 to August 2012), Embase®, the Cochrane Library® (third quarter 2012), Scopus, ClinicalTrials.gov, and the FDA web site, and manually searched reference lists.

For aim 1, two reviewers independently assessed each article for eligibility. For effectiveness and harms, we included controlled clinical trials and cohort studies of rhBMP-2 in spinal fusion. For harms, we also included uncontrolled intervention series of patients receiving rhBMP-2, case series, and case reports. We excluded studies that combined results of rhBMP-2 with other bone morphogenetic proteins, unless we could determine rhBMP-2 was predominantly used. For aim 2, we identified publications in peer-reviewed journals that reported results from one or more Medtronic trials.

Two reviewers independently evaluated the quality of all included studies based on predefined criteria, and disagreements were resolved by consensus. For Medtronic-funded studies, quality assessment was based on information from trial protocols and internal reports. One investigator abstracted patient and study characteristics and results, and a second reviewed abstracted data for accuracy.

For outcomes related to effectiveness, we included overall success, fusion, neurological success pain, disability, SF-36, and return to work. We applied consistent definitions and recalculated effectiveness outcomes using IPD. Overall success and fusion were determined using multiple criteria; all had to be satisfied for a case to be classified as a success. In the primary analysis, patients meeting some criteria but missing data for others were classified as failures, and patients without data for any criteria were excluded. Harms of rhBMP-2 included overall adverse events, and specific adverse events, e.g., mortality, additional surgery, infection, dysphagia, heterotopic bone formation, subsidence, leg or back pain retrograde ejaculation, urinary retention and cancer.

Data syntheses were stratified by spinal area (lumbar, cervical) and surgical approach (e.g., ALIF, PLF) for all outcomes except cancer and death, for which we combined all surgical approaches. We performed meta-analysis of IPD for ALIF and PLF, and results of published results if studies included in a category were similar enough to produce a meaningful combined estimate. We adapted methods developed by the Agency for Healthcare Research and Quality¹² to rate the strength of evidence for each outcome.

We assessed publication and outcome reporting biases and quality of reporting¹³ by comparing journal publications with corresponding study protocols, reports, and data dictionaries provided by Medtronic. We used a previously published protocol to classify publications as primary or secondary and to categorize potential sources of reporting bias.^{14, 15}

Results

Study Selection

Comprehensive literature searches identified 14,697 citations. For key questions 1 and 2, we included 13 randomized controlled trials (RCTs), 12 Medtronic trials (1,879 subjects), and one trial sponsored by Norton HealthCare.¹⁶ We excluded one small Medtronic trial because it was

stopped after recruiting only three patients. The study identification number for each Medtronic study could be found in Table 1. In 11 of the 12 included Medtronic-sponsored trials and in the Norton HeathCare-sponsored trial, spinal fusion with rhBMP-2 was compared with spinal fusion with iliac crest bone graft (ICBG). The other Medtronic study (Study 10) compared fusion with rhBMP-2 with implantation of the MAVERICKTM artificial disc.

Study Number	Trial Name	Surgical Approach	Reference
1	INFUSE®/LT-CAGE® Pilot	ALIF	Boden et al., 2000 ¹⁷
2	INFUSE®/LT-CAGE® Pivotal	ALIF	Burkus et al., 2002 ¹⁸
3	INFUSE®/ LT-CAGE® Lap Pivotal	ALIF	Burkus et al., 2003 ¹⁹
4	INFUSE®/ Bone Dowel Pilot	ALIF	Burkus et al., 2002 ²⁰
5	INFUSE®/ Bone Dowel Pivotal	ALIF	Burkus et al., 2005 ²¹
6	INFUSE®/ INTER FIX™ PLIF	PLIF	Haid et al., 2004 ²²
7	INFUSE®/ CORNER STONE® ACDF Pilot	ACDF	Baskin et al., 2003 ²³
8	INFUSE®/MASTER GRAFT® Pilot	PLF	Dawson et al., 2009 ²⁴
9	INFUSE®/ INTER FIX™ ALIF Pilot	ALIF	Unpublished
10	MAVERICK™ Disc Pivotal	ALIF	Gornet et al, 2011 ²⁵
11	INFUSE®/ TELAMON PEEK PLIF Pilot	Circumferential PLIF	Unpublished
12	rhBMP-2/BCP US Pilot	PLF	Boden et al., 2002 ²⁶
13	rhBMP-2/BCP Canada Pivotal	PLF	Unpublished
14	AMPLIFY™ (rhBMP-2/ CRM) Pivotal	PLF	Dimar et al., 2009 ²⁷
15	rhBMP-2/ CRM 2-level Pilot	PLF	Unpublished
16	rhBMP-2/BCP Mexico Pilot	PLF	Unpublished

Table 1. Medtronic study identification

ACDF = Anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; PLF = posterior lumbar fusion; PLIF = posterior lumbar interbody fusion

In addition to the RCTs, we included 31 cohort studies and 80 uncontrolled studies (47 intervention series and 33 case series or case reports) of patients who received rhBMP-2 to promote spinal fusion. Four intervention series were prospective Medtronic studies.

The randomized trials generally sought to determine whether rhBMP-2 is as good as ICBG in achieving overall success and solid fusion, and in reducing pain and disability associated with spinal disease, though the published articles analyzed most data as if they were superiority trials. These trials also conducted the assessments of safety required for FDA approval as a new device. Most cohort studies sought to evaluate fusion and identify specific adverse events associated with spinal fusion and to compare the frequency of these adverse events between patients fused with rhBMP-2 and patients fused with autograft and/or allograft. The majority of intervention series sought to determine the rate of fusion success after successful spinal fusion surgery, or both safety and efficacy of rhBMP-2 use, and about a quarter of the intervention series specifically sought to determine the rate of adverse events.

Study Quality

Most trials used similar methods for randomization and allocation concealment, and randomization in the pivotal trials and the larger pilot trials appeared to be satisfactory. While

there were some baseline differences in patient characteristics between those receiving ICBG and rhBMP-2, we did not detect a pattern favoring rhBMP-2.

The main risks for bias were lack of blinding of surgeons, patients, and outcome assessors (except for radiologic endpoints). Except in one study, there was no pre-specified algorithm on how to handle missing data. At 24 months, nine of the 12 randomized trials had follow-up rates over 90% in both groups. The proportion of lost-to-follow-up was much higher after 24 months in the few studies with longer follow up.

The quality of ascertainment varied across outcomes. Effectiveness outcomes (e.g., pain, function, fusion) were generally ascertained with well-designed questionnaires or scales. For harms, the studies used broad classifications for many adverse events, and events were generally not actively elicited using specific symptom questionnaires or objective tests. For example, for retrograde ejaculation, it was unclear how the outcome was defined or whether investigators asked about specific symptoms. In addition, study investigators determined whether or not the adverse event was implant or surgical procedure associated, which is subjective and prone to bias given assessor knowledge of the patient's treatment group. Cancer was not a pre-specified endpoint and only captured by voluntary reporting. Local effects, such as inflammation, ectopic bone formation, or osteolysis, were seldom reported.

Most observational studies were retrospective. The main risks for bias were unclear comparability of groups at baseline or difference in baseline characteristics, unclear blinding of outcome assessors, and failure to adjust for potential confounding variables and baseline differences.

Applicability

The Medtronic trials applied similar eligibility criteria and enrolled similar populations within each surgical approach. Most of the Medtronic-sponsored studies were small. Eleven of the 16 studies enrolled a total of less than 100 patients and 9 of the 16 enrolled less than 50 patients. Two off-label uses had exceptionally sparse data (ACDF and PLIF), making it very difficult to evaluate findings, especially less common adverse events, or to assess applicability.

Patients had discogenic back and/or leg pain, usually single-level disease, with \leq Grade 1 spondylolisthesis, preoperative Oswestry Disability Index (ODI) scores \geq 30 or 35, had not responded to conservative treatment for 6 months, were <40% over their ideal weight, and had not recently used tobacco. The mean age of patients in most trials was 40-60, and both genders were well-represented.

Some exclusion criteria were obesity, alcohol or drug abuse, autoimmune disease, osteoporosis, and conditions requiring treatment with steroids. For assessing applicability in trials with strict eligibility criteria, it is important to know the numbers of patients who did not qualify for the trial, and the specific reasons they did not. We could not find this information in the journal articles or in documents Medtronic provided.

Unfortunately, the observational studies were not especially useful in helping us evaluate the effectiveness of rhBMP-2 in broader populations. Most observational studies were small, and provided little information on patient characteristics.

Benefits and Harms

Anterior Lumbar Interbody Fusion in Lumbar spine

We included 13 studies using rhBMP-2 in anterior lumbar interbody fusion (ALIF), including 6 Medtronic RCTs (5 fair quality and 1 poor quality), four poor quality cohort studies

Executive Summary - 4

²⁸⁻³¹ and four intervention series, including one sponsored by Medtronic. Five RCTs compared rhBMP-2 with ICBG, and the other one compared rhBMP-2 with artificial disk replacement. The ALIF trials constituted the main body of evidence concerning INFUSETM Bone Graft, the product approved by FDA.

Based on IPD meta-analysis of the five Medtronic RCTs (n=465), there was moderate strength of evidence of no consistent differences between rhBMP-2 and ICBG in overall success and fusion. At 24 months, the average overall success rate was 61% for the rhBMP-2 group and 53% for the ICBG group. There were no differences between rhBMP-2 and ICBG in overall success at 6 months (Risk Ratio [RR] 1.18, 95% CI 0.93 to 1.50), 12 months (RR 1.12, 95% CI 0.95 to 1.33), and 24 months (RR 1.19, 95% CI 0.99 to 1.42). Fusion rates ranged from 60% to 100% at 24 months. RhBMP-2 was associated with higher radiographic fusion versus ICBG at 6 months (RR 1.10, 95% CI 1.02 to 1.19, I^2 =0%); and similar likelihood of fusion at 12 months (RR 1.09, 95% CI 0.95 to 1.24, I^2 =29%) and 24 months (RR 1.05, 95% CI 0.88 to 1.24, I^2 =76%). The results of fusion from cohort studies were generally consistent with results from RCTs.

Similarly, results from the meta-analysis of the five RCTs indicated generally moderate strength of evidence of no consistent differences between rhBMP-2 and ICBG in neurological success, ODI success, back and leg pain and other effectiveness outcomes. The one exception was that, on average, the SF-36 physical component summary score was approximately 3 points higher for patients in the rh-BMP-2 group at 3, 6, 12 and 24 months, though the magnitude of the difference was small, failing to meet the typical criteria for a clinically meaningful difference.³²

The occurrence of adverse events was common. At 4 weeks, 38% of patients in the rhBMP-2 group and 45% of patients in the ICBG group had experienced at least one adverse event and at 24 months, about 80% of patients in both groups had experienced at least one adverse event. There was moderate strength of evidence that the proportions of patients experiencing at least one adverse event were not significantly different between rhBMP-2 and ICBG groups through 4 weeks (RR 0.84, 95% CI 0.61 to 1.17) and through 24 months (RR 0.96, 95% CI 0.85 to 1.09). There was also moderate strength evidence of no difference between groups in the risk of experiencing an adverse event classified as "serious" by study investigators (RR 1.12, 95% CI 0.72 to 1.74 at 4 weeks; RR 0.94, 95% CI 0.67 to 1.33 at 24 months). At 4 weeks, 8% of patients in the rhBMP-2 group and 9% of patients in the ICBG group had experienced at least one serious adverse event. In addition, there was no difference in risk of adverse events classified as "device-related" by the study investigators (RR 1.44, 95% CI 0.57 to 3.67) at 24 months. The proportion of adverse events judged to be device-related was low (rhBMP-2 7% vs. ICBG 4%).

Similarly, we did not detect any significant difference between rhBMP-2 and ICBG groups on any specific adverse events (e.g., infection, possible lumbar radiculitis, neurological and spinal events). The trial data for specific adverse events were sparse, along with potential poor ascertainment, making it impossible to make any definitive conclusions for specific adverse events. For retrograde ejaculation and urogenital problems, there was a higher rate in the rhBMP-2 group compared to the ICBG group but the differences were not statistically significant and confidence intervals were wide. One cohort study³⁰ also reported higher rates of retrograde ejaculation in the rhBMP-2 group, though the difference was significant compared to the control group with rhBMP-2 (5/69 vs. 1/174, P = 0.0025). Overall, the strength of evidence is low. For subsidence, the trial data also indicated an insignificantly increased risk of retrograde ejaculations, and the direction of effect was consistent across trials and observational studies. While the estimates are imprecise, the condition was probably more consistently ascertainable and clearly defined than some other adverse events, and the strength of evidence is moderate.

Posterolateral Fusion in Lumbar Spine

We included 20 studies to evaluate the benefits and harms in posterlateral fusion (PLF). Five of these studies were RCTs comparing rhBMP-2 with ICBG (four fair quality and one poor quality), four sponsored by Medtronic (Studies 8, 12-14) and one by Norton HealthCare. Three of the Medtronic-sponsored RCTs used a higher dose and concentration of rhBMP-2 than used in ALIF trials. The RCT sponsored by Norton HealthCare did not report dosage. In addition, we included 7 cohort studies (2 fair quality and 5 poor quality) reported in eight publications³³⁻⁴⁰ and seven intervention series, two (Studies 15 and 16) sponsored by Medtronic and five by others,⁴¹⁻⁴⁵ and one case series.⁴⁶ The Medtronic-sponsored posterolateral fusion trials constitute the main body of evidence about higher dosages and concentrations of rhBMP-2, including AMPLIFY, than that used in the ALIF trials.

Similar to ALIF, meta-analysis based on IPD (4 RCTs, n=722) provided moderate strength evidence of no consistent difference between rhBMP-2 and ICBG in overall success and fusion from 6 months through 24 months. For overall success, rhBMP-2 had significantly higher rates at 6 months (RR 1.34, 95% CI 1.10 to 1.64), but not at 12 months (RR 1.07, 95% CI 0.93 to 1.25) or 24 months (RR 1.05, 95% CI 0.91 to 1.21). At 24 months, the rate of overall success ranged from 40 to 60% in both groups. Similar to overall success, rhBMP-2 had significantly higher rates at 6 months (1.37, 95% CI 1.19 to 1.59) but not at 12 months (RR 1.29, 95% CI 0.94 to 1.78) and 24 months (RR 1.16, 95% CI 0.96 to 1.41). The fusion rate at 24 months ranged from 70% to 90% in the ICBG group and 86% to 93% in the rhBMP-2 group. Heterogeneity was present (I^2 =86% and 76% at 12 and 24 months, respectively) and could not be attributed to differences in factors such as age, gender, number of levels fused, smoking status, or diabetes. The additional trial¹⁶ also found no difference in fusion rates at 24 months (rhBMP-2 86% vs. ICBG 71%; RR 1.12, 95% CI 0.98 to 1.29).

For other effectiveness outcomes, our IPD meta-analysis of the four trials (n=722) also provided generally moderate strength of evidence that there was no consistent difference in neurological success, ODI score, back and leg pain scores, SF-36, and return to work between the rhBMP-2 group and the ICBG group at any time point from 6 weeks to 24 months.

For longer followup, limited IPD was available from two Medtronic trials at 48 months (Study 13 and 14); and from one Medtronic trial at 60 months (Study 14). Overall success and fusion were significantly greater with rhBMP-2 at 48 months, but not at 60 months.

As in ALIF trials, the occurrence of adverse events was also common in PLF. About 50% of patients had experienced at least one adverse event at 4 weeks and over 80% at 24 months. There was moderate strength of evidence of no difference between rhBMP-2 and ICBG in risk of experiencing at least one adverse event at 4 weeks (RR 0.93, 95% CI 0.66 to 1.31) and through 24 months (RR 1.02, 95% CI 0.95 to 1.10). There was also no difference between groups in risk of experiencing a serious adverse event (RR 0.89, 95% CI 0.67 to 1.18 at 4 weeks; RR 0.96, 95% CI 0.83 to 1.11). At 4 weeks, about 20% of patients in either group had experienced at least one serious adverse event, and at 24 months, the proportion was about 50%. In addition, there was no difference between rhBMP-2 and ICBG in the likelihood of experiencing an adverse event classified as "device-related" by the study investigators at 24 months, and the event rate was low (6% versus 5%, RR 1.36, 95% CI 0.57 to 3.23).

For specific adverse events, we found similar rates for rhBMP-2 and ICBG at 4 weeks and 24 months, but estimates were frequently imprecise, precluding strong conclusions. The only

exception was that the rhBMP-2 group had increased risk of back and leg pain through 4 weeks, though heterogeneous events (e.g., radiculopathy, Baker's cyst, arthritic knee pain, or ankle pain) were included and may be unrelated to fusion surgery.

Results from cohort studies³³⁻⁴⁰ and intervention series^{41-45, 47, 48} appeared consistent with the randomized trials, though few studies^{37, 38, 40, 43} reported specific adverse events.

Other Approaches in Lumbar Spine

Evidences for other surgical approaches for comparative benefit and harms are limited. We included only one small Medtronic-sponsored RCT for the PLIF approach, and all other evidence for PLIF/TLIF and the circumferential approaches is from low-quality observational studies. Cohort studies usually showed no significant differences in fusion rates and occasionally other effectiveness outcomes between rhBMP-2 and other bone graft alternatives, but the strength of evidence was usually low or insufficient.

For harms, cohort studies usually showed similar rates of overall complications between rhBMP-2 and other bone graft alternatives, and concerns over increased risk of heterotopic bone formation and radiculitis were raised. Strength of evidence was usually low or insufficient, and data from cohort and intervention studies provided estimates of rates from actual practice.

Cervical Spine Fusion

For anterior cervical spine fusion, we included one small, fair quality, randomized trial sponsored by Medtronic, six cohort studies, two rated fair quality^{6, 7} and four rated poor quality,^{8, 9, 28, 49} and seven intervention series.^{9, 50-56}

The one RCT (n=33) showed no differences between rhBMP-2 and ICBG in likelihood of overall success, fusion, and other benefit outcomes, and three cohort studies also found no clear differences in effectiveness.^{8, 9, 28} The evidence was low or insufficient.

For harms, IPD data from the one RCT indicated that rhBMP-2 was associated with greater risk of adverse events than ICBG at 24 months (45 adverse events in 18 patients vs. 13 adverse events in 15 patients; Rate Ratio 2.88, 95% CI 1.30 to 6.41). A large, fair quality cohort study (n=27,067) found rhBMP-2 associated with increased risk of complications in the immediate postoperative period (Odds Ratio [OR] 1.43, 95% CI 1.12 to 1.70).⁶ The strength of evidence was low.

Moderately strong evidence indicated a higher rate of dysphagia with rhBMP-2 compared with controls. While the small trial found no difference in rates of dysphagia between rhBMP-2 and ICBG groups up to four weeks since surgery, one large cohort study found increased risk associated with rhBMP-2 (OR 1.63; 95% CI 1.30 to 2.05)⁶ and smaller cohort studies (total n=111,3) were consistent with these results.^{7-9, 49} The intervention series studies reported 5% to 60% of patients developed dysphagia, with differences in dysphagia definitions.^{51, 53-56} The large cohort study also found low strength evidence of increased wound complications (OR 1.67, 95% CI 1.10 to 2.53).⁶

In posterior cervical spine fusion, there were no controlled trials of rhBMP-2, and we included four retrospective cohort studies (n=3,233), one fair quality⁶ and three poor quality;⁵⁷⁻⁵⁹ and two intervention series (total n=82).^{60 61} There was insufficient evidence to evaluate the comparative effectiveness, and the cohort studies provided low strength evidence of no difference in rates of overall adverse events with and without rhBMP-2.

Cancer and Death

Five Medtronic-sponsored trials with IPD (Studies 2, 4, 5, 10, 14) reported at least one cancer through 24 months and were included in our meta-analysis. We found a significantly increased risk of cancer associated with the use of rhBMP-2 compared to the ICBG group at 24 months (RR 3.45, 95% 1.98 to 6.00 and absolute difference 1.9 percentage points, 95% CI 0.5 to 3.2), with a number needed to harm of 53 (95% CI 31 to 200). However, the cancers in the meta-analysis included many different types of malignancies. Fewer studies provided data at 48 months. While the rhBMP-2 group still showed a higher risk, the association was attenuated and no-longer significant (four studies; RR 1.82, 95% CI 0.84 to 3.95). Excluding non-SEER cancers resulted in similar estimates to those including non-SEER cancers (RR 2.92 through 24 months, 95% CI 1.75 to 4.87 and RR 1.92 through 48 months, 95% CI 0.86 to 4.32). The total number of cancers included was 23 at 24 months, and 27 at 48 months; the strength of evidence was low.

There was no difference between rhBMP-2 and ICBG in risk of death through 24 months (nine trials, RR 0.67, 95% CI 0.28 to 1.63—Studies 2, 4, 6-10, 13-14) or 48 months (four trials, RR 0.65, 95% CI 0.33 to 1.30—Studies 4, 10, 13-14), but the event rates were low and estimates of RR were imprecise.

Quality of Reporting

Nine of the 12 included Medtronic trials were published in medical journals as individual trials.^{17, 18, 20, 22-24, 26, 27, 62} One trial was partly described in an article that analyzed two trials together.²¹

Overall success was the primary study endpoint for six published Medtronic-sponsored trials (Studies 2, 3, 5, 8, 10, and 14) but only two of the primary publications (for Study 8 and Study 10) reported results for overall success.^{24, 62} Fusion was listed as a primary outcome or primary effectiveness outcome in ten Medtronic-sponsored studies (Studies 2, 3, 4, 5, 6, 7, 8, 12, 14, and 16) and was reported in all nine primary publications.

Reporting of Effectiveness

There was important bias in the way the results of the ALIF studies reported effectiveness outcomes. In 2002, the FDA approved rhBMP-2 with the LT-Cage in ALIF based on three premarketing studies (Studies 1, 2, and 3).⁶³ By 2004, at least 12 articles and reviews reporting results from these studies had been published in major orthopedic journals.^{17-19, 64-71} In contrast with reports to the FDA, many of these articles presented the results of the pivotal trials as demonstrating better fusion rates than ICBG. For example, the primary publication for Study 2 reiterated high fusion rates (94.5% vs. 88.7%) in the abstract, results, and conclusion sections, while failing to mention that the difference was not statistically significant in the abstract and results sections.¹⁸

In 2003, Burkus and colleagues published a *post hoc* "integrated analysis" that promoted the idea that rhBMP-2 would have superior outcomes compared with ICBG with sufficient sample size.¹⁹ The authors combined the rhBMP-2 groups from Study 2 and Study 3 and compared them with a control group that combined the ICBG arm of Study 2 (n=136) with an older, unrelated, unpublished series of patients (n=266) who underwent laparoscopic surgery with the LT-CAGE.¹⁹ However, in its report to the FDA of Study 2, Medtronic chose not to combine the results of Study 2 and Study 3 since the overall success rates were higher in the rhBMP-2 arm of Study 3 than in the rhBMP-2 arm of Study 2. Also, according to an internal Medtronic report, surgeons in the unrelated series were likely less skilled with the new laparoscopic cage technique, as evidenced by longer operative times, higher blood loss, and longer hospital stays.⁷²

Executive Summary - 8

The authors did not mention these concerns or the previous decision of not conducting an integrated analysis, and concluded that rhBMP-2 "had statistically superior outcomes" for these outcomes and for fusion rates in the "integrated analysis."¹⁹ In 2004, in another journal, they stated "…the outcomes represent typical results from a wide variety of surgeons with different degrees of experience...."⁶⁹

Two Medtronic studies of rhBMP-2 used bone dowels, an off-label lumbar application (Studies 4, 5). The larger, pivotal bone dowel trial (Study 5) was terminated early and published only in an article that combined the pilot and pivotal trials, representing them as "a two-part, prospective, randomized, multicenter study" with "two sequential phases." It reported that "fusion rates were significantly better in the study group (p<0.001)" without mentioning early termination,⁶⁵ as did two additional articles by the same author.^{21, 73}

In posterolateral fusion, the published article reported higher overall success rates than we observed based on our IPD analysis (Study 8),²⁴ or reported significantly higher fusion rate in the rhBMP-2 group, (Study 14, 96% vs. 89%, P=0.014)²⁷ which was not seen in our IPD analysis (90% vs. 90%). Some of the differences may be due to our classification of patients with partial data as failures in IPD, although it is not clear why this would differentially affect the rhBMP-2 group in Study 14.

Reporting of Adverse Events

As a previous review has noted,⁴ there was serious selective reporting and underreporting of adverse events in the published articles for both rhBMP-2 and ICBG groups, especially in the Medtronic trials published early. The actual rates of adverse events were much higher than reported. For example, for Study 2, Burkus et al.^{18, 25} reported only 11 intraoperative vascular events (6 rh-BMP-2, 5 ICBG), six retrograde ejaculation events (not by rhBMP-2 versus ICBG groups, but by surgical approach of transperitoneal versus retroperitoneal) and eight adverse events related to the iliac crest graft site at 24 months. However, IPD indicated 315 adverse events in the rhBMP-2 group and 274 adverse events in the autograft group two years after surgery. Instead, articles simply stated either "no unanticipated device-related adverse events"^{18, 20, 22, 23} or no adverse event directly related or attributable to rhBMP-2.^{17, 26, 69} Some publications sought to emphasize "donor site hip pain," which was assessed only in the control group patients and only on the side of the iliac crest operation. On the contrary, Medtronic provided the FDA with complete, even exhaustive information about total adverse events and serious adverse events. For the two most recently published trials,^{25, 27} underreporting appeared much less of an issue and all adverse events during operation and at 24 months were completely reported.

Conclusions

In spinal fusion, rhBMP-2 and ICBG appear to be similarly effective when used in ALIF and PLF, though the current evidence does not allow definitive conclusions regarding the effectiveness in other surgical approaches. The occurrence of adverse events and the risks for any adverse event were similar with and without rhBMP-2. We found some evidence of rhBMP-2 associated with important specific harms but estimates for comparative risk of specific adverse events were frequently imprecise and outcome ascertainments were poor, preventing strong conclusions. Our analysis underscores the need for more definitive evidence about harms before rhBMP-2 became widely used.

Evidence of reporting bias in the published articles of industry-sponsored trials is substantial. The availability of IPD from the manufacturer-sponsored trials allowed a more

Executive Summary - 9

thorough evaluation of both benefits and harms that was not possible only with published papers, and reduced the problem of publication and reporting biases. Complete reporting of adverse events is imperative in published trials.

Even with IPD from 12 trials, the evidence base is small within each surgical approach and there was no randomized trial truly independent of the manufacturer. More research is needed to provide more reliable estimates of risk of cancer and other adverse events and to identify patient populations in which use of rhBMP-2 may be beneficial, such as cases where use of bone graft alone is associated with a high risk of pseudoarthrosis. Based on the currently available evidence, it is difficult to identify clear indications for rhBMP-2 in spinal fusion.

References

- Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery - the case for restraint. N Engl J Med. 2004 Feb 12;350(7):722-6. PMID: 14960750.
- U.S. Food and Drug Administration. Device Approvals and Clearances; December 2003 PMA Approvals. 2003. http://www.fda.gov/medicaldevices/productsandmedic alprocedures/deviceapprovalsandclearances/pmaappro vals/ucm111338.htm. Accessed on March 20, 2013.
- Ong KL, Villarraga ML, Lau E, et al. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine. 2010 Sep 1;35(19):1794-800. PMID: 20700081.
- Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011 Jun;11(6):471-91. PMID: 21729796.
- Ratko TA, Belinson SE, Samson DJ, et al. Bone Morphogenetic Protein: The State of the Evidence of On-label and Off-label Use. Technology Assessment Report. Prepared by the Blue Cross Blue Shield Association Evidence-based Practice Center under a subcontract to the Duke EPC (Contract No. HHSA 290 2007 10066 I). Rockville, MD: Agency for Healthcare Research and Quality; 2010. http://www.cms.gov/Medicare/Coverage/Determinatio nProcess/downloads/id75ta.pdf. Accessed on March 20, 2013.
- Cahill KS, Chi JH, Day A, et al. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009 Jul 1;302(1):58-66. PMID: 19567440.
- Smucker JD, Rhee JM, Singh K, et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine. 2006 Nov 15;31(24):2813-9. PMID: 17108835.

- Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J. 2008 May-Jun;8(3):426-35. PMID: 17977799.
- Vaidya R, Carp J, Sethi A, et al. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J. 2007 Aug;16(8):1257-65. PMID: 17387522.
- Wong DA, Kumar A, Jatana S, et al. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J. 2008 Nov-Dec;8(6):1011-8. PMID: 18037352.
- U.S. Food and Drug Administration. FDA Public Health Notification: Life-threatening Complications Associated with Recombinant Human Bone Morphogenetic Protein in Cervical Spine Fusion. Silver Spring, MD: U.S. Food and Drug Administration; Center for Devices and Radiological Health; Issued 1 July 2008. http://www.fda.gov/MedicalDevices/Safety/Alertsand Notices/PublicHealthNotifications/ucm062000.htm. Accessed April 10, 2013.
- Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions--agency for healthcare research and quality and the effective health-care program. J Clin Epidemiol. 2010 May;63(5):513-23. PMID: 19595577.
- Sterne JAC, Egger M, Moher D. Chapter 10: Addressing reporting bias. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 ed.: The Cochrane Collaboaration; 2011.
- Vedula SS, Bero L, Scherer RW, et al. Outcome reporting in industry-sponsored trials of gabapentin for off-label use. N Engl J Med. 2009 Nov 12;361(20):1963-71. PMID: 19907043.

- Dickersin K. Reporting and other biases in studies of Neurontin for migraine, psychiatric/bipolar disorders, nociceptive pain, and neuropathic pain. 2008. Accessed at http://dida.library.ucsf.edu/tid/oxx18r10 on 18 March 2013. http://dida.library.ucsf.edu/pdf/oxx18r10. Accessed on October 31, 2012.
- Glassman SD, Carreon LY, Djurasovic M, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine. 2008 Dec 15;33(26):2843-9. PMID: 19092613.
- Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine. 2000 Feb 1;25(3):376-81. PMID: 10703113.
- Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002 Oct;15(5):337-49. PMID: 12394656.
- Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002 Oct;15(5):337-49. PMID 12394656.
- Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine. 2002 Nov 1;27(21):2396-408. PMID: 12438990.
- Burkus JK, Sandhu HS, Gornet MF, et al. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am. 2005 Jun;87(6):1205-12. PMID: 15930528.
- 22. Haid RW, Jr., Branch CL, Jr., Alexander JT, et al. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 2004 Sep-Oct;4(5):527-38; discussion 38-9. PMID: 15363423.
- 23. Baskin DS, Ryan P, Sonntag V, et al. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine. 2003 Jun 15;28(12):1219-24; discussion 25. PMID: 12811263.
- Dawson E, Bae HW, Burkus JK, et al. Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am. 2009 Jul;91(7):1604-13. PMID: 19571082.
- 25. Gornet MF, Burkus JK, Dryer RF, et al. Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized,

controlled, multicenter investigational device exemption trial. Spine. 2011 Dec 1;36(25):E1600-11. PMID: 21415812.

- Boden SD, Kang J, Sandhu H, et al. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002 Dec 1;27(23):2662-73. PMID: 12461392.
- 27. Dimar JR, 2nd, Glassman SD, Burkus JK, et al. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009 Jun;91(6):1377-86. PMID: 19487515.
- Vaidya R, Weir R, Sethi A, et al. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br. 2007 Mar;89(3):342-5. PMID: 17356146.
- 29. Pradhan BB, Bae HW, Dawson EG, et al. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine. 2006 May 1;31(10):E277-84. PMID: 16648733.
- Carragee EJ, Mitsunaga KA, Hurwitz EL, et al. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J. 2011 Jun;11(6):511-6. PMID: 21612985.
- Lindley EM, McBeth ZL, Henry SE, et al. Retrograde ejaculation following anterior lumbar spine surgery. Spine. 2012;37(20):1785-9. PMID: 22472808.
- 32. Copay AG, Glassman SD, Subach BR, et al. Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J. 2008 Nov-Dec;8(6):968-74. PMID: 18201937.
- 33. Katayama Y, Matsuyama Y, Yoshihara H, et al. Clinical and radiographic outcomes of posterolateral lumbar spine fusion in humans using recombinant human bone morphogenetic protein-2: an average five-year follow-up study. Int Orthop. 2009 Aug;33(4):1061-7. PMID: 18581064.
- 34. Lee KB, Johnson JS, Song KJ, et al. Use of autogenous bone graft compared with RhBMP in high-risk patients: a comparison of fusion rates and time to fusion. J Spinal Disord Tech. 2012 Mar 15. [Epub ahead of print] PMID: 22214928.
- Lee K-B, Taghavi CE, Hsu MS, et al. The efficacy of rhBMP-2 versus autograft for posterolateral lumbar spine fusion in elderly patients. Eur Spine J. 2010 Jun;19(6):924-30. PMID: 20041271.
- Glassman SD, Dimar JR, 3rd, Burkus K, et al. The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. Spine. 2007 Jul 1;32(15):1693-8. PMID: 17621221.

- 37. Singh K, Smucker JD, Gill S, et al. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years. J Spinal Disord Tech. 2006 Aug;19(6):416-23. PMID: 16891977.
- 38. Taghavi CE, Lee K-B, Keorochana G, et al. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine. 2010 May 15;35(11):1144-50. PMID: 20139805.
- Rogozinski A, Rogozinski C, Cloud G. Accelerating autograft maturation in instrumented posterolateral lumbar spinal fusions without donor site morbidity. Orthopedics. 2009 Nov;32(11):809. PMID: 19902899.
- Rowan FE, O'Malley N, Poynton A. RhBMP-2 use in lumbar fusion surgery is associated with transient immediate post-operative leg pain. Eur Spine J. 2012;21(7):1331-7. PMID: 22167451.
- Glassman SD, Carreon L, Djurasovic M, et al. Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J. 2007 Jan-Feb;7(1):44-9. PMID: 17197332.
- Stambough JL, Clouse EK, Stambough JB. Instrumented one and two level posterolateral fusions with recombinant human bone morphogenetic protein-2 and allograft: a computed tomography study. Spine. 2010 Jan 1;35(1):124-9. PMID: 20042965.
- 43. Glassman SD, Howard J, Dimar J, et al. Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. Spine. 2011 Oct 15;36(22):1849-54. PMID: 20838369.
- 44. Hamilton DK, Jones-Quaidoo SM, Sansur C, et al. Outcomes of bone morphogenetic protein-2 in mature adults: posterolateral non-instrument-assisted lumbar decompression and fusion. Surg Neurol. 2008 May;69(5):457-61; discussion 61-2. PMID: 18207557.
- 45. Mulconrey DS, Bridwell KH, Flynn J, et al. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine. 2008 Sep 15;33(20):2153-9. PMID: 18725869.
- 46. Glassman SD, Gum JL, Crawford CH, 3rd, et al. Complications with recombinant human bone morphogenetic protein-2 in posterolateral spine fusion associated with a dural tear. Spine J. 2011 Jun;11(6):522-6. PMID: 20598649.
- 47. Medtronic. A non-randomized pilot study of recombinant human bone morphogenetic protein-2 and compression resistant matrix with the CD HORIZON spinal system for posterolateral lumbar fusion in patients with symptomatic degenerative disc

disease at two adjacent vertebral levels- final progress report. Medtronic internal document; 2010. p. 1-277.

- 48. Medtronic. A pilot investigation of recombinant human bone morphogenetic protein-2/biphasic calcium phosphate (rhBMP-2/BCP) in patients with spinal degeneration with instability requiring surgical fusion. Medtronic internal document; 2001. p. 1-318.
- 49. Yaremchuk KL, Toma MS, Somers ML, et al. Acute airway obstruction in cervical spinal procedures with bone morphogenetic proteins. Laryngoscope. 2010 Oct;120(10):1954-7. PMID: 20824786.
- 50. Klimo P, Jr., Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J. 2009 Dec;9(12):959-66. PMID: 19574105.
- Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly(L-lactide-co-D,L-lactide) bioabsorbable implants. Neurosurg Focus. 2004 Mar 15;16(3):E6. PMID: 15198494.
- 52. Sethi A, Craig J, Bartol S, et al. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2-assisted spinal interbody fusion.[Erratum appears in AJR Am J Roentgenol. 2011 Oct;197(4):1024. AJR Am J Roentgenol. 2011 Jul;197(1):W128-33. PMID: 21700973.
- 53. Shen HX, Buchowski JM, Yeom JS, et al. Pseudarthrosis in multilevel anterior cervical fusion with rhBMP-2 and allograft: analysis of one hundred twenty-seven cases with minimum two-year followup. Spine. 2010 Apr 1;35(7):747-53. PMID: 20228711.
- 54. Shields LBE, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006 Mar 1;31(5):542-7. PMID: 16508549.
- 55. Stachniak JB, Diebner JD, Brunk ES, et al. Analysis of prevertebral soft-tissue swelling and dysphagia in multilevel anterior cervical discectomy and fusion with recombinant human bone morphogenetic protein-2 in patients at risk for pseudarthrosis. J Neurosurg Spine. 2011 Feb;14(2):244-9. PMID: 21184639.
- 56. Tumialan LM, Pan J, Rodts GE, et al. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. J Neurosurg Spine. 2008 Jun;8(6):529-35. PMID: 18518673.
- 57. Crawford CH, 3rd, Carreon LY, McGinnis MD, et al. Perioperative complications of recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge versus iliac crest bone graft for posterior cervical arthrodesis. Spine. 2009 Jun 1;34(13):1390-4. PMID: 19440166.

- Hiremath GK, Steinmetz MP, Krishnaney AA. Is it safe to use recombinant human bone morphogenetic protein in posterior cervical fusion? Spine. 2009 Apr 20;34(9):885-9. PMID: 19531997.
- 59. Xu R, Bydon M, Sciubba DM, et al. Safety and efficacy of rhBMP2 in posterior cervical spinal fusion for subaxial degenerative spine disease: Analysis of outcomes in 204 patients. Surg Neurol Int. 2011;2:109. PMID: 21886882.
- Hamilton DK, Smith JS, Reames DL, et al. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. Neurosurgery. 2011 Jul;69(1):103-11; discussion 11. PMID: 21368688.
- Hodges SD, Eck JC, Newton D. Retrospective Study of Posterior Cervical Fusions With rhBMP-2. Orthopedics. 2012;35(6):e895-8. PMID: 22691663.
- Gornet MF, Dryer RF, Peloza JH, et al. Lumbar disc arthroplasty vs. Anterior lumbar interbody fusion: Five-year outcomes for patients in the Maverick(degrees) disc IDE study. Spine Journal. 2010;10(9):64S.
- Schultz D. Re: P000058, InFUSE Bone Graft/LT-CAGE Lumbar Tapered Fusion Device; File: January 12, 2001; Amended: January 12, March 19, May 9, July 31, August 24, September 25, october 9, November 21, and Ecember 6, 7 and 26, 2001, January 22, February 8 March 19, April 2, 3, 12(2), 15, 16, 17, 22, 26 and 30, May 9, 10, 14 and 28 and June 12 and 28, 2002; Procode: NEK [Letter to R.W. Treharne, Medtronic]. Rockville, MD: U.S. Food and Drug Administration; 2002. http://www.accessdata.fda.gov/cdrh_docs/pdf/P00005 8a.pdf. Accessed on May 13, 2013.
- Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine. 2003 Feb 15;28(4):372-7. PMID: 12590213.
- 65. Burkus JK. Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new

technologies. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004 Oct;1(3):254-60. PMID: 15478362.

- 66. Kleeman TJ, Ahn UM, Talbot-Kleeman A. Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine. 2001 Dec 15;26(24):2751-6. PMID: 11740368.
- Sandhu HS. Bone morphogenetic proteins and spinal surgery. Spine. 2003 Aug 1;28(15 Suppl):S64-73. PMID: 12897477.
- McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine. 2002 Aug 15;27(16 Suppl 1):S66-85. PMID: 12205423.
- Burkus JK, Heim SE, Gornet MF, et al. The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics. 2004 Jul;27(7):723-8. PMID: 15315042.
- Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine. 2002 Aug 15;27(16 Suppl 1):S40-8. PMID: 12205419.
- Khan SN, Sandhu HS, Lane JM, et al. Bone morphogenetic proteins: relevance in spine surgery. Orthopedic Clinics of North America. 2002 Apr;33(2):447-63. PMID: 12389291.
- Medtronic. II B: Report of pivotal clinical trial results (G960065) laparoscopic use of InFUSE bone graft/LT-CAGE lumbar tapered fusion device. Medtronic internal document. p. 2072-423.
- Burkus JK, Sandhu HS, Gornet MF. Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine. 2006 Apr 1;31(7):775-81. PMID: 16582851.

Effectiveness and Harms of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Spine Fusion: A Systematic Review and Meta-analysis

Prepared for:

Yale Open Data Access (YODA) Project Center for Outcomes Research & Evaluation Yale School of Medicine 333 Cedar Street New Haven, CT 06510 http://medicine.yale.edu/core/projects/yodap/index.aspx

Prepared by:

Oregon Evidence-based Practice Center School of Medicine, Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University 3181 SW Sam Jackson Park Road, Mail code: BICC Portland, OR 97239-3098 http://www.ohsu.edu/epc

Investigators:

Rongwei Fu, PhD Shelley Selph, MD Marian McDonagh, PharmD Kimberly Peterson, MS Arpita Tiwari, MHS Roger Chou, MD Mark Helfand, MD, MS, MPH

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Yale Open Data Access (YODA) Project or Medtronic.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Howard Balshem, MS; Camber Hansen-Karr; Susan Carson, MPH; Elaine Graham, MLS; Allison Lowe, BA; Robin Paynter, MLIS; Edwin Reid, MS, MAT; Katie Reitel, MPH, MSW; Sujata Thakurta, MA; Ngoc Wasson, MPH; and Leah Williams, BS.

Contents

INTRODUCTION	2
METHODS	3
Scope and Key Questions	3
Inclusion Criteria	
Data Sources	
Data Abstraction and Calculation	
Definitions and Calculations of Endpoints for Individual Patient Data.	
Table 1. Medtronic study identification.	
Management of Missing Data	
Quality Assessment	
Applicability Assessment Data Synthesis and Analysis	
Meta-analysis Methods for Individual Patient Data Meta-analyses	
Meta-analysis of Results from Publications	
Grading the Strength of Evidence	
Assessment of Reporting and Related Biases	
Funding Source	11
RESULTS	
Effectiveness and Harms of rhBMP-2 in Lumbar, Cervical, and Thoracic Spine Surgery (Key Quest	
and 2)	
Study Selection	
Figure 1. Literature flow diagram	
Study Quality	
Study Quarty Study Exercise Study Design	
Table 3. Included Medtronic studies of recombinant human bone morphogenetic protein-2 (rhBMP-2)	
Ascertainment of Study Endpoints	
Applicability	
Effectiveness and Harms for Lumbar Spine	
Anterior Lumbar Interbody Fusion	
Table 4. Anterior lumbar interbody fusion (ALIF) studies in chronological order	20
Figure 2. Comparison of overall success rates in ALIF trials	
Figure 3. Comparison of fusion rates in ALIF trials	
Table 5. Effectiveness endpoints for ALIF with rhBMP-2 vs. ICBG	
Figure 4. Cumulative proportion of patients with at least one adverse event (ALIF)	
Figure 5. Comparison of proportion of patients having at least one adverse event in ALIF trials	
Figure 6. Comparison of proportion of patients having at least one serious adverse event in ALIF trials	
Table 6. Overall and specific adverse events for ALIF with rhBMP-2 vs. ICBG	
Posterolateral Fusion	
Table 7. Proportion of patients rated as overall successes in AMPLIFY trial, but who still had other negative	tive
outcomes [*]	
Figure 7. Comparison of overall success rates in PLF trials	
Figure 8. Comparison of fusion rates in PLF trials	
Table 8. Effectiveness endpoints for PLF with rhBMP-2 vs. ICBG	
Figure 9. Cumulative proportion of patients with at least one adverse event (PLF)	
Figure 10. Comparison of proportion of patients having at least one adverse event in PLF trials	
Figure 11. Comparison of proportion of patients having at least one serious adverse event in PLF trials	
Table 9. Overall and specific adverse events for PLF with rhBMP-2 vs. ICBG	
Posterior Lumbar Interbody Fusion	
Table 10. Effectiveness endpoints for PLIF with rhBMP-2 vs. ICBG	
Table 11. Specific adverse events for PLIF with rhBMP-2 vs. ICBG	
Circumferential Posterior Lumbar Interbody Fusion/Transforaminal Lumbar Interbody Fusion	
Circumferential Anterior Lumbar Interbody Fusion	
Circumferential Axial Lumbar Interbody Fusion	
Mixed Lumbar Spine Fusion	
Effectiveness and Harms for Cervical Spine	52

Anterior Cervical Spine Fusion	
Table 12. Effectiveness endpoints for anterior cervical spine fusion with rhBMP-2 vs. ICBG	54
Posterior Cervical Spine Fusion	
Benefits and Harms for Thoracic Spine	59
Overall Cancer and Death	
Table 13. Cancer occurrence at 24 and 48 months in randomized trials	62
Figure 12. Comparison of cancer risk between the rhBMP-2 and ICBG groups	64
MedWatch Forms	65
Publication and Reporting (Key Question 3)	66
Table 14. Publication of Medtronic-sponsored studies of rhBMP-2 for spinal fusion	
Primary Study Endpoints	
Table 15. Comparison of individual patient data analysis with published data in Medtronic-sponsored	
rhBMP-2	
Lumbar Spinal Fusion	
Reporting of Effectiveness	
Reporting of Adverse Events	
Anterior Cervical Spinal Fusion	
Table 16. Comparison of reported adverse events in published trials versus adverse events in the IPD	up to 24
months	
Table 17. Infection at 24 months	
Table 18. Individual patient data on device-related adverse events and device-related serious adverse	events as
defined by Medtronic	
DISCUSSION	
Summary of Results	80
Effectiveness	
Cancer	
Other Adverse Events	
Quality of Studies	82
Significance of IPD and Reporting Bias	
Usefulness of Other Manufacturer-provided Documents	
Limitations	
Study Sponsorship	
Study Sponsorship	
Assessment of Dosage Effect	
Materials to Assess Reporting Bias	
Future Research and Conclusions	
i uture Reșcuren anu Conclusions	

REFERENCES

ACRONYMS AND ABBREVIATIONS

GLOSSARY

APPENDIXES

- A. Boxed Warnings
- B. Yale Open Data Access Project Reconciled Aims
- C. List of Study Documents Provided by Medtronic
- D. Search Strategies
- E. List of SAS[®] Data Sets Provided by Medtronic
- F. Outcome Variable Definitions/Criteria from Medtronic Protocols Compared with Those in Published Studies and Individual Patient Data Analysis for Comparative Effectiveness and Harms
- G. Individual Patient Data Raw Data Calculation
- H. Two-Step Model and Results
- I. Strength of Evidence
- J. Included Studies
- K. Excluded Studies
- L. Individual Patient Data Summary Data
- M. Evidence Tables

INTRODUCTION

Spinal fusion surgery is a procedure that unites (fuses) two or more vertebral bodies together. A variety of fusion techniques are practiced. An interbody fusion, involving removal of a degenerated intervertebral disc and fusion of the adjacent vertebral bodies, can be performed via an anterior (anterior lumbar interbody fusion, ALIF), posterior (posterior lumbar interbody fusion, PLIF), or transforaminal (transforaminal lumbar interbody fusion, TLIF) approach.¹ Posterolateral lumbar fusion (PLF) involves adjacent transverse processes. All techniques use a bone graft and/or bone graft substitute to promote fusion. Fusion can be performed with or without supplemental hardware (instrumentation), such as plates, screws, or cages, which serve as an internal splint when the bone graft heals.

Spinal fusion surgery is used in conditions associated with spinal instability. It is the most commonly performed surgery for chronic non-specific back pain caused by degenerative conditions,¹ and its purpose is to restrict spinal motion and remove the presumed cause of pain. Spinal fusion is one of the most rapidly growing procedures in the United States; from 1997 to 2009 the rate doubled from 7 to 15 per 10,000 population.²

Traditionally, spinal fusions are performed by using graft material harvested from the iliac crest. Harvesting bone requires an additional surgery and may be inadequate for long spinal fusions or other difficult cases. Recombinant human bone morphogenetic protein-2 (rhBMP-2), an orthobiologic, was developed as a bone graft substitute. In the late 1990s, several animal model studies indicated that rhBMP-2 promotes bone growth.³ In the early 2000s, industry-sponsored human trials confirmed the effect of this protein in bone-growth induction, with the advantage of not requiring a bone graft harvest, a procedure associated with pain and other complications. These early trials reported that rhBMP-2 was associated with higher fusion rates than iliac crest bone graft (ICBG) in anterior lumbar interbody fusion (ALIF), and reported no adverse events attributable to rhBMP-2.^{4, 5} In 2002, the U.S. Food and Drug Administration (FDA) approved the use of rhBMP-2 in conjunction with a metal implant for single-level spinal fusion surgery using the ALIF approach (commercial name: INFUSETM Bone Graft/LT-CAGETM Lumbar Tapered Fusion Device; Medtronic, Memphis, TN). In December 2003, the FDA approved the use of rhBMP-2 with another implant (INTER FIXTM; Medtronic, Memphis, TN) for similar indications.⁶

Around the time of and after the FDA approval, publications based on additional industrysponsored clinical trials reported beneficial effects of rhBMP-2 in spinal fusion procedures that were not approved by the FDA, again reporting no device-related adverse events.⁷⁻⁹ These publications, as well as promotional material, emphasized two potential advantages of rhBMP-2 compared with bone grafts: "fast" or "accelerating" fusion, and avoidance of iliac crest donorsite complications.^{5, 8-10} Use of rhBMP-2 increased from 0.7% of spinal fusion surgeries in 2002 to 25% in 2006.¹¹ While the FDA approval was for ALIF in conjunction with lordotic tapered cages (LT-CAGETM; Medtronic, Memphis, TN), the majority of clinical use has been "off label" in PLF or TLIF.¹²

In 2010, a systematic review conducted for the Centers for Medicare and Medicaid noted that, in the trials conducted by Medtronic to obtain premarketing approval for rhBMP-2, information about its potential harms was sparse.¹³ In 2011, a review that compared FDA documents with journal publications found that gaps in the information published in journals could have led to misleading conclusions about the balance of benefits and harms of rhBMP-2 compared with bone graft.¹⁴ FDA documents summarizing Medtronic-sponsored trials appeared to indicate substantially more adverse events than reported in the journal publications and documented adverse events such as subsidence, infection, urinary retention, and early back and

¹ A glossary and list of abbreviations and acronyms used in this report appear after the reference list.

leg pain that were not reported in the published industry-sponsored trials.¹⁴ Observational studies confirmed that serious adverse events can occur with rhBMP-2 use in cervical spine fusion^{11, 15-17} and a case series questioned its safety in off-label lumbar fusion.¹⁸ In July 2008, the FDA issued a public health notification of life-threatening complications associated with off-label use of rhBMP-2 in cervical spine fusion—swelling of the neck and throat resulting in compression of the airway and other structures.¹⁹ The FDA required Medtronic Sofamor Danek to include boxed warnings for the INFUSE® Bone Graft and INFUSETM Bone Graft/LT-CAGETM Lumbar Tapered Fusion Device products (Appendix A).

To better understand the evidence on the benefits and harms of rhBMP-2, Yale University Open Data Access (YODA) Project commissioned two independent centers to conduct systematic reviews of rhBMP-2, based on published as well as unpublished data for both FDA-approved and off-label uses. As part of this project, Medtronic, Inc., (Medtronic), the sole manufacturer of devices involving rhBMP-2 for spinal fusion, agreed to release all of the individual patient data (IPD)—the data for each study participant included in a trial (as opposed to study level aggregated data)—and relevant documents for studies of rhBMP-2 that it funded. The Oregon Evidence-based Practice Center was selected as one of the review centers. The primary aims of this report are 1) to estimate the benefits and harms of rhBMP-2 for spinal fusion using all available data and 2) to assess reporting biases in published articles of industry-sponsored studies. The current report only covers evidence in spinal fusion. While rhBMP-2 has been approved for other indications, tibial fractures²⁰ and maxillofacial and dental regenerative uses,²¹ these applications were not addressed in this review.

METHODS

Scope and Key Questions

Yale University provided preliminary aims to the two review teams for discussion and comment. Based on feedback from the review teams, a set of reconciled aims were developed to ensure the same scope between the two teams (Appendix B). Key Questions to guide this review were formulated by investigators at the Oregon Evidence-based Practice Center based on the reconciled aims:

Key Question 1: What are the benefits of rhBMP-2 compared with alternatives when used in spinal fusion?

Key Question 2: What are the harms of rhBMP-2 compared with alternatives when used in spinal fusion?

Key Question 3: What are the reporting biases in published articles of industry-sponsored studies?

For Key Questions 1 and 2, as described in more detail below, we conducted a systematic review, including assessment of the quality and potential for bias in the design, conduct, and reporting of each study. We stratified studies and reported our findings by surgical site (lumbar, cervical, thoracic) and approach (e.g., anterior, posterolateral) except for selected outcomes (e.g., death and cancer) and assessments (e.g., applicability). When appropriate, we conducted meta-analyses of rhBMP-2 versus autograft for effectiveness and harms outcomes. For Medtronic studies, we used IPD exclusively to assess benefits and harms. For other studies, we used data from journal publications.

For Key Question 3, as described in more detail below, we compared the journal publications of Medtronic-sponsored studies to other sources and adapted a previously published protocol to

classify publications as primary or secondary and to categorize potential sources of reporting bias.^{22, 23} For binary outcomes, such as fusion and reoperation, we examined how the results of a meta-analysis based on IPD compared with those of an analysis based only on publicly available reports and journal articles.

The following criteria applied to all studies considered for inclusion in Key Questions 1 and 2, whether identified through literature searching or through materials from the manufacturer.

Inclusion Criteria

To be eligible, studies had to meet all of the following criteria:

- 1. *Patients:* Humans with deformity, instability, or degeneration of the spine or with presumed discogenic back pain (with or without leg pain).
- 2. *Interventions and Comparators:* Any rhBMP-2 containing devices (e.g., INFUSE®), including products approved outside the United States (e.g., InductOs®), versus any control or no control group. We excluded studies of human bone morphogenetic protein 7 (rh-BMP-7, OP-1) or other non rhBMP-2 bone morphogenetic proteins. We included studies of different bone morphogenetic proteins if they reported results for rhBMP-2 separately or if we could determine rhBMP-2 was predominantly used.
- 3. *Outcomes:* For outcomes related to effectiveness, we included overall success (as defined in the study protocols), fusion, neurological status, pain and functional status variables (e.g., disability, functional health such as SF-36, return to work). Harms of rhBMP-2 included overall adverse events, and specific adverse events (e.g., mortality, additional surgery, infection, inflammation, dysphagia, heterotopic bone formation, osteolysis, subsidence, leg or back pain, neurological complications [e.g., retrograde ejaculation, urinary retention] and cancer).
- 4. *Time Points:* We included all follow-up time points. Long-term outcomes were defined as those measured more than two years after the surgery.
- 5. *Design:* We included controlled clinical trials and cohort studies to evaluate benefits. We also recorded fusion rates from studies that followed a group that underwent surgery, but lacked a control group (intervention series). We also included case series/case reports if the reports were in a special population underrepresented in other studies, such as children. For harms, we included controlled clinical trials, cohort studies, case-control studies, intervention series, case series, and case reports.
- 6. Other: Only English-language studies were included.

Data Sources

To address these Key Questions, we used four sources of data: 1) Medtronic IPD, related protocols, and data dictionaries; 2) Medtronic internal reports; 3) documents from the FDA web site, and 4) a broad-based literature search to identify a) additional studies on rhBMP-2 and b) publications related to Medtronic-sponsored studies.

For data sources 1 and 2, the YODA Project provided de-identified patient-level data, protocols, data dictionaries, and Medtronic internal reports for all 17 Medtronic-funded studies of rhBMP-2 in spinal fusion completed or terminated by December 2011. The list of documents we received for each study is provided in Appendix C. The internal reports included summaries of study data and brief adverse event case histories. We also received 1,229 MedWatch adverse event reports submitted to the FDA between July 2003 and July 2012.

For data sources 3 and 4, we searched Ovid MEDLINE[®] (1996 to August 2012), Elsevier Embase[®] (1996 to August 2012), the Cochrane Database of Systematic Reviews[®] (third quarter 2012), the Cochrane Central Register of Controlled Trials[®] (third quarter 2012), the Database of Abstracts of Reviews of Effects (1996 to third quarter 2012), Health Technology Assessment (1996 to Third Quarter 2012), and Sciverse Scopus[®] (1995 to third quarter 2012) using terms for rhBMP-2. (See Appendix D for search strategies.) Limits included a date limit (1996-present) and a study subject limit to humans. Electronic database searches were supplemented by hand searches of reference lists of included studies and reviews. We searched ClinicalTrials.gov (U.S. National Institutes of Health), International Clinical Trials Registry Platform (World Health Organization), the Current Controlled Clinical Trials, and the U.S. Food and Drug Administration Center for Devices and Radiological Health (CDRH) and the European Medicines Agency's European Public Assessment Reports web sites for filings and scientific reviews.

All citations were imported into an electronic database (Endnote[®] v.X4). For Key Questions 1 and 2, two reviewers independently assessed titles and abstracts of citations identified from literature searches using the criteria listed above. Full-text articles of potentially relevant citations were retrieved and again were assessed for inclusion by two independent reviewers. Disagreements were resolved by consensus.

For trials referred to in abstracts, we searched Google Scholar, ClinicalTrials.gov, and material received from Medtronic for additional information about study design, conduct, and results. If additional information was available to assess the eligibility, quality, and final results of the study, we included it in our review. If not, we noted the results reported in the abstract but did not include the study in the systematic review or meta-analysis.

Data Abstraction and Calculation

We abstracted the following data from published studies and reports: type of trial and trial length; inclusion and exclusion criteria; interventions; numbers enrolled, analyzed, withdrawn and lost to follow-up; baseline characteristics; results for each outcome; and funding source. Data abstraction for each study was completed by two reviewers; the first abstracted the data, and the second reviewed the abstracted data for accuracy and completeness against the original articles.

We abstracted adverse events from a random sample of 200 MedWatch reports, and searched all MedWatch reports with key terms associated with serious adverse events (cancer, died, tracheo, arrest, and expired). When a report had one of these keywords, we read the complete report and recorded the results in a database.

For effectiveness outcomes, we considered "overall success" (see definition below), fusion, pain, functional status (measured by scales such as the Oswestry Disability Index [ODI] score), neurologic status, SF-36, and return to work. Harms of rhBMP-2 included overall adverse events and specific adverse events (e.g., mortality, additional surgery, infection, dysphagia, heterotopic bone formation, osteolysis, subsidence, leg or back pain, neurological complications [e.g., retrograde ejaculation, urinary retention], and cancer).

Definitions and Calculations of Endpoints for Individual Patient Data

We obtained individual patient data from 17 Medtronic studies. The data were provided as SAS[®] datasets. (See Appendix E for detailed information about SAS datasets provided by Medtronic.) Each study had two sets of data: raw and derived. The raw data were transcribed directly from the case report forms (CRF) and the derived data were calculated from the raw data.

We used the study protocols and ClinicalTrials.gov entries to determine prespecified primary outcomes. In nine studies, the primary effectiveness measure was "overall success" (at 24 months); fusion was the primary endpoint in the remainder. IPD also included information on pain, ODI, neurologic status, SF-36, and return to work. Most of these outcomes were derived from raw data. Studies differed slightly in how they specifically defined these outcomes. To reduce variation in outcome measures as a source of heterogeneity, we recoded and recalculated all effectiveness endpoints (except for return to work) from the raw data by applying consistent definitions. These definitions were based on those from the Medtronic protocols; Appendix F contrasts the definitions used in our IPD analysis versus Medtronic protocols and journal publications.

Medtronic provided data on adverse events as derived datasets. For three trials (Studies 2, 8 and 14 - see study identification numbers in Table 1) we used the case histories provided with the internal reports submitted to FDA to verify the counts of adverse events in the derived datasets. We found no inconsistency between the two data sources and relied on the derived datasets for all other trials. We also compared the IPD on adverse events with those presented in the internal reports and found them to be consistent. Therefore, we obtained overall and specific adverse events directly from derived datasets (no recalculation) based on Medtronic categorization, except for urinary retention, wound infection, wound dehiscence, and possible lumbar radiculitis, which we identified by reviewing case histories in internal reports. These outcomes were not prespecified outcomes in the trials or in the case histories. In the primary analysis, we defined "possible radiculitis" as 1) back pain plus leg, thigh, or buttock pain or weakness (unilateral or bilateral); 2) adverse events described as "sciatica" or "radiculopathy;" or 3) back and/or leg pain with use of epidural steroids or surgery for radiculopathy (e.g., discectomy, laminectomy). We excluded cervical/arm symptoms, numbness/paresthesias without weakness or pain, just back pain, just leg pain, and pain attributed to trauma. Further, since the case histories only provided limited information to classify cases, we applied three alternative definitions of radiculitis (Appendix F) in sensitivity analyses.

Study Number	Trial Name	Surgical Approach	Reference
1	INFUSE®/LT-CAGE® Pilot	ALIF	Boden et al., 2000 ⁴
2	INFUSE®/LT-CAGE® Pivotal	ALIF	Burkus et al., 2002 ⁵
3	INFUSE®/ LT-CAGE® Lap Pivotal	ALIF	Burkus et al., 2003 ²⁴
4	INFUSE®/ Bone Dowel Pilot	ALIF	Burkus et al., 2002 ⁷
5	INFUSE®/ Bone Dowel Pivotal	ALIF	Burkus et al., 2005 ⁸
6	INFUSE®/ INTER FIX™ PLIF	PLIF	Haid et al., 2004 ²⁵
7	INFUSE®/ CORNER STONE® ACDF Pilot	ACDF	Baskin et al., 2003 ⁹
8	INFUSE®/MASTER GRAFT® Pilot	PLF	Dawson et al., 2009 ²⁶
9	INFUSE®/ INTER FIX™ ALIF Pilot	ALIF	Unpublished
10	MAVERICK™ Disc Pivotal	ALIF	Gornet et al, 2011 ²⁷
11	INFUSE®/ TELAMON PEEK PLIF Pilot	Circumferential PLIF	Unpublished
12	rhBMP-2/BCP US Pilot	PLF	Boden et al., 2002 ²⁸
13	rhBMP-2/BCP Canada Pivotal	PLF	Unpublished
14	AMPLIFY™ (rhBMP-2/ CRM) Pivotal	PLF	Dimar et al., 2009 ²⁹
15	rhBMP-2/ CRM 2-level Pilot	PLF	Unpublished
16	rhBMP-2/BCP Mexico Pilot	PLF	Unpublished

Table 1. Medtronic study identification

ACDF = Anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; PLF = posterior lumbar fusion; PLIF = posterior lumbar interbody fusion

In the manufacturer's trial protocol, leg and back pain were assessed by measuring pain intensity on a 0-10 scale at each follow-up point. Leg and back pain were also recorded as adverse events in the derived adverse event datasets. We analyzed back and leg pain as a score on a numerical rating scale. Separately, we analyzed back and leg pain when it was reported as an adverse event. More detailed information on how outcome measures were derived and harms were categorized is provided in Appendix G.

Management of Missing Data

Overall success and fusion were each a composite outcome based on multiple criteria; all criteria had to be satisfied to classify a case as a success (Appendix F). For these outcomes, we performed three analyses based on different assumptions for missing values and partial data. In our primary analysis, patients meeting some criteria but missing data for others were conservatively classified as failures, since the patient is available for evaluation (not missing) but there was inadequate evidence to prove that all criteria had been met. Patients without data for any criteria were excluded. We also performed two sensitivity analyses: in one, patients with missing data for some or all criteria were excluded; in the other, such patients were included as failures. For other binary effectiveness outcomes, patients with missing data were excluded in the primary analysis but included as failures in the sensitivity analysis. For adverse events, all patients were included since we analyzed cumulative adverse events from the time of surgery.

Quality Assessment

For Medtronic-funded studies, quality assessment was based on information from trial protocols and internal reports. Otherwise, we used journal articles, ClinicalTrials.gov reports, and other available information to assess the quality (risk of bias) of each study. We adapted criteria for quality from the Cochrane Back Review Group³⁰ and the U.S. Preventive Services Task Force³¹ (Appendix M). For randomized trials, we assessed randomization, allocation concealment, and blinding; the similarity of compared groups at baseline; reporting and assessment of dropouts; handling of incomplete data; the use of intent-to-treat analysis; and ascertainment, timing, and reporting of outcomes.³⁰ We used data dictionaries and protocols for additional information regarding how well each endpoint was ascertained and how it was recorded in study data sheets. For cohort studies, we assessed selection methods to create an inception cohort and to ascertain exposures, potential confounders, methods to reduce bias (such as masking outcome assessors), and the appropriateness of statistical methods to adjust for confounding.³¹ We used applicable cohort study criteria to rate the quality of intervention series (defined as a longitudinal study that enrolled a group of patients undergoing a surgical procedure with rhBMP-2 but without a control group). Individual studies were rated "good," "fair," or "poor" quality using standard definitions.³²

Good-quality studies are considered likely to be valid. Good-quality studies clearly describe the population, setting, interventions, and comparison groups; use a valid method for allocation of patients to interventions; clearly report dropouts and have low dropout rates; use appropriate methods for preventing bias; and appropriately measure outcomes and fully report results. *Fair-quality* studies have some methodological deficiencies, but no flaw or combination of flaws judged likely to cause major bias. The study may be missing information, making it difficult to assess its methods or assess limitations and potential problems. The fair-quality category is broad, and studies with this rating vary in their strengths and weaknesses—the results of some fair-quality studies are likely to be valid, while others are only probably valid.

Poor-quality studies have a serious or "fatal" flaw or combination of flaws in design or analysis, or large amounts of missing information. The results of these studies are judged to be at least as likely to reflect flaws in the study design as true effects of the interventions under

investigation. We did not exclude studies rated poor-quality *a priori*, but they were considered to be the least reliable studies when synthesizing the evidence, particularly when discrepancies between studies were present.

Applicability Assessment

We recorded factors important for understanding the applicability of studies, such as the study's criteria for eligibility, population characteristics, and whether the treatment received by the intervention and control groups were reasonably representative of standard practice.³³ We also recorded the funding source and role of the sponsor. We did not assign a rating of applicability (such as "high" or "low") because applicability may differ based on the user of this report.

Data Synthesis and Analysis

For journal articles and internal reports, we constructed evidence tables showing the study characteristics, quality ratings, and reported results (Appendix M). The trials evaluated a variety of surgical approaches, particularly for lumbar degenerative disc disease. We stratified data synthesis of benefits and harms (except for cancer and death) by the following categories of surgical sites/approaches: ALIF, PLF, PLIF, TLIF, anterior cervical discectomy and fusion (ACDF), posterior cervical spine fusion, the circumferential approach defined as an interbody fusion with posterior fixation, and thoracic spine. Within ALIF, we analyzed a trial that compared fusion with rhBMP-2 versus artificial disc replacement (no bone graft or fusion)²⁷ separately from trials that compared fusion with rhBMP-2 versus fusion with iliac crest autograft. Different surgical approaches were expected to affect benefits and harms differently and/or to be associated with different harms. After consultation with two spine surgeons regarding which comparisons would be clinically meaningful, we decided it would be inappropriate to combine studies across surgical approaches. Such stratification also nearly coincided with stratification based on rhBMP-2 dosage, resulting in an analysis of studies with low-dose rhBMP-2 (ALIF) separate from those with higher dose of rhBMP-2 (PLF).

For all outcomes, the primary analyses focused on time periods up to 24 months, since all of the Medtronic randomized control trials had follow-up data to 24 months. For harms, we aggregated data into two periods for Medtronic trials:

- 1. Operative and up to four weeks postoperative
- 2. Up to 24 months postoperative

For the outcomes cancer and death, meta-analyses were performed by combining across all surgical approaches because these outcomes were rare and not believed to necessarily be affected by the surgical approaches. We excluded preexisting cancers from all cancer analyses.

We also analyzed three controlled trials (one ALIF, and two PLF) that provided data longer than 24 months. For cancer and death we analyzed the cumulative number of events up to 24 and 48 months. Cancer events were very sparse after 48 months so we only conducted a sensitivity analysis by combining data up to 48 months and after 48 months, instead of a separate analysis for cancers occurring after 48 months.

Meta-analysis

We conducted meta-analysis of studies similar enough to produce a meaningful combined estimate. Otherwise, studies were synthesized qualitatively. As mentioned above, in deciding which studies to combine, we considered the surgical approach, surgical site, carrier, concentration, and dose of rhBMP-2. We also performed tests of statistical heterogeneity.

Among trials, only the ALIF and PLF approaches provided adequate data for meta-analyses. We had access to IPD for all of the ALIF trials and for all but one PLF trial.³⁴ Therefore our meta-analyses were primarily based on IPD and we qualitatively compared the results from the one PLF trial with IPD results.

In addition, to qualitatively compare the results in publications to those of our primary metaanalysis, we conducted a separate meta-analysis of published results for selected discrete outcomes (e.g., fusion). We also combined results from cohort studies in a meta-analysis if enough data were available.

For the draft version of this report, we conducted meta-analyses using a two-step approach. In response to the comments from the reviewers of the draft report and from the journal editors of the manuscript based on this report,³⁵ we performed meta-analyses using a mixed effects model, when appropriate, and reported those results in the main text of this report. The mixed effects model has the theoretical advantage of providing a better way to handle missing data.³⁶ When it was not appropriate to use the mixed effects model, we reported results from the two-step approach as explained below. The methods and results from the two-step approach for ALIF and PLF trials through 24 months are presented in Appendix H.

Methods for Individual Patient Data Meta-analyses

To assess benefits and harms for ALIF and PLF approaches through 24 months, for continuous outcomes, we used a linear mixed effects model to obtain a combined mean difference between rhBMP-2 and control groups after adjusting for baseline values and individual study effects.³⁷ We assumed random treatment effects and heterogeneous residual variance across included studies. For common binary outcomes, we used a generalized linear mixed effects model assuming random treatment effects and binomial distribution with log link to obtain a combined risk ratio (RR). For rare binary outcomes, we used a generalized linear fixed effects model assuming binomial distribution with log link. We fitted a separate model for each time point. When the generalized linear model with log link could not produce a combined estimate due to ill-fitting data, we provided combined estimates from a two-step approach (Appendix H).

We assessed statistical heterogeneity using the estimated between-study variance from the mixed effects model.³⁷ We evaluated baseline age, sex, smoking status, diabetes status, previous back surgery, and employment status as potential sources of heterogeneity. For all metaanalyses, we also performed sensitivity analyses by excluding poor quality studies (Study 1 for ALIF, n=10 included in the meta-analysis; Study 12 for PLF, n=16 included in the metaanalysis) and studies utilizing a lower rhBMP-2 concentration for PLF (Study 8, n=46), and by excluding graft-site-related adverse events in analyses of overall adverse events. These metaanalyses caused minimal changes in estimates. Sensitivity analyses using alternative definitions of overall success and fusion based on different assumptions for missing values also produced similar results. Results of these sensitivity analyses are not separately reported. In most metaanalysis, we did not find significant heterogeneity. We only noted the cases when heterogeneity was substantial. For outcomes with a forest plot, we presented study level estimates with the combined estimate from the mixed effects model unless specified otherwise.

For cancer, we performed sensitivity analyses by excluding events not reportable to the National Cancer Institute Surveillance Epidemiology and End Results (SEER) Program (skin cancers with low propensity to metastasize). We also performed a sensitivity analysis by including all zero-event trials in the meta-analysis as a combined "pseudo-trial" with an assumption of no cancers in the rhBMP-2 group and one cancer in the control group. The above meta-analyses for continuous, common, and rare binary outcomes were performed using PROC

MIXED, PROC NLMIXED, and PROC GENMOD respectively, using SAS® software 9.2 (SAS Institute Inc., Cary, NC, USA).

To assess benefits and harms for ALIF and PLF beyond 24 months, the number of studies with available data was too small to reliably and consistently estimate the random treatment effects using the mixed effects model. As in cases in which the generalized linear model with log link could not produce a combined estimate due to ill-fitting data, we analyzed the data using a two-step approach (Appendix H).

Meta-analysis of Results from Publications

For published results, meta-analysis was conducted for selected discrete outcomes including fusion and additional surgery. For fusion, we used a random effects model similar to the second step of the model used in the two-step approach (Appendix H). For the outcome of additional surgery, which was rare, we used a generalized linear fixed effects model assuming binomial distribution with log link.

Grading the Strength of Evidence

For each surgical approach, compared with iliac crest bone graft, we rated the evidence about the following outcomes: overall success, fusion, neurological success, ODI success, ODI score, SF-36, pain score, additional surgeries, and selected adverse events (Appendix I).

We adapted methods developed by the Agency for Healthcare Research and Quality (Table 2)³⁸ to rate the strength of each body of evidence. Specifically, for each group of studies, we assessed the aggregate risk of bias, consistency, directness, and precision of the evidence.³⁸ For rating a body of observational studies, we also considered whether there was a dose-response association or a large effect size, and whether plausible confounders would be likely to change the direction or magnitude of the effect.³⁸

It should be noted that the implication or application of evidence grades depends on the decision-making context.³⁹

Grade	Definition
High	High confidence that the evidence reflects the true effect. Further research is very unlikely to change our confidence in the estimate of effect.
Moderate	Moderate confidence that the evidence reflects the true effect. Further research may change our confidence in the estimate of the effect and may change the estimate.
Low	Low confidence that the evidence reflects the true effect. Further research is likely to change our confidence in the estimate of the effect and is likely to change the estimate.
Insufficient	Evidence either is unavailable or does not permit estimation of an effect.

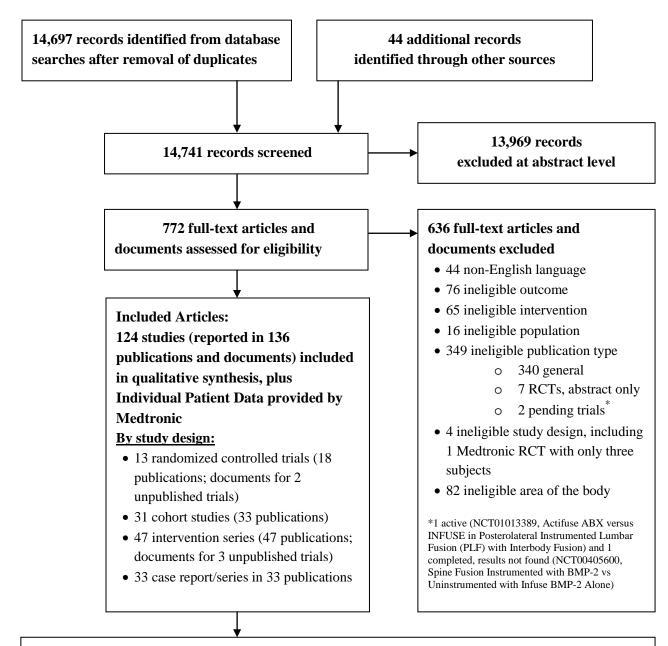
Assessment of Reporting and Related Biases

Reporting bias refers to incomplete or inaccurate reporting of study outcomes and encompasses publication bias, outcome reporting bias, multiple publication bias, location bias, language bias, time lag bias, citation bias, and others (e.g., ghostwriting, misrepresentation of facts, reframing). We assessed certain reporting biases and quality of reporting of Medtronic studies by comparing journal publications with corresponding study protocols, reports, and data dictionaries provided by Medtronic. Assessments of reporting bias were based on articles published in peer-reviewed journals or their supplements. We excluded articles from "throwaway" journals,⁴⁰ promotional material, and information from commercial web sites. We did not assess location bias or language bias, and also excluded types of bias that could not be adequately assessed using the materials we received from Medtronic (e.g., ghostwriting, case history adjudication).

We identified the primary outcomes for each study from the study protocols, statistical analysis plan, protocol amendments, and entries in ClinicalTrials.gov. We noted when we could not identify prespecified primary outcomes from these sources. We determined the publication status of each trial and selected one published report as the main study report using the following order of priority: a full-length study report in a stand-alone article, a detailed letter to the editor that reported study results, a review using results from the included trial, or a pooled analysis using results from the included trial.²² If there was more than one paper on a study trial in the same order of priority category, we used the earlier paper. If we were in doubt as to whether a publication represented data from a Medtronic trial, we queried Yale University who queried Medtronic. We used the same criteria to identify disagreements between protocol and publication as Vedula and colleagues.²² Specifically, we considered that there was a disagreement between the outcome in the published trial and the study protocol when: 1) a new primary outcome not mentioned in the protocol was introduced in the published report, 2) the report did not distinguish between primary and secondary outcomes although they were distinguished in the protocol, 3) an outcome described as "primary" in the protocol or an internal report was described as a secondary outcome in the publication, and 4) a protocol-specified primary outcome was not described in the published report.

We compared results from IPD meta-analysis and published trials and noted discrepancies for primary and secondary outcomes. For adverse events, we compared information from IPD with the corresponding publications for specific adverse events (e.g., retrograde ejaculation) and for total adverse events.

Funding Source


This project was funded by a research subcontract to Oregon Health & Science University under a sponsored research agreement between Yale University and Medtronic, Inc. Yale served as the intermediary for data and information requests to Medtronic and managed the peer review of the draft report. Medtronic provided comments on the draft version of this report, but had no influence over the selection of evaluators, conduct of these analyses, the release of the results, the publication of these findings, or how we responded to their comments.

RESULTS

Effectiveness and Harms of rhBMP-2 in Lumbar, Cervical, and Thoracic Spine Surgery (Key Questions 1 and 2)

Study Selection

Figure 1 shows the flow of study selection for Key Questions 1 and 2. A total of 13 randomized trials were included: 12 Medtronic trials (1,879 subjects), and one trial of instrumented PLF plus rhBMP-2 versus ICBG in patients over 60 years of age (102 subjects) that was sponsored by Norton HealthCare.³⁴ We excluded one small Medtronic trial because it was stopped after recruiting only three patients. Included articles are listed in Appendix J and excluded articles are listed in Appendix K. Evidence tables for included studies appear in Appendix M.

Included studies by approach and study design (sponsorship, approach if applicable):										
Trials	ALIF 6 (Medtronic)	PLF 4 (Medtronic) 1 (Other)	Anterior Cervical 1 (Medtronic)	Other 1 (Medtronic, PLIF)						
Cohorts	4 (Other)	7 (Other)	6 (Other)	14 (Other)						
Intervention Series	1 (Medtronic) 3 (Other)	2 (Medtronic) 5 (Other)	7 (Other)	1 (Medtronic, PLIF) 28 (Other)						

ALIF = anterior lumbar interbody fusion; PLF = posterolateral lumbar fusion; PLIF = posterior lumbar interbody fusion; RCT = randomized controlled trial

We identified seven abstracts that reported on studies that were described as "randomized trials" but did not clearly correspond to a journal publication.⁴¹⁻⁴⁷ One of these was registered in ClinicalTrials.gov and compared instrumented versus noninstrumented fusion with rhBMP-2.⁴⁴ Three abstracts described a study or studies similar to Medtronic Study 13, but we could not determine with certainty whether they reported the same trial.⁴¹⁻⁴³ Two other trials compared rhBMP-2 with other products (Silicated Calcium Phosphate, or b-TCP+BMA).^{46, 47} Finally, an abstract that appeared in 2009 reported a trial of "infuse BMP" (sic) versus silicate substituted calcium phosphate (Actifuse) in ACDF.⁴⁵ This trial reported worse swallowing outcomes in patients who received rhBMP-2 as measured by a mean swallowing score (1.44 for BMP versus 0.79 for Actifuse, p=0.0002) and the need for steroid treatment (34.1% versus 14.0%).

In 11 of the 12 included Medtronic-sponsored trials and in the Norton HeathCare-sponsored trial, spinal fusion with rhBMP-2 was compared with spinal fusion with ICBG. The other Medtronic study (Study 10) compared fusion with rhBMP-2 with implantation of the MAVERICKTM artificial disc (Medtronic; Memphis, TN). In most cases, a metal interbody cage or metal fixation system was also employed. However, in two trials (Studies 4 and 5), both the rhBMP-2 group and the ICBG groups utilized an allograft bone dowel in which either rhBMP-2 or ICBG was placed prior to implantation.

In addition to the RCTs, we included 31 cohort studies, 80 uncontrolled studies (47 intervention series and 33 case series or case reports) of patients who received rhBMP-2 to promote spinal fusion (Appendix M). Medtronic provided IPD for four prospective intervention series (Studies 3, 11, 15, and 16). Medtronic did not provide data on an intervention series completed in June 2012, that evaluated rhBMP-2 used with another device in cervical degenerative disc disease.⁴⁸

Study Quality

Medtronic internal documents provided useful information for assessing the internal validity, ascertainment of outcomes, and reporting of the Medtronic randomized trials.

Study Design

Most trials used similar methods for randomization and allocation concealment. While descriptions of these methods were incomplete in journal articles, protocols and data summaries provided to the FDA in Medtronic internal documents suggest that randomization in the pivotal trials and the larger pilot trials was satisfactory (Table 3). There were some potentially important baseline differences between randomized groups in some studies. For example, in Study 2 a higher proportion of patients in the rhBMP-2 group worked before surgery (47% vs. 37%) and had diabetes (4% vs. 0.7%) than did those in the ICBG group. However, the pattern of these differences did not consistently favor the rhBMP-2 groups, and the FDA did not appear to identify discordant results among investigator sites.

Table 3. Included Medtronic studies of recombinant human bone morphogenetic protein-2 (rhBMP-2)

IDE Clinical Trial Name	Study Design		mple ze, n	rhBMP-2 Conc.			Ba	aseline Charac	teristics			Quality
(Study #) Study, Year (Reference)		I	С	(mg/cc) Dose (mg) Carrier	Mean Age, years	Male, n (%)	Diabetes, n (%)	Smoking, n (%)	Prior Back Surgery, <i>n</i> (%)	Work before surgery, n (%)	Duration of Followup, months	-
Anterior lumbar interb	ody fusio	n										
INFUSE®/ LT-CAGE® Pilot (Study 1) Boden, 2000 ⁴	RCT	11	3	1.5 3.9-7.8 ACS	l: 42.5 C: 40.2	l: (5) 46% C: (2) 67%	l: 0 C: 0	l: (1) 9% C: (1) 33%	I: (5) 46% C: 0	l: (6) 55% C: (2) 67%	24	Poor
INFUSE®/ LT-CAGE® Pivotal (Study 2) Burkus, 2002 ⁵	RCT	142	136	1.5 4.2-8.4 ACS	l: 43.3 C: 42.3	I: 78 (55%) C: 68 (50%)	l: 6 (4%) C: 1 (0.7%)	I: 47 (33%) C: 49 (36%)	I: 54 (38%) C: 55 (40%)	l: 67 (47%) C: 50 (37%)	l: 72 C: 24	Fair
INFUSE®/ LT-CAGE® Lap Pivotal (Study 3) Burkus, 2003 ²⁴ *	IS	134		1.5 4.2-8.4 ACS	l: 42.4	I: 57 (43%)	l: 3 (2%)	I: 40 (30%)	l: 33 (25%)	l: 70 (53%)	72	Fair
INFUSE®/ Bone Dowel Pilot (Study 4) Burkus, 2002 ⁷	RCT	24	22	1.5 8.1-11.7 ACS	l: 41.5 C: 45.6	l: 8 (33%) C: 10 (46%)	l: 2 (8%) C: 1 (5%)	l: 8 (33%) C: 6 (28%)	l: 11 (46%) C: 7 (32%)	l: 11 (46%) C: 9 (41%)	48	Fair
INFUSE®/ Bone Dowel Pivotal (Study 5) Burkus, 2005 ⁸ †	RCT	55	30	1.5 8.1-11.7 ACS	l: 39.7 C: 42.1	l: 24 (44%) C: 9 (30%)	l: 0 C: 1 (3%)	l: 18 (33%) C: 11 (37%)	l: 18 (33%) C: 10 (33%)	l: 36 (66%) C: 16 (53%)	24	Fair
INFUSE®/ INTER FIX™ ALIF Pilot (Study 9) Unpublished	RCT	25	20	1.5 8.4-16.8 ACS	l: 45.9 C: 44.9	l: 11 (44%) C: 9 (45%)	l: 0 C: 1 (5%)	l: 10 (40%) C: 6 (30%)	l: 11 (44%) C: 7 (35%)	l: 12 (48%) C: 13 (68%)	24	Fair
MAVERICK™ Disc Pivotal (Study 10) ‡ Gornet, 2011 ²⁷	RCT	172	405	1.5 4.2-12.0 ACS	l: 40.2 C: 39.9	I: 86 (50%) C: 205 (50.6%)	Not measured	I: 56 (32.6%) C: 117 (28.99%)	I: 48 (27.9%) C: 115 (28.4%)	I: 96 (55.8%) C: 248 (61.2%)	84	Fair

IDE Clinical Trial Name	Study Design	San Size	nple e, n	rhBMP-2 Conc.			Ba	aseline Charac	teristics			Quality
(Study #) Study, Year (Reference)		I	С	– (mg/cc) – Dose (mg) Carrier	Mean Age, years	Male, n (%)	Diabetes, n (%)	Smoking, n (%)	Prior Back Surgery, <i>n</i> (%)	Work before surgery, n (%)	Duration of Followup, months	-
Posterior lumbar fusio	on											
rhBMP-2/BCP Mexico Pilot § (Study 16) Unpublished	IS	1: 7 2: 8	8	2.23.0 15.0- 40.0 BCP	l1: 53.9 l2: 41.7	l1: 1 (14%) l2: 4 (52%)	l1: 0 l2: 0	l1: 0 l2: 0	l1: 0 l2: 0	l1: 2 (29%) l2: 3 (38%)	12	Fair
rhBMP-2/BCP US Pilotu (Study 12) Boden, 2002 ²⁸	RCT	l1: 11 l2: 11	5	2.1 42.0 BCP	l1: 50.1 l2: 57.6 C: 52.9	l1: 6 (55%) l2: 3 (27%) C: 2 (40%)	I1: 1 (9%) I2: 0 C: 2 (40%)	l1: 2 (18%) l2: 0 C: 1 (20%)	l1: 2 (18%) l2: 3 (27%) C: 0	I1: 6 (55%) I2: 6 (55%) C: 0	24	Poor
rhBMP-2/BCP Canada Pivotal (Study 13) Unpublished	RCT	99	98	2.1 42.0-63.0 BCP	l: 53.0 C: 53.0	I: 35 (36%) C: 48 (49%)	I: 2 (2%) C: 6 (6%)	l: 29 (30%) C: 26 (26%)	l: 19 (19%) C: 20 (20%)	I: 20 (20%) C: 24 (24%)	24 or 48**	Fair
INFUSE®/ MASTER GRAFT® Pilot (Study 8) Dawson, 2009 ²⁶	RCT	25	21	1.5 12.0 ACS	l: 55.9 C: 56.9	l: 10 (40%) C: 9 (43%)	l: 0 C: 3 (14%)	l: 6 (24%) C: 5 (24%)	l: 6 (24%) C: 6 (28%)	l: 7 (28%) C: 9 (43%)	24	Fair
AMPLIFY™ (rhBMP-2/ CRM) Pivotal (Study 14) Dimar, 2009 ²⁹	RCT	239	224	2.0 40.0 CRM	l: 53.2 C: 52.3	l: 108 (45.2%) C: 95 (42.4%)	l: 17 (7.1%) C: 27 (12.1%)	l: 63 (26.4%) C: 59 (26.3%)	l: 73 (30.5%) C: 62 (27.7%)	l: 83 (34.7%) C: 92 (41.1%)	60	Fair
rhBMP-2/ CRM 2-level Pilot (Study 15) Unpublished	IS	29		2.0 40.0 CRM	l: 53.9	l: 15 (52%)	l: 3 (10%)	l: 12 (41%)	l: 7 (24%)	l: 13 (45%)	36	Poor
Posterior lumbar inter	body fus	ion										
INFUSE®/ INTER FIX™ PLIF (Study 6) Haid, 2004 ²⁵	RCT	34	33	1.5 4.2-8.4 ACS	l: 46.3 C: 46.1	l: 17 (50%) C: 15 (46%)	l: 1 (3%) C: 1 (3%)	l: 18 (53%) C: 15 (46%)	I: 12 (35%) C: 13 (40%)	l: 9 (27%) C: 15 (46%)	24	Fair

IDE Clinical Trial Name	Study Design		mple ze, n	rhBMP-2 Conc.			Ва	aseline Charac	teristics			Quality
(Study #) Study, Year (Reference)	-	Ι	С	(mg/cc) Dose (mg) Carrier	Mean Age, years	Male, n (%)	Diabetes, Smoking n (%) n (%)	Smoking, n (%)	Prior Back Surgery, <i>n</i> (%)	Work before surgery, n (%)	Duration of Followup, months	-
Circumferential poste	rior lumba	ır inte	rbody f	usion								
INFUSE®/ TELAMON PEEK PLIF Pilot (Study 11) Unpublished	IS	30	N/A	1.5 8.4 ACS	l: 51.0	l: 12 (40%)	l: 2 (7%)	l: 8 (27%)	l: 14 (47%)	l: 9 (30%)	36	Poor
Anterior cervical disc	ectomy an	d fusi	ion									
INFUSE®/ CORNER STONE® ACDF Pilot (Study 7) Baskin, 2003 ⁹	RCT	18	15	1.5 0.6-1.2 ACS	l: 51.3 C: 47.1	l: 8 (44%) C: 7 (47%)	l: 0 C: 0	l: 5 (28%) C: 7 (47%)	l: 1 (6%)** C: 0**	l: 12 (67%) C: 9 (60%)	24	Fair

ACDF = anterior cervical discectomy and fusion: ACS = absorbable collagen sponge; ALIF = anterior lumbar interbody fusion; BCP = biphasic calcium phosphate; C = comparator group (ICBG or artificial disc); CRM = compression resistant matrix; ICBG = iliac crest bone graph; I = investigational group (rhBMP-2 group); IDE = investigational device exemption; IS = intervention series; N/A = not applicable; PEEK = polyetherethereketone; PLF = posterolateral lumbar fusion; PLIF = posterior lumbar interbody fusion; RCT = randomized controlled trial; rhBMP-2 = recombinant human bone morphogenic protein-2; US = United States

* Study 3 data not published independently. Burkus, 2003²⁴ contains pooled data from Studies 3 and 2. Patients underwent laparoscopic ALIF in this study; patients in the other ALIF studies underwent laparoscopic surgery except for 4 patients in the rhBMP-2 group of Study 1.

[†] Study 5 data not published independently. Burkus, 2005⁸ contains pooled data from Studies 4 and 5.

‡ Comparator is an artificial disc, not ICBG.

§ The Mexico pilot study was an intervention series with two cohorts.

I1 = rhBMP-2 without internal fixation, I2 = rhBMP-2 + TSRH (Texas Scottish Rite Hospital) pedicle screw instrumentation, C: autograft + TSRH

[¶] 100 patients (including both intervention and control group) were followed for 24 months (rhBMP-2 vs. ICBG, using CD horizon spinal system) and 97 patients were followed for 48 months (rhBMP-2 vs. ICBG, using TSRH spinal system).

** Prior neck surgery

In the Medtronic-supported trials and intervention series, the main risks for bias were inability to blind surgeons or patient to treatments, and lack of blinding of outcome assessment for all endpoints except fusion. Assessment or adjudication of most effectiveness and adverse event outcomes could have been influenced by knowledge of the patient's treatment. For example, for "overall success," a composite measure that included fusion, pain scores, neurological status, no additional surgery procedure classified as "failure," and the lack of "serious adverse event classified as implant associated or implant/surgical procedure associated," is based on a blinded, detailed assessment of fusion as well as several unblinded measures of varying rigor. In particular, determinations of whether or not the adverse event was implant or surgical procedure associated is subjective and prone to bias given the assessor's knowledge of the patient's treatment group.

Most trials were described as noninferiority or equivalence studies in study objectives. Statistical analysis plan and margins of noninferiority for primary outcome were available for pivotal trials and appeared reasonable. However, sample size calculations in most trials were not based on a noninferiority or equivalence design and most outcomes in the published trials were analyzed as endpoints from superiority trials. No published pivotal trials analyzed data using a Bayesian approach as specified in the protocols.

Except in one trial,²⁹ there was no prespecified algorithm on how to handle missing data. For example, it was not clear how a composite outcome was determined if some but not all criteria were missing. The primary analysis in the published industry-sponsored trials seemed to use the observed data instead of using intent-to-treat analysis—i.e., data missing at a particular measurement time were simply excluded from the analyses. At 24 months, 9 of the 12 randomized trials had follow-up rates over 90% in both groups. The proportion of lost to follow-up was much higher after 24 months in the few studies with longer follow up. In the study that had a prespecified missing data algorithm (Study 14), the protocol stated that the reason to use the observed data is that intent-to-treat analysis is not conservative for a noninferiority trial; however, as mentioned above, the published article analyzed most outcomes as if they were from superiority trials.

Most observational studies were retrospective and small. The main risks for bias for cohort studies were unclear comparability of groups at baseline, differences in baseline characteristics, unclear blinding of outcome assessors, and failure to adjust for potential confounding variables and baseline differences.

Ascertainment of Study Endpoints

Individual patient data are most valuable for endpoints that are ascertained consistently and measured accurately. The quality of ascertainment varied for different endpoints. Effectiveness outcomes seemed to be ascertained reliably using well-designed questionnaires. For example, to assess neurological endpoints, investigators used a comprehensive neurological status scale measuring different neurological functions and, in some protocols, were instructed to be thorough and vigilant in their assessments.

For harms, a broad classification was used for many adverse events (e.g., cardiovascular or urogenital adverse events), and events were generally not actively elicited using specific symptom questionnaires or objective tests. For events like retrograde ejaculation or urinary retention, patients do not always volunteer information, and it was unclear how such outcomes were defined or whether investigators asked about specific symptoms. Cancer was not considered in the protocols as a prespecified endpoint, and was only captured by voluntary reporting through a generic adverse event text field. Such passive reporting of adverse events is associated with under-ascertainment.⁴⁹ For back and leg pain, the types of adverse events

included were very heterogeneous (e.g., radiculopathy, Baker's cyst, sacroiliac joint pain, arthritic knee pain, or ankle pain). No trial defined radiculitis, and adverse events consistent with possible radiculitis were variously classified within the same trial as back and leg pain, neurological, or spinal events. We also found very little information in the Medtronic datasets about local effects such as inflammation and ectopic bone formation or on osteolysis and subsidence, which were not systematically ascertained. While it is unrealistic to expect investigators of new devices to predict all adverse events in early trials and design trial protocols to detect them, later trials could have been better designed to collect adverse events data of higher quality.

Major complications, secondary surgical procedures, and some adverse event endpoints, such as wound complications are often clinically evident when they occur and are more likely to have been ascertained reliably. For these outcomes, the quality of ascertainment is less of a threat to validity than incomplete or biased reporting. (We were unable to assess the integrity of case report adjudication because we did not have access to case reports at the investigator site level.)

When an adverse event was detected, investigators were instructed to assess whether it was caused by the device or the surgical procedure. In several of the protocols, investigators were asked to record whether they thought there was a "reasonable possibility" that the adverse event "may have been caused both by the device and the surgical procedure" or whether it was "unrelated" or "undetermined." Because causal relationships between rhBMP-2 and its possible complications were largely unknown, these assessments are likely to be unreliable. The lack of blinding in these assessments is another potential source of bias.

Not many cohort studies evaluated effectiveness outcomes such as fusion and patient reported clinical outcomes such as disability and function. However, some observational studies that were designed specifically to assess adverse events had more reliable or complete ascertainment.^{17, 50-54} One large cohort study used ICD-9 codes from large administrative datasets to ascertain serious complications.¹¹

Applicability

The Medtronic trials applied similar eligibility criteria and enrolled similar populations within each surgical approach (Table 3). Patients had discogenic back and/or leg pain, usually single-level disease, with \leq Grade 1 spondylolisthesis, preoperative ODI scores \geq 30 or 35, had not responded to conservative treatment for 6 months, were <40% over their ideal weight, and had not recently used tobacco. The mean age of patients in most trials was 40-60 years, and both genders were well-represented.

Some exclusion criteria were obesity, alcohol or drug abuse, autoimmune disease, osteoporosis, and conditions requiring treatment with steroids. To determine effects of these and other eligibility criteria on applicability, it is important to know the numbers of patients who did not qualify for the trial, and the specific reasons they did not. We could not find this information in the journal articles or in documents Medtronic provided.

Most of the Medtronic-sponsored studies were small. Eleven of the 16 studies enrolled a total of less than 100 patients, and 9 of the 16 enrolled less than 50 patients. Two off-label uses had exceptionally sparse data (ACDF and PLIF) making it very difficult to evaluate findings, especially less common adverse events, or to assess applicability.

The Medtronic intervention series were typically conducted to evaluate a different surgical procedure (e.g., laparoscopy instead of open surgery) rather than populations different than those evaluated in the randomized trials. Most of them focused on fusion rates but did not report harms.

The largest non-Medtronic observational study reported on 328,468 spinal fusion patients from the 2002-2006 Nationwide Inpatient Sample database, including a broader patient

population than the trials.¹¹ In this cohort study, patients were 53 years old (Standard Deviation [SD] 14), white (59%), had disc herniation or degenerative disease (73%), and had 1 or 2 levels fused (84%). Both men and women were well represented, as was income level and type of hospital. There were few non-elective admissions (13%) and few fusions greater than 2 levels (15%). Most other cohort studies and case series were retrospective, small, evaluated off-label use, and provided little information on patient characteristics. Most focused on harms and did not report effectiveness outcomes. A few series reported rhBMP-2 use in a special population, such as spinal deformity patients⁵⁵ or children.⁵⁶⁻⁶⁰

Effectiveness and Harms for Lumbar Spine

Anterior Lumbar Interbody Fusion

Summary Findings

The anterior lumbar interbody fusion trials constitute the main body of evidence about the INFUSE Bone Graft, the product approved by FDA.

- Based on meta-analysis of five randomized controlled trials (n=465), there were no consistent differences in effectiveness between rhBMP-2 and ICBG from 6 weeks to 24 months after the time of surgery (strength of evidence: moderate).
 - One exception is that rhBMP-2 was consistently associated with superior SF-36 physical component summary scores from 3 through 24 months, but differences were small (weighted mean difference [WMD] 3.68 on a 0 to 100 scale, 95% confidence interval [CI] 0.86 to 6.49, at 24 months).
 - rhBMP-2 was associated with a small improvement in back pain (WMD 0.74 on a 0 to 10 scale, 95% CI 0.00 to 1.49) and ODI score (WMD 7.35 on a 0 to 50 scale, 95% CI 0.70 to 14.0) at 24 months, but differences were small.
- For adverse events reported in these randomized trials, there were no statistically significant differences between rhBMP-2 and ICBG. Estimates often had more uncertainty than those for effectiveness outcomes.
 - The likelihood of experiencing at least one adverse event or one serious adverse event was similar (strength of evidence: moderate).
 - For wound infection and reoperations, estimates favored rhBMP2, but the differences were not statistically significant and confidence intervals were wide (strength of evidence: low).
 - For retrograde ejaculation, subsidence, and urinary retention, there were signals of increased risk with rhBMP-2. Differences were not statistically significant but favored ICBG, and upper bounds of confidence intervals were high, indicating that the studies did not rule out a high additional risk associated with rhBMP-2.
- Observational studies were generally small and reported fusion and specific adverse results consistent with trials. The exception is subsidence where observational studies reported higher rates using varying outcome definitions.

Overview of Medtronic Trials

The INFUSE Bone Graft consists of synthetic recombinant human bone morphogenetic protein-2 (rhBMP-2) and an absorbable collagen sponge (ACS). We identified 14 studies using the INFUSE Bone Graft in ALIF—including six randomized trials, four cohort studies,^{51, 61-63} and four intervention series.^{24, 50, 64, 65} Seven of these studies—six randomized trials and one intervention series—were sponsored by Medtronic (Studies 1–5, 9 and 10, Table 4). In five of

the randomized trials, rhBMP-2 was compared with an autograft consisting of bone from the ICBG.^{4, 5, 7, 8, 66}

Start Date	IDE # (Study Number)*			Study (intervention		Publication Date
1996- 1997	G950165	Unknown	266 vs. unknown	Not published, data not available.		
	G960065 (Study 1)	LT-CAGE: INFUSE vs. Autograft Pilot Study (Open/Laparoscopic)	11 vs. 3	Spine 2/1/2000 ⁴		
1998	G960065 (Study 2)	LT-CAGE: INFUSE vs. Autograft Pivotal Trial (Open)	143 vs. 136	Journal of Spinal Disorders & Techniques 10/1/2002 ⁵		
1998	G960065 (Study 3)	LT-CAGE: INFUSE Pivotal Intervention Series (Laparoscopic)	134	Not published separately		
1998	G970124 (Study 4)	Bone Dowel: INFUSE vs. Autograft Pilot (Open)	24 vs. 22	Spine 11/1/2002 ⁷		
1998	(Studies 2, 3, 266)	Combined analysis of 3 studies: LT-CAGE: INFUSE vs. Autograft Pivotal Trial (Open + Laparoscopic) plus one arm of G950165.		Journal of Spinal Disorders & Techniques 4/1/2003 ²⁴ Orthopedics 7/1/2004 ⁶⁷ J Neurosurgery: Spine 10/1/2004 ⁶⁸		
1999	G980207 (Study 9)	INTER FIX: INFUSE vs. Autograft Pilot (Open)	25 vs. 20	Not published		
2000	G970124 (Study 5)	Bone Dowel: INFUSE vs. Autograft Pivotal (Open)	55 vs. 30	Not published separately		
2000	G970124 (Studies 4,5)	Bone Dowel: INFUSE vs. Autograft Pilot + Pivotal (Open)	79 vs. 52	The Journal of Bone and Joint Surgery Am 6/1/2005 ⁸		
2003	G010354 (Study 10)	LT-CAGE with INFUSE vs. MAVERICK Replacement Disc (Open)	172 vs. 405	Spine 12/1/2011 ²⁷		

Table 4. Anterior lumbar interbody fusion (ALIF) studies in chronological order

*Numbers in parenthesis refer to studies for which Medtronic provided individual patient data. IDE = investigational device exemption

In July 2002 the FDA gave premarket approval for the use of the INFUSE Bone Graft for ALIF procedures in patients who had degenerative disc disease at one level from L4-S1. The approval was based on results from the pilot study (Study 1) and two "pivotal" studies: a randomized trial of the rhBMP-2 (INFUSE) graft versus ICBG (Study 2), and a separate series of patients who underwent laparoscopic implantation of the INFUSE Bone Graft (Study 3). The LT-CAGE was used in all patients in Studies 2 and 3. At the time of the approval, the FDA was also aware of four other Medtronic studies of rhBMP-2: three of these evaluated posterolateral fusions and one an ACDF approach.

The purpose of the pivotal trials for INFUSE/LT-CAGE was to demonstrate to the Food and Drug Administration that the rhBMP-2 device was non-inferior to iliac crest autograft when used in a similar setting. After analyzing the results of the pivotal trials, the FDA concluded that patients receiving the investigational device had equivalent fusion, overall success, and pain outcomes compared with the patients receiving autografts.

Later, Medtronic evaluated rhBMP-2 with a previously approved fusion cage design, the INTER FIX threaded fusion device (Study 9, 45 patients) or a bone dowel (Studies 4, 5). Finally,

Medtronic conducted an RCT in which the control arm received the INFUSE[®]/LT-Cage and the intervention group received an artificial disc (Study 10).

All of the Medtronic trials had similar design features and, for effectiveness outcomes, all trials were rated fair quality except for Study 1, which was rated poor-quality, due to baseline differences and because randomization results were revealed to the patient prior to informed consent to enter the study. Overall, the most important limitation was that patients, surgeons, and, except for radiologists, outcome assessors were not blinded to treatment assignment. Most of the studies were too small for randomization to result in clinically equivalent groups. The methods for randomization seemed satisfactory, but, in the pivotal trial of INFUSE/LT-Cage, a higher proportion of patients in the rhBMP-2 group were employed at baseline (Study 2, 47% vs. 37%). Patients in Study 3, the intervention series consisting of rhBMP-2 patients who underwent a laparoscopic surgical procedure, appeared to be at lower risk of complications than patients in the randomized arms: they had a substantially lower baseline rate of previous back surgery (37.8% vs. 40.4% for Study 2, vs. 24.6% for Study 3) and a lower rate of tobacco users (32.9%, 36.0%, 29.9%.) (Table 3).

Comparative Effectiveness of rhBMP-2 Versus Fusion Without rhBMP-2

Overall success. In reviewing the INFUSE/LT-Cage studies, the FDA concluded that there was a 99.4% chance that the 24-month overall success rate for the investigational groups was equivalent to the 24-month success rate for the control group. While we did not conduct a Bayesian analysis, the results of our meta-analysis of the five RCTs using IPD (Studies 1, 2 4, 5 and 9; n=465 excluding 4 laparoscopic patients in Study 1) are consistent with this conclusion. At 24 months, the average overall success rate was 61% for the rhBMP-2 group and 53% for the ICBG group.

IPD results provided moderate strength of evidence that there were no differences between rhBMP-2 and ICBG in overall success at 6 months (RR 1.18, 95% CI 0.93 to 1.50), 12 months (RR 1.12, 95% CI 0.95 to 1.33), and 24 months (RR 1.19, 95% CI 0.99 to 1.42) (Figure 2).

In the Medtronic-sponsored intervention series of laparoscopic fusion using the INFUSE/LT-Cage, (n=137) (Study 3), the rate for overall success at 24 months was 61% in our analysis, comparable to the rate in rhBMP-2 group with open procedure in Study 2 (58%). Using Medtronic's method, which may have excluded patients that were missing data on one or more components of the overall success measure, the rate was 68%.

Comparative data beyond 24 months was sparse. One RCT (Study 4) showed no significant difference between groups in overall success rate at 48 months (rhBMP-2 9/21 vs. 5/19; RR 1.63, 95% CI 0.66 to 4.00). Studies 2 and 3 provided data in the rhBMP-2 group but not in the ICBG group. In both Study 2 and 3, overall success rates were between 50% and 60% at both time points (38/64 for Study 2 and 38/73 for Study 3 at 48 months; 42/73 for Study 2 and 41/68 for Study 3 at 72 months).

Two small (combined n=60) cohort studies also found no difference between rhBMP-2 plus ICBG or rhBMP-2 plus allograft versus ICBG plus allograft or allograft plus demineralized bone matrix in likelihood of fusion by 24 months.^{61, 62} One non-industry sponsored intervention series (n=46) reported 96% of 93 levels fused using rhBMP-2 with a titanium mesh cage.⁶⁵

Figure 2. Comparison of overall success rates in ALIF trials

Study (Study number)	Control Rate		Risk Ratio (95% CI)	Events, rhBMP-2	Events, ICBG
6 months					
Infuse LT Cage Pivotal (2)	0.46	- #	1.06 (0.82, 1.36)	69/141	62/134
Infuse Bone Dowel Pilot (4)	0.20		2.08 (0.77, 5.64)	10/24	4/20
Infuse Bone Dowel Pivotal(5)	0.60	-∤∰	1.14 (0.81, 1.61)	37/54	18/30
Infuse Interfix Pilot, 1999 (9)	0.37		1.36 (0.67, 2.77)	12/24	7/19
Subtotal		\diamond	1.18 (0.93, 1.50)	128/243	91/202
12 months					
Infuse LT Cage Pivotal (2)	0.54	*	1.07 (0.87, 1.32)	80/138	71/131
Infuse Bone Dowel Pilot (4)	0.40	┼─╋──	1.67 (0.91, 3.06)	16/24	8/20
Infuse Bone Dowel Pivotal (5)	0.50	┼╋╌	1.31 (0.86, 1.99)	34/52	14/28
Infuse Interfix Pilot (9)	0.53 —	∎┤	0.71 (0.36, 1.39)	9/24	10/19
Subtotal		\diamond	1.12 (0.95, 1.33)	139/238	103/198
24 months					
Infuse LT Cage Pivotal (2)	0.55	- # -	1.05 (0.84, 1.30)	77/133	68/123
Infuse Bone Dowel Pilot (4)	0.20	∎	→ 3.54 (1.42, 8.83)	17/24	4/20
Infuse Bone Dowel Pivotal (5)	0.56	∤∰	1.15 (0.78, 1.71)	32/50	15/27
Infuse Interfix Pilot (9)	0.39		1.23 (0.60, 2.53)	11/23	7/18
Subtotal		\diamond	1.19 (0.99, 1.42)	137/230	94/188
	Favors IC	BG Favors rhBM	1P-2		
	ا 5.	1 2			

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft

Fusion. In the RCTs of rhBMP-2 versus ICBG (Studies 1, 2, 4, 5, and 9, n=465), fusion rates at 24 months ranged from 60 to 100% and were generally similar for both groups (Figure 3). IPD results provided moderate strength of evidence that ALIF with rhBMP-2 was associated with higher radiographic fusion versus ICBG at 6 months (RR 1.10, 95% CI 1.02 to 1.19, $I^2=0\%$); and similar likelihood of radiographic fusion at 12 months (RR 1.09, 95% CI 0.95 to 1.24, $I^2=29\%$) and 24 months (RR 1.05, 95% CI 0.89 to 1.24, $I^2=76\%$). Heterogeneity at 24 months could not be explained by the seemingly "outlying" Study 4. In most cases, estimates of fusion rates using our method were similar to estimates using Medtronic's methods. However, for the laparoscopic series (Study 3), the fusion rate using our method of measurement was 82% at 24 months compared with 93% based on the Medtronic measure.

Three studies (Studies 2, 3, and 4) reported long term fusion data beyond 24 months. Methods for handling of missing data seemed to influence the results of fusion at 48 months. One RCT (Study 4) with fusion data from 37 of 46 patients (80%) at 48 months found rhBMP-2 associated with higher likelihood of fusion than was ICBG (rhBMP-2 18/19 versus ICBG 10/18; RR 1.7, 95% CI 1.1 to 2.6). However, we classified six patients from the ICBG group and one from the rhBMP-2 group as failures due to partial data. In the rhBMP-2 arm of the second RCT (Study 2), at 72 months fusion data was available for 72 patients out of 143 who started the study. Of those, 93% were fused at 72 months. The laparoscopic series (Study 3) reported that 68 of 134 patients who started the study had data at 72 months, and 90% of those patients were fused at 72 months.

Neurological success, disability and other effectiveness outcomes. From 6 weeks through 24 months after surgery, IPD results provided moderate strength of evidence that there were no consistent differences between rhBMP-2 and ICBG in neurological success, ODI score, or most other effectiveness measures (Table 5). The one exception of consistent difference was that, on average, the SF-36 Physical Component Summary score was approximately three points higher for patients in the rhBMP-2 group at 3, 6, 12, and 24 months (WMD 3.68 on a scale of 0 to 100, 95% CI 0.86 to 6.49, at 24 months), but not at 6 weeks. In addition, rhBMP-2 was associated with a small improvement in back pain (WMD 0.74, 95% CI 0.00 to 1.49) and ODI score (WMD 7.35 on a scale of 0 to 50, 95% CI 0.70 to 14.0) at 24 months, the primary time point. The magnitudes of all differences were small.

One RCT (Study 4) showed no significant difference between groups in any of these effectiveness outcomes at 48 months.

Figure 3. Comparison of fusion rates in ALIF trials*

Study	Control Rate		Risk Ratio (95% CI)	Events, rhBMP-2	Events, ICBG
6 months					
Infuse-LT-Cage_pilot (1)	0.67		1.50 (0.69, 3.27)	7/7	2/3
Infuse-LT-Cage_Pivotal (2)	0.85		1.08 (0.99, 1.18)	127/138	113/133
Infuse-Bone_Dowel_Pilot (4)	0.35		- 1.74 (0.88, 3.44)	14/23	7/20
Infuse-Bone_Dowel_Pivotal (5)	0.72	⊢∎ ⊸	1.20 (0.94, 1.54)	47/54	21/29
Infuse-Interfix_Pilot (9)	0.69	+	1.01 (0.66, 1.55)	16/23	11/16
Subtotal (I-squared = 0.0% , p = 0	.463)	Ø	1.10 (1.02, 1.19)	211/245	154/201
12 months					
Infuse-LT-Cage_pilot (1)	0.67		1.50 (0.69, 3.27)	7/7	2/3
Infuse-LT-Cage_Pivotal (2)	0.86		1.08 (0.99, 1.17)	126/136	112/130
Infuse-Bone_Dowel_Pilot (4)	0.70	┼╋╌	1.25 (0.90, 1.73)	21/24	14/20
Infuse-Bone_Dowel_Pivotal (5)	0.71	┼╋╌	1.21 (0.94, 1.57)	45/52	20/28
Infuse-Interfix_Pilot (9)	0.88	_∎∔	0.80 (0.57, 1.10)	16/23	14/16
Subtotal (I-squared = 29.4%, p =	0.225)	\diamond	1.09 (0.95, 1.24)	215/242	162/197
24 months		Favor ICBG			
Infuse-LT-Cage_Pivotal (2)	0.89		1.08 (1.00, 1.16)	127/132	108/121
Infuse-Bone_Dowel_Pilot (4)	0.60	∎	1.65 (1.15, 2.35)	24/24	12/20
Infuse-Bone_Dowel_Pivotal (5)	0.96		0.95 (0.85, 1.07)	43/47	24/25
Infuse-Interfix_Pilot (9)	0.87	_∎∔	0.79 (0.56, 1.11)	15/22	13/15
Infuse-LT-Cage_pilot (1)	1.00		(Excluded)	7/7	3/3
Subtotal (I-squared = 76.0%, p =	0.006)	\diamond	1.05 (0.88, 1.24)	216/232	160/184
		.5 1 2	4		

* The results of this figure are based on the two-step approach. ALIF = anterior lumbar interbody fusion

Endpoint (Scale)	6 weeks	3 months	6 months	12 months	24 months
		Risk ratic Sample Size) (95% Cl) , n (Studies)		
Overall success			1.18 (0.93 to 1.50) 445 (4)	1.12 (0.95 to 1. 33) 436 (4)	1.19 (0.99 to 1. 42) 418 (4)
Fusion			1.10 (1.02 to 1.19) † 446 (5)	1.09 (0.95 to 1.24)† 439 (5)	1.05 (0.88 to 1.24)† 416 (5)
Neurological success	1.02 (0.93 to 1.13)	1.06 (0.97 to 1.16)	1.01 (0.91 to 1.12)	1.04 (0.94 to 1.14)	1.08 (0.98 to 1.19)
	434 (4)	442 (4)	433 (4)	420 (4)	400 (4)
ODI success	1.04 (0.83 to 1.29)	1.03 (0.87 to 1.23)	1.09 (0.95 to 1.25)	1.03 (0.92 to 1.15)	1.10 (0.97 to 1.24)
	442 (4)	455 (5)	450 (5)	436 (5)	417 (5)
Return to work‡ 1.21 (0.71 to 2.05)		0.97 (0.70 to 1.32)	1.02 (0.89 to 1.17)	1.01 (0.90 to 1.14)	1.06 (0.94 to 1.19)
211 (4)		210 (4)	207 (4)	201 (4)	196 (4)
		Weighted mean d Sample Size	ifference (95% CI) , n (Studies)		
ODI (0-50)§	-2.36 (-6.91 to 2.19)	-5.05 (-10.21, 0.10)	-3.79 (-8.69 to 1.11)	-3.74 (-9.09 to 1.60)	-7.35 (14.00 to -0.70)
	444 (4)	461 (5)	456 (5)	441 (5)	423 (5)
Back pain (0-10)§	0.21 (-0.28 to 0.71)	-0.57 (-1.06 to -0.09)	-0.36 (-0.94 to 0.22)	-0.51(-1.18 to 0.16)	-0.74 (-1.49 to 0.00)
	443 (4)	446 (4)	442 (4)	426 (4)	409 (4)
Leg pain (0-10)§	-0.57 (-1.12 to -0.02)	-0.37 (-1.02 to 0.27)	-0.20 (-0.72 to 0.32)	-0.49 (-1.07 to 0.08)	-0.60 (-1.28 to 0.08)
	443 (4)	446 (4)	442 (4)	426 (4)	409 (4)
SF-36® PCS (0-100)∥	0.55 -1.02 to 2.11)	2.91 (0.28 to 5.53)	3.00 (0.69 to 5.31)	2.94 (0.85 to 5.03)	3.68 (0.86 to 6.49)
	356 (3)	374 (4)	449 (5)	440 (5)	421 (5)
SF-36® MCS (0-100)∥	-0.36 (-2.45 to 1.73)	0.74 (-1.34 to 2.83)	-0.33 (-2.24 to 1.59)	-0.56(-2.60 to 1.48)	2.90 (-0.29 to 6.08)
	356 (3)	374 (4)	449 (5)	440 (5)	421 (5)

Table 5. Effectiveness endpoints for ALIF with rhBMP-2 vs. ICBG

ALIF = anterior lumbar interbody fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2; ODI = Oswestry Disability Index; PCS = physical component summary; MCS = mental component summary

Values in bold font are significant at 0.05 level.

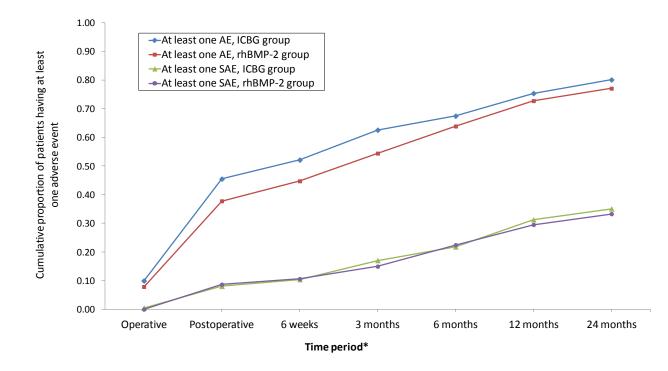
*For ALIF, a total n = 465 was included in the analysis, excluding 4 patients who underwent laparoscopic surgery in study 1;

†These combined estimates were obtained using a two-stage approach.

‡Includes only patients who worked before surgery. For ALIF, 221 patients worked before surgery.

§For ODI, back pain, and leg pain, high values represent worse outcomes and a negative difference favors rhBMP-2.

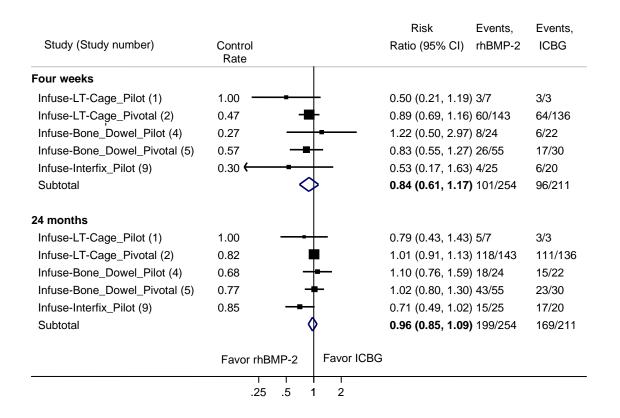
For SF-36® PCS and MCS, low values represent worse outcomes and a positive difference favors rhBMP-2.


Other comparisons. Medtronic used rhBMP-2 with the LT-Cage as the control group in a trial of the MAVERICKTM Total Disc Replacement (Medtronic, Memphis, TN) (Study 10, n=577). In that trial, fusion utilizing rhBMP-2 was associated with worse outcomes than artificial disc replacement for disability, pain, and health at all time periods.²⁷ Fusion rates for rhBMP-2 at 12 and 24 months were 81% and 79%, lower than the fusion rate in the pivotal trial of rhBMP-2 with the LT-CAGE (Study2, 96%). In the journal article reporting Study 10²⁷, the fusion rate for rhBMP with the LT-CAGE was reported to be 100%, which did not appear to include patients with partially missing data.

Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Overall adverse events. The occurrence of adverse events was common. For example, for pivotal Study 2, at 4 weeks, 89 adverse events occurred in the 143 patients in the rhBMP-2 group, and 92 adverse events occurred in the 136 patients in the ICBG group. At 24 months, 315 and 274 adverse events occurred in the rhBMP-2 group and ICBG group, respectively.

Based on meta-analysis of five RCTs (Studies 1, 2, 4, 5, and 9; n=465) the rate of adverse events at 4 weeks was 0.48 per patient in the rhBMP-2 group and 0.65 per patients in the ICBG group. At 24 months, the rates of adverse events were similar in the two groups (1.7 vs. 1.7 per patient). At 4 weeks, 38% of patients in the rhBMP-2 group and 45% of patients in the ICBG group had experienced at least one adverse event (RR 0.84, 95% CI 0.61 to 1.17), and at 24 months, about 80% of patients in both groups had at least one adverse event (RR 0.96, 95% CI 0.85 to 1.09) (Figure 4 – "postoperative" corresponds to 4 weeks; Figure 5).



AE = adverse event; ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2; SAE = serious adverse event.

*There was no significant difference between the rhBMP-2 versus ICBG groups at any time point for either outcome.

Figure 5. Comparison of proportion of patients having at least one adverse event in ALIF trials

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft

In the Medtronic-supported trials, no difference between groups was observed in the risk of experiencing an adverse event recorded as "serious" (RR 1.12, 95% CI 0.72 to 1.74 at 4 weeks; RR 0.94, 95% CI 0.67 to 1.33 at 24 months) (Figure 6). At 4 weeks, 8% of patients in the rhBMP-2 group and 9% of patients in the ICBG group had experienced at least one adverse event classified by the original investigators as serious, and at 24 months, about 35% of patients in both groups had at least one such event (Figure 4). In addition, there was no difference in the risk of events classified as "device-related" (RR 1.44, 95% CI 0.57 to 3.67) at 24 months. The proportion of adverse events judged to be device-related by the study investigators was low (rhBMP-2 7% vs. ICBG 4%).

Figure 6. Comparison of proportion of patients having at least one serious adverse event in ALIF
trials

Study (Study number)	Control Rate		Risk Ratio (95% CI)	Events, rhBMP-2	Events, ICBG
Four weeks					
Infuse-LT-Cage_Pivotal (2)	0.10	_ 	0.88 (0.42, 1.86)	12/143	13/136
Infuse-Bone_Dowel_Pilot (4)	0.05		- 2.75 (0.31, 24.52	2)3/24	1/22
Infuse-Bone_Dowel_Pivotal (5)	0.03		- 2.18 (0.26, 18.6	5)4/55	1/30
Infuse-Interfix_Pilot (9)	0.10	e	1.20 (0.22, 6.50)	3/25	2/20
Subtotal		\diamond	1.12 (0.72, 1.74)	* 22/247	17/208
24 months					
Infuse-LT-Cage_Pilot (1)	0.33	_	0.43 (0.04, 4.82)	1/7	1/3
Infuse-LT-Cage_Pivotal (2)	0.38	+	0.97 (0.72, 1.31)	53/143	52/136
Infuse-Bone_Dowel_Pilot (4)	0.18		2.98 (1.14, 7.78)	13/24	4/22
Infuse-Bone_Dowel_Pivotal (5)	0.40		0.55 (0.28, 1.06)	12/55	12/30
Infuse-Interfix_Pilot (9)	0.25	_ 	1.28 (0.49, 3.31)	8/25	5/20
Subtotal		\diamond	0.94 (0.67, 1.33)	87/254	74/211
	Favor rh	BMP-2 Favor IC	3G		
		.25 1 4 1	6		

*The combined risk ratio (RR) was obtained using a generalized linear fixed effects model with binomial distribution and log link.

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft

For specific adverse events, we did not find significant differences between groups based on RCTs (Studies 1, 2, 4, 5, and 9). Confidence intervals were frequently wide (Table 6), precluding strong conclusions. Heterotopic bone formation was not reported as a separate adverse event in these studies.

Retrograde ejaculation. The pivotal trial of INFUSE reported five instances of retrograde ejaculation out of 78 males (6%) in the rhBMP-2 group versus one case of retrograde ejaculation out of 68 males (1.5%) in the ICBG group, (RR 2.62, 95% CI 0.28 to 24.6, through 4 weeks; RR 4.36, 95% CI 0.52 to 36.4, through 24 months) (Table 6). Among men who had fusion involving the L5-S1 level (n=110), four cases were reported in the rhBMP-2 group and one in the ICBG group (RR 3.3, 95% CI 0.38 to 29 at 24 months). In the laparoscopic series (Study 3), six males out of 57 developed retrograde ejaculation (11%). In the context of a set of premarketing studies, these findings constitute a safety signal.^{69, 70}

A cohort study of patients who had surgery with a retroperitoneal approach involving the L5-S1 level found 7% of 69 rhBMP-2 patients versus 1% of 174 control patients reported retrograde ejaculation (P = 0.0025).⁶³ One trial (Study 10) compared rhBMP-2 versus artificial disc and found no difference in the risk of retrograde ejaculation with rhBMP-2 at 4 weeks (RR 0.80, 95% CI 0.08, 7.53) or at 24 months (RR 1.19, 95% CI 0.22 to 6.39). The rates of retrograde ejaculation in artificial disc patients were 1.5% (3/205) at 4 weeks and 2.0% (4/205) at 24 months, compared with 1.2% (1/86) and 2.3% (2/86) in patients receiving rhBMP-2 at 4 weeks and 24 months, respectively. These rates are slightly lower than those found in a retrospective

cohort study of 95 patients with postoperative retrograde ejaculation in 7% of rhBMP-2 patients (4/54) and 10% of artificial disc patients (4/41), which was also not significantly different (RR 0.76, 95% CI 0.20 to 2.86).⁵¹

Based on the evidence from the trials and observational studies, it is likely that rhBMP-2 is associated with an increased risk of retrograde ejaculation. While we are moderately confident in the direction of the effect, because there is more uncertainty about the magnitude of the effect due to a high risk of bias and sparse data as well as some inconsistency among the estimates, we find that the evidence is low strength for this outcome. With respect to the risk of bias, in this case lack of blinding and unsystematic ascertainment and case definition could lead to an underestimate of the effect.

Possible lumbar radiculitis. Based on the results from four RCTs (Studies 2, 4, 5, and 9, n=455), there was no difference between rhBMP-2 and ICBG in the risk of possible lumbar radiculitis using the primary definition through 4 weeks (RR 1.02, 95% CI 0.35 to 2.99) and 24 months (RR 1.00, 95% CI 0.71 to 1.39). Applying three alternative definitions for lumbar radiculitis provided similar results.

Urinary retention. While the studies did not accurately ascertain urinary retention events, the IPD analysis point estimate suggests possible increased risk with rhBMP-2 at 24 months, based on four trials (Studies 1, 2, and 5, n=378, RR 2.55, 95% CI 0.30 to 21.52). Because the estimate is not precise and ascertainment was inadequate, the strength of this evidence is low in that we have less confidence in the exact magnitude of the estimate.

Wound infection and wound dehiscence. There was no difference in incidences of wound infection (Studies 2, 4, and 5, n=410: RR 0.73, 95% CI 0.38 to 1.43, low strength evidence) through 24 months, or in wound dehiscence through 24 months (Studies 1 and 2; n=293, rhBMP-2 3/253 vs. 0/139, insufficient strength evidence).

Endplate resorption and subsidence. Subsidence is defined as sinking or settling of the device into bone. One randomized trial reported patients with subsidence at 4 weeks (Study 2, n=279, RR 1.43, 95% CI 0.24 to 8.41), while two RCTs reported incidences of subsidence through 24 months (Studies 2, 4, and 5; n=364, RR 3.15, 95% CI 0.66 to 14.99). At 24 months, subsidence occurred in 4% of rhBMP-2 and 1% of ICBG patients (Table 6).

Cohort studies tended to report higher rates of subsidence using varying outcome definitions. One small cohort study (n=24) reported 70% of 20 levels undergoing fusion with rhBMP-2 and allograft showing >10% graft subsidence versus 6% of 16 levels undergoing fusion with allograft plus demineralized bone matrix.⁶¹ A second cohort reported more aggressive resorption of the graft and endplates in the rhBMP-2 group compared with ICBG but did not report sample sizes (N) or percentages.⁶² Additionally, one intervention series (n=53) reported 55% subsidence when subsidence was defined as a loss of disc space greater than 2mm.⁶⁴

These studies provide moderate strength evidence; while the estimates are imprecise, the condition was probably more consistently ascertainable and clearly defined than some other adverse events, and the direction of effect was consistent across trials and observational studies.

Additional surgeries. Based on IPD meta-analysis of four trials (Studies 2, 4, 5, and 9, n=455), moderate strength evidence suggests there was no difference between rhBMP-2 and ICBG in likelihood of additional surgeries at 24 months (RR 0.81. 95% CI 0.49 to 1.33).

In one cohort study, 33% of 9 patients in the rhBMP-2 plus allograft group required salvage posterior fusion compared with 26% of 27 patients in the ICBG plus allograft group (p=0.67).⁶²

Other comparisons. Compared with artificial disc replacement (Study 10, n=577), rhBMP-2 was associated with lower risk of neurological events at 4 weeks (RR 0.51, 95% CI 0.33 to 0.97), lower risk of gastrointestinal events at 24 months (RR 0.60, 95% CI 0.37 to 0.96), and greater risk of subsidence at 24 months (RR 2.19, 95% CI 1.09 to 4.42). There was no difference in risk of other adverse events including retrograde ejaculation (see section above).

	<u> </u>	≦ 4 weeks	≤ 24 months		
Event†	Patients with rhBMP-2 vs. ICBG	Risk Ratio (95% CI) Sample Size, <i>n</i> (Studies)	Patients with rhBMP-2 vs. ICBG	Risk Ratio (95% Cl) Sample Size, <i>n</i> (Studies)	
Anterior lumbar interbody	fusion*				
Overall adverse events					
≥ 1 Adverse event, any type	38% vs. 45%	0.84 (0.61 to 1.17) 465 (5)	77% vs. 80%	0.96 (0.85 to 1.09) 465 (5)	
≥ 1 Serious adverse event	9% vs. 8%	1.12 (0.72 to 1.74) 455 (4)	33% vs. 35%	0.94 (0.67 to 1.33) 465 (5)	
≥ 1 device-related adverse event			7% vs. 4%	1.44 (0.57 to 3.67) 465 (5)	
Specific adverse events					
Anatomical/technical difficulty	0.9% vs. 3%	0.22 (0.04 to 1.05) 419 (4)	Same a	as four weeks	
Back and/or leg pain	4% vs. 3%	1.05 (0.31 to 3.62) 455 (4)	26% vs. 24%	1.05 (0.72 to 1.53) 465 (5)	
Cardiovascular	2% vs. 4%	0.56 (0.16 to 1.92) 409 (3)	6% vs. 7%	0.84 (0.48 to 1.49) 455 (4)	
Gastrointestinal	13% vs. 15%	0.86 (0.54 to 1.36) 465 (5)	17% vs. 19%	0.80 (0.45 to 1.43) 465 (5)	
Implant problems	2% vs. 1%	1.07 (0.10 to 11.75) 380 (4)	3% vs. 0.9%	2.43 (0.40 to 14.80) 465 (5)	
Infection (all types)	6% vs. 5%	1.10 (0.49 to 2.46) 410 (3)	10% vs. 10%	0.90 (0.35 to 2.32) 455 (4)	
Neurological	3% vs. 4%	0.81 (0.29 to 2.27) 409 (3)	16% vs. 14%	1.08 (0.60 to 1.94) 455 (4)	
Possible lumbar radiculitis (primary)‡	3% vs. 3%	1.02 (0.35 to 2.99) 455 (4)	23% vs. 24%	1.00 (0.71 to 1.39) 455 (4)	
Possible lumbar radiculitis (definition 2);	2% vs. 3%	0.49 (0.11 to 2.07) 455 (4)	16% vs. 14%	1.12 (0.73 to 1.74) 455 (4)	
Possible lumbar radiculitis (definition 3);	3% vs. 3%	0.85 (0.23 to 3.04) 455 (4)	26% vs. 22%	1.18 (0.84 to 1.65) 455 (4)	
Possible lumbar radiculitis (definition 4);	0.8% vs. 2%	0.35 (0.07 to 1.78) 455 (4)	11% vs. 9%	1.28 (0.58 to 2.82) 455 (4)	
Respiratory	2% vs. 3%	0.55 (0.21 to 1.41) 364 (2)	3% vs. 5%	0.45 (0.17 to 1.16) 364 (2)	
Retrograde ejaculation	4% vs. 1%	2.62 (0.28 to 24.56) 144 (1)	6% vs. 1%	4.36 (0.52 to 36.40) 146 (1)	
Spinal event	0% vs. 2%	0/167 vs. 3/158 325 (2)	12% vs. 11%	0.97 (0. 49 to 1.93) 455 (4)	
Subsidence	2% vs. 1%	1.43 (0.24 to 8.41) 279 (1)	4 vs. 1%	3.15 (0.66 to 14.99) 364 (2)	

Table 6. Overall and specific adverse events for ALIF with rhBMP-2 vs. ICBG

	<u> </u>	≦ 4 weeks	≤ 2	4 months
Event†	Patients with rhBMP-2 vs. ICBG	Risk Ratio (95% CI) Sample Size, <i>n</i> (Studies)	Patients with rhBMP-2 vs. ICBG	Risk Ratio (95% Cl) Sample Size, <i>n</i> (Studies)
Urogenital	7% vs. 4%	1.96 (0.61 to 6.34) 420 (4)	13 vs. 8%	1.62 (0.73 to 3.59) 420 (4)
Vertebral fracture	1% vs. 0%	2/168 vs. 0/156 324 (2)	Same as four weeks	
Urinary retention‡			6 vs. 2%	2.55 (0.30 to 21.52) 378 (3)
Wound infection:			5 vs. 6%	0.73 (0.38 to 1.43) 410 (3)
Wound dehiscence‡			1% vs. 0%	3/253 vs. 0/139 293 (2)
Relevant additional surgeries			11% vs. 13%	0.81 (0.49 to 1.33) 455 (4)

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2

Values in bold font are significant at 0.05 level.

*For ALIF, a total n=465 was included in the analysis, excluding 4 patients who underwent laparoscopic surgery in study 1. †Categories of adverse events are based on Medtronic datasets, except for those indicated otherwise.

‡Based on individual adverse event case histories in the proprietary reports provided by Medtronic

Posterolateral Fusion

Summary Findings

The Medtronic-sponsored posterolateral fusion trials constitute the main body of evidence about higher dosages and concentrations of rhBMP-2, including AMPLIFYTM (Medtronic, Memphis, TN), than the ALIF trials.

- IPD from four randomized controlled trials (N=722) provided moderate-strength evidence of no consistent significant differences in effectiveness between ICBG and rhBMP-2 at dosages of primarily 40 mg to 63 mg through 24 months. Significant differences were found at one of several time points for selected outcomes, in particular:
 - RhBMP-2 had significantly higher rates in overall success (RR, 1.34; 95% CI 1.10 to 1.64) and fusion (RR, 1.37; 95% CI 1.19 to 1.59) at 6 months.
 - RhBMP-2 was associated with a small improvement in leg pain at 3 months (WMD, 0.44 on a scale of 0 to 10; 95% CI 0.01 to 0.87), and in Physical Component Scale of the SF-36 at 6 months (WMD on a scale of 0 to 100, 1.79; 95% CI 0.27 to 3.31).
- At longer durations of followup, there were small or no difference in overall success and fusion between rhBMP-2 and ICBG, based on limited evidence from trials.
- RhBMP-2 and ICBG had similar rates of overall adverse events and most specific harms through 4 weeks, 24 months, and 48 months (strength of evidence: moderate).
- Evidence from the Medtronic trials was insufficient to assess the potential consequences of ectopic bone formation.
- Results from observational studies seemed consistent with the randomized trials, although few studies reported specific adverse events.

Overview of Included Evidence

We identified five randomized trials (n=835), four sponsored by Medtronic (Studies 8, 12-14) and one³⁴ sponsored by Norton Healthcare (n=102). In addition, we identified six non-Medtronic sponsored cohort studies of PLF reported in seven publications,⁷¹⁻⁷⁷ one cohort study of combined posterolateral and posterior lateral interbody fusion,⁷⁸ seven intervention series, two sponsored by Medtronic (Studies 15 and 16), and five by others,⁷⁹⁻⁸³ and one case series.⁸⁴

The Medtronic randomized controlled trials compared rhBMP-2 with ICBG, both in conjunction with either the CD HORIZON SPIRE® or TSRH® Spinal Systems (Medtronic; Memphis, TN). The purpose of these trials was to test the feasibility of the investigational device with rhBMP-2 (Study 8), or whether an investigational device with rhBMP-2was non-inferior or equivalent to ICBG (Studies 12-14). The dosage of rhBMP-2 was 12 mg in one trial (Study 8) and ranged from 40 mg to 63 mg in the other three trials (Studies 12-14). Mean age ranged from 53 to 56 years. About 57% of patients were female, 7.6% had diabetes, and 22.2% were tobacco users. The majority of patients had single-level degenerative disease. In one trial (Study 13), 15% of patients were fused at two levels. Patients with previous spine fusion attempts at the involved level were excluded. Eleven patients from one RCT who underwent fusion with rhBMP-2 without instrumentation were excluded from our meta-analysis of IPD (Study 12).

The randomized controlled trial funded by Norton Healthcare included 102 adults over 60 years old.³⁴ The study compared rhBMP-2/ACS versus ICBG and reported on clinical, radiographic, and economic outcomes, at 2-year follow-up.

While the randomized controlled trials focused on comparing rhBMP-2 with ICBG, the cohort studies compared rhBMP-2 plus allograft or local bone to autograft alone,^{72, 73} rhBMP-2 plus ICBG to ICBG alone,⁷⁵ rhBMP-2 to bone marrow aspirate allograft or autograft,⁷⁶ and rhBMP-2 plus ICBG to ICBG plus an implantable spinal fusion stimulator.⁷⁷ One trial compared rhBMP-2 versus ICBG at each vertebral level within the same patient (rhBMP-2 on the patient's right side versus ICBG used on the patient's left side).⁷¹

All randomized trials were rated fair quality except for Study 12, which was rated poor quality due to baseline differences in patient characteristics between groups. The trials were downgraded due to methodological limitations such as unclear blinding of outcome assessors other than radiologists for Medtronic trials, and inadequate description of patient comorbidities.³⁴ Cohort studies were rated fair quality⁷¹⁻⁷³ or poor quality⁷⁴⁻⁷⁸ Methodological limitations involved: enrollment criteria,^{71-74, 76} blinding,^{71-73, 78} baseline differences between groups,^{73, 75-78} and failure to adjust for potential confounding variables.⁷⁴⁻⁷⁸

Comparative Effectiveness of rhBMP-2 Versus Fusion Without rhBMP-2

AMPLIFY (Study 14)²⁹ was the largest RCT assessing the effectiveness and harms of rhBMP-2 using the PLF approach. The FDA executive summary concluded that there was a 99.9 to 100% chance that the 24-month rate for overall success, fusion, ODI score success, and neurologic success for the rhBMP-2 group was noninferior to the ICBG group. Our IPD analysis was not inconsistent with this result, in that we did not find significant differences between the rhBMP-2 and ICBG groups for these outcomes. However, our analysis showed lower fusion and overall success rates for the rhBMP-2 group at 24 months than was reported in the FDA executive summary and the published journal article. In particular, the FDA executive summary reported that the overall success and fusion rate at 24 months was 60.5% and 95.9%, respectively, for the rhBMP-2 group and 55.5% and 89.3% for the ICBG group. The published journal article reported similar fusion rates of 96% versus 89%, with a significantly higher fusion rate in the rhBMP-2 group (P = 0.014). Based on our IPD analysis, the overall success and fusion rate at 24 months was similar between the rhBMP-2 group (55.9%, 90.0%) and the ICBG group (56.5%, 89.5%), and we found no significant difference in fusion rate at 24 months (P =(0.87). The difference in results may be due to the difference in handling missing data, though it does not explain why only the rates for the rhBMP-2 group are different.

Even though overall success was designed as a safety and efficacy outcome and incorporated criteria for both benefits and harms, unfavorable outcomes still occurred in patients classified as

an overall success (Table 7). In fact, the FDA's executive summary of Medtronic's AMPLIFYTM rhBMP-2 Matrix premarket approval application suggested that overall success needs to be considered in the context of the occurrence of back/leg pain, relationship-undetermined adverse events, and additional surgeries such as reoperations and elective removals. Based on our analysis of IPD data, among those having overall success at 24 months in the rhBMP-2 group, 26.4% had back/leg pain before 24 months and 16.1% had back/leg pain at 24 months. The proportions patients having serious back and/or leg pain before and at 24 months were 8.5% and 1.7%, respectively. Since back and/or leg pain included heterogeneous events that may not have been related to spine surgery, we examined success in the context of the occurrence of radiculitis. Among those having overall success at 24 months in the rhBMP-2 group, 6.8% had radiculitis before 24 months and 7.6% had radiculitis at 24 months. The proportions of patients having serious radiculitis (event severity \geq 3) before and at 24 months were 1.7% and 2.6%, respectively. In the ICBG group, 18.1% had radiculitis before 24 months and 4.8% had radiculitis at 24 months. The proportions of patients having serious radiculitis before and at 24 months were 3.8% and 1.0%, respectively. Similarly, a considerable proportion of patients classified as an overall success had relationship-undetermined adverse events (Table 7). The results for comparative effectiveness based on all evidence are presented below.

	6 months		12 months		24 months	
	rhBMP-2 (<i>n</i> =106)	ICBG (N=93)	rhBMP-2 (N=118)	ICBG (N=114)	rhBMP-2 (N=118)	ICBG (N=105)
Radiculitis	1.9/2.8	3.2/4.3	4.2/3.4	6.1/12.3	6.8/7.6	18.1/4.8
Serious radiculitis	0.9/0.0	2.2/0.0	0.9/0.0	1.8/6.1	1.7/2.5	3.8/1.0
Back/leg pain	17.9/5.7	8.6/7.5	18.7/9.3	14.0/12.3	26.3/16.1	24.8/13.3
Serious back/leg pain	1.9/0.9	2.2/0.0	1.7/3.4	1.7/0.9	8.5/1.7	3.8/1.9
Relationship- undetermined adverse events	16.0/8.5	11.8/9.7	26.3/7.6	21.1/15.8	32.2/14.4	30.5/10.5
Relationship- undetermined Serious adverse events	0.9/0.0	3.2/0.0	1.7/0.0	5.3/4.4	3.4/1.7	6.7/0.0
Reoperations	_	-	_	_	1.7/0.0	2.9/0.0
Elective removals	-	-	-	-	0.9/0.0	1.0/2.9

Table 7. Proportion of patients rated as overall successes in AMPLIFY trial, but who still had other	,
negative outcomes [*]	

% before each time point/% at each time point

Overall success. Our IPD meta-analysis of the AMPLIFYTM Pivotal RCT, plus the other three Medtronic randomized trials (n=722) (Studies 8, 12-14), provided moderate strength of evidence of no consistent difference between rhBMP-2 and ICBG groups in likelihood of overall success (Figure 7) through 24 months. rhBMP-2 had significantly higher rates at 6 months (RR, 1.34; 95% CI 1.10 to 1.64), but not at 12 months (RR, 1.07; 95% CI 0.93 to 1.25) or 24 months (RR, 1.05; 95% CI 0.91 to 1.21). At 24 months, the rate of overall success ranged from 40 to 60% in both groups.

Although the journal publications only reported outcomes up to 24 months, limited IPD was available from two trials at 48 months (Studies 13 and 14) and from one trial at 60 months (Study 14). The overall success rate was 48% in the rhBMP-2 group and 35% in the ICBG group at 48 months. RhBMP-2 was associated with a greater likelihood of overall success at 48 months (RR 1.4, 95% CI 1.04 to 1.8, $I^2 = 0.0\%$), but not at 60 months (RR, 1.2, 95% CI 0.94 to 1.5).

Figure 7. Comparison of overall success rates in PLF trials

Study (Study number)	Control Rate		Risk Ratio (95% CI)	Events, rhBMP-2	Events, ICBG
6 months					
BCP US (12)	0.20		2.50 (0.39, 16.05)	5/10	1/5
BCP Canada (13)	0.26		2.30 (1.58, 3.36)	57/97	25/98
Amplify Pivotal (14)	0.44		1.02 (0.83, 1.26)	106/233	93/209
Infuse Mastergraft Pilot (8)	0.38	-+∎	1.47 (0.77, 2.81)	14/25	8/21
Subtotal		\diamond	1.34 (1.10, 1.64)	182/365	127/333
12 months					
BCP US (12)	0.20 -		2.00 (0.30, 13.51)	4/10	1/5
BCP Canada (13)	0.34		1.55 (1.11, 2.16)	51/97	33/97
Amplify Pivotal (14)	0.56		0.93 (0.78, 1.11)	118/228	114/205
Infuse Mastergraft Pilot (8)	0.52	-#=	1.11 (0.66, 1.89)	14/24	11/21
Subtotal		\diamond	1.07 (0.93, 1.25)	187/359	159/328
24 months					
BCP US (12)	0.50 —		0.73 (0.21, 2.55)	4/11	2/4
BCP Canada (13)	0.42		1.18 (0.86, 1.60)	48/97	40/95
Amplify Pivotal (14)	0.56		0.99 (0.83, 1.18)	118/211	105/186
Infuse Mastergraft Pilot (8)	0.50		1.25 (0.73, 2.14)	15/24	10/20
Subtotal		\diamond	1.05 (0.91, 1.21)	185/343	157/305
	Favor I	CBG Favor rh	nBMP-2		
		.5 1 2			

PLF = posterolateral lumbar fusion; ICBG = iliac crest bone graft

Fusion. Across all time points, evidence for radiographic fusion was of moderate strength. The fusion rate at 24 months ranged from 70 to 90% in the ICBG group and 86 to 100% in the rhBMP-2 group, and there was no evidence of consistent difference between rhBMP-2 and ICBG groups through 24 months. Similar to overall success, rhBMP-2 had significantly higher rates at 6 months (1.37, 95% CI 1.19 to 1.59) but not at 12 months (RR 1.29, 95% CI 0.94 to 1.78) or 24 months (RR 1.16, 95% CI 0.96 to 1.41) (Figure 8). Heterogeneity was present (I^2 =86% and 76% at 12 and 24 months, respectively) and could not be attributed to differences in factors such as age, gender, number of levels fused, smoking status, or diabetes.

Similar to IPD results, one RCT that restricted inclusion to persons 60 years and older (n=102) found no significant difference between rhBMP-2 and ICBG in likelihood of fusion at 24 months (86% versus 71%; RR 1.12, 95% CI 0.98 to 1.29).³⁴ It used a less rigorous definition for fusion success (the presence of either unilateral or bilateral bridging bone) than was used in our meta-analysis.³⁴

For long-term results, rhBMP-2 was associated with a greater likelihood of fusion rate at 48 months (RR 1.15, 95% CI 1.04 to 1.27, $I^2 = 0.0\%$), but not at 60 months (RR, 1.08, 95% CI 0.99 to 1.2). The fusion rate was 93% in the rhBMP-2 group and 81% in the ICBG group at 48 months.

Two cohort studies reported fusion occurred earlier with rhBMP-2 than with autograft/allograft^{72, 77} but three studies indicated that by 24 months there was no difference in fusion between groups.^{71, 72, 77} The other two cohort studies found increased fusion rates with rhBMP-2 at 24 months^{75, 76} but did not report important prognostic baseline patients characteristics⁷⁵ or did not control for number of levels fused.⁷⁶

Fusion rates from intervention series were similar to those in the randomized controlled trials and ranged from 80% at 15 months⁸² to 95% at 2 years,^{79, 83} and 88% at 28.6 months.⁸⁰ However, based on IPD analysis from one intervention series with two-level fusion, fusion rates were substantially lower at 6 months (43%), 12 months (48%), and 24 months (69%) (Study 15).

Neurological success, disability and other effectiveness outcomes. For other effectiveness outcomes, our IPD meta-analysis of the four trials (Studies 8, 12-14) provided moderate strength evidence that there was also no consistent difference in neurological success, ODI success, ODI scores, back pain scores, and return to work between the rhBMP-2 group and the ICBG group at any time point up to 24 months (Table 8). SF-36 mental health scores were also not consistently different between the groups, but evidence was of low strength for the 24 month time point due to strong inconsistency, and other time points provide moderate strength evidence for this outcome. Based on moderate strength evidence, rhBMP-2 was associated with a small improvement in leg pain at 3 months (WMD, 0.44; 95% CI 0.01 to 0.87), and in Physical Component Scale of the SF-36 at 6 months (WMD, 1.79; 95% CI 0.27 to 3.31) only.

Additionally, at 48 months, IPD from the two trials (Study 13 and 14) found no difference between rhBMP-2 and ICBG in the likelihood of neurological success (RR 1.03, 95% CI 0.93 to 1.13) or in disability scores (WMD -0.54, 95% CI -5.3 to 4.3). At 60 months, based on IPD from Study 14, there was also no difference in the likelihood of neurological success (RR 0.99, 95% CI 0.90 to 1.08) or in disability scores (WMD -1.4, 95% CI -5.5 to 2.76).

Figure 8. Comparison of fusion rates in PLF trials

Study (Study number)	Control Rate		Risk Ratio (95% CI)	Events, rhBMP-2	Events, ICBG
6 months					
BCP_US (12)	0.60		1.50 (0.71, 3.16)	9/10	3/5
BCP_Canada (13)	0.43	-#-	2.17 (1.71, 2.73)	90/96	42/97
Amplify_Pivdtal (14)	0.67	-	1.08 (0.96, 1.22)	169/232	141/209
Infuse-Mastergraft_Pilot (8)	0.67	⊢∎	1.25 (0.88, 1.78)	20/24	14/21
Subtotal		\diamond	1.37 (1.19, 1.59)	288/362	200/332
12 months*					
BCP_US (12)	0.40		→ 2.29 (0.88, 5.96)	10/10	2/5
BCP_Canada (13)	0.57		1.65 (1.38, 1.98)	91/97	55/97
Amplify Pivotal (14)	0.79	H	1.07 (0.97, 1.17)	192/228	162/205
Infuse-Mastergraft_Pilot (8)	0.76	_ # _	1.03 (0.74, 1.42)	18/23	16/21
Subtotal (I-squared = 86.3%, p =	= 0.000)	\diamond	1.29 (0.94, 1.78)	311/358	235/328
24 months*					
BCP_US (12)	0.75		1.36 (0.76, 2.46)	10/10	3/4
BCP_Canada (13)	0.72	-	1.28 (1.12, 1.47)	89/96	68/94
Amplify Pivotal (14)	0.90	•	1.01 (0.94, 1.08)	189/210	162/181
Infuse-Mastergraft_Pilot (8)	0.70	┼╋─╴	1.23 (0.89, 1.72)	19/22	14/20
Subtotal (I-squared = 75.8%, p =	= 0.006)	\diamond	1.16 (0.96, 1.41)	307/338	247/299
		5 1 2			

*The results are based on the two-step model. PLF = posterolateral lumbar fusion; ICBG = iliac crest bone graft

Endpoint (Scale)	6 weeks	3 months	6 months	12 months	24 months
		Risk Ratio Sample Size	o (95% CI) , <i>n</i> (Studies)		
Overall success			1.34 (1.10 to 1.64) 698 (4)	1.07 (0.93 to 1.25) 687 (4)	1.05 (0.91 to 1.21) 648 (4)
Fusion			1.37 (1.19 to 1.59) 694 (4)	1.29 (0.94 to 1.78)† 686 (4)	1.16 (0.96 to 1.41)† 637 (4)
Neurological success	1.03 (0.94 to 1.13)	1.0 (0.93 to 1.08)	1.02 (0.96 to 1.09) †	1.01 (0.95 to 1.07)	1.01 (0.92 to 1.10)
	706 (4)	705 (4)	693 (4)	683 (4)	636 (4)
ODI success	1.00 (0.81 to 1.23)	1.03 (0.91 to 1.17)	1.07 (0.98 to 1.17)	1.01 (0.91 to 1.11)	1.01 (0.91 to 1.12)
	707 (4)	704 (4)	693 (4)	683 (4)	640 (4)
Return to work‡	1.26 (0.71 to 2.21)	1.09 (0.85 to1.40)	0.87 (0.67 to 1.14)	1.07 (0.96 to 1.19)	1.03 (0.94 to 1.14)
	233 (3)	232 (3)	225 (3)	227 (3)	208 (3)
		Weighted mean d Sample Size	ifference (95% CI) , n (Studies)		
ODI (0-50)§	0.74 (-1.68 to 3.17)	-1.97 (-4.36, 0.42)	-2.40 (-4.85 to 0.04)	-2.09(-5.28, 1.10)	-1.98 (-4.86 to 0.90)
	718 (4)	714 (4)	703 (4)	694 (4)	650 (4)
Back pain (0-10)§	0.10 (-0.27 to 0.48)	-0.25 (-0.62 to 0.12)	-0.46 (-1.14 to 0.23)	-0.42 (-1.34 to 0.50)	-0.31 (-0.76 to 0.15)
	716 (4)	713 (4)	702 (4)	693 (4)	649 (4)
Leg pain (0-10)§	0.23 (-0.21 to 0.66)	-0.44 (-0.87 to -0.01)	-0.27 (-0.71 to 0.17)	-0.29 (-0.75 to 0.16)	-0.34 (-0.82 to 0.13)
	715 (4)	712 (4)	701 (4)	692 (4)	648 (4)
SF-36® PCS (0-100)∥	-0.10 (-1.15 to 0.96)	0.64 (-0.68 to1.96)	1.79 (0.27 to 3.31)	1.83 (-0.19 to 3.85)	1.10 (-0.65 to 2.86)
	709 (4)	708 (4)	696 (4)	689 (4)	644 (4)
SF-36® MCS (0-100)∥	0.52 (-0.94 to 1.98)	-0.05 (-1.59 to1.50)	0.06 (-1.48 to 1.60)	-0.50 (-2.56 to 1.57)	0.54 (-3.16 to 4.25)
	709 (4)	708 (4)	696 (4)	689 (4)	644 (4)

ODI = Oswestry Disability Index; PCS = physical component summary; MCS = mental component summary; PLF = posterolateral lumbar fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2

Values in bold font are significant at 0.05 level.

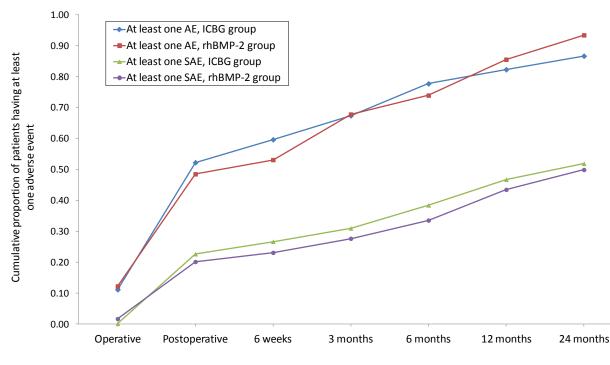
*A total n=722 was included in the analysis, excluding 11 patients randomized to rhBMP-2 without instrumentation in study 12.

[†]These combined estimates were obtained using a two-step approach.

 \ddagger Includes only patients who worked before surgery (n = 241).

§For ODI, back pain, and leg pain, high values represent worse outcomes and a negative difference favors rhBMP-2.

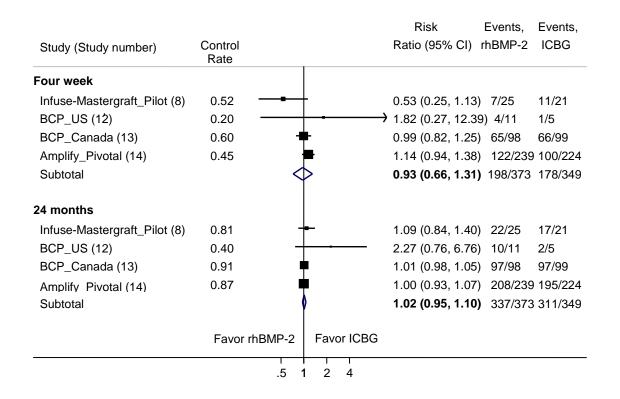
IFor SF-36® PCS and MCS, low values represent worse outcomes and a positive difference favors rhBMP-2.


Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Overall adverse events. Based on IPD analysis of four trials (Studies 8, 12-14; n=722), the rate of adverse events per patient through 4 weeks was 0.91 in the rhBMP-2 group vs. 0.84 in the ICBG group. The rate was about three events per patient in both groups through 24 months.

About 50% of patients had experienced an adverse event at four weeks and over 80% at 24 months (Figure 9 – "postoperative" corresponds to 4 weeks). There was no difference between rhBMP-2 and ICBG in risk of experiencing at least one adverse event at 4 weeks (RR0.93, 95% CI 0.66 to 1.31) and through 24 months (RR 1.02, 95% CI 0.95 to 1.10) (Figure 10). There was also no difference between groups in the likelihood of experiencing a serious adverse event (RR 0.89, 95% CI 0.67 to 1.18 at 4 weeks; RR 0.96, 95% CI 0.83 to 1.11) (Figure 11). At 4 weeks, about 20% of patients in the rhBMP-2 group and 23% in the ICBG group had experienced at least one adverse event classified by the Medtronic investigators as "serious," and at 24 months, about 50% of patients in both groups had at least one serious adverse event (Figure 9).

At 24 months, there was no difference between rhBMP-2 and ICBG in the likelihood of experiencing an adverse event classified by the Medtronic investigators as "device-related,", and the event rate was low (6% vs. 5%, RR 1.36, 95% CI 0.57 to 3.23).



Time period*

AE = adverse event; ICBG = iliac crest bone graft; PLF = posterolateral lumbar fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2; SAE = serious adverse event

*There was no significant difference between the rhBMP-2 versus ICBG groups at any time point for either outcome and surgery approach.

Figure 10. Comparison of proportion of patients having at least one adverse event in PLF trials

PLF = posterolateral lumbar fusion; ICBG = iliac crest bone graft

Figure 11. Comparison of proportion of patients having at least one serious adverse event in PLF trials

					Risk	Events,	Events,
Study (Study number)	Control Rate				Ratio (95% CI)	rhBMP-2	ICBG
Four week							
BCP_US (12)	0.0		-		1.50 (0.07, 31.6) 1/11	0/5
BCP_Canada (13)	0.22	-#	-		0.83 (0.47, 1.44) 18/98	22/99
Amplify_Pivotal (14)	0.22				0.99 (0.71, 1.40) 53/239	50/224
Infuse-Mastergraft_Pilot (8)	0.33				0.36 (0.11, 1.22) 3/25	7/21
Subtotal		\$	1		0.89(0.67, 1.18)	75/373	79/349
24 months							
BCP_US (12)	0.0				5.50 (0.36, 83.8) 5/11	0/5
BCP Canada (13)	0.47	-	ł		0.97 (0.72, 1.30) 45/98	47/99
Amplify_Pivotal (14)	0.54		I		0.95 (0.80, 1.13) 124/239	9122/224
Infuse-Mastergraft_Pilot (8)	0.57		-		0.84 (0.48, 1.46) 12/25	12/21
Subtotal		Ý			0.96 (0.83, 1.11) 186/373	3181/349
	Favor	rhBMP-2	Favor	ICBG			
		.25 1	4	16			

PLF = posterolateral lumbar fusion; ICBG = iliac crest bone graft

Additional surgeries. Based on IPD analysis of four randomized trials (combined n=722), moderate strength evidence suggests there was no difference between rhBMP-2 and ICBG in likelihood of additional surgeries at 24 months (12% versus 14%, RR 0.72, 95% CI 0.38 to 1.34). In a small cohort study of 62 subjects with a mean follow-up of 28.4 months, additional surgery rates were also similar (8% versus 10%).⁷⁶ The rate of relevant additional surgeries from IPD analysis of one intervention series (Study 15) was 14%.

Specific adverse events. In the Medtronic trials, IPD analysis demonstrated a significant between-groups difference only for back and/or leg pain through 4 weeks, with higher rates in the rhBMP-2 groups (Table 9). However, the types of adverse events classified as back and leg pain were very heterogeneous (e.g., radiculopathy, Baker's cyst, sacroiliac joint pain, arthritic knee pain, or ankle pain) and may not be related to spine surgery. We also found no difference in the risk of possible radiculitis through 4 weeks and 24 months based on the primary definition and the three alternative definitions.

At 4 weeks and 24 months, there was also no statistically significant difference between groups in neurological events. Heterotopic bone formation was not coded as a specific adverse event in any PLF Medtronic study. Because heterotopic bone formation was not specifically coded, it was not possible to correlate excess bone formation with radicular symptoms in IPD.

*	<u></u>	4 weeks	P-2 vs. ICBG ≤ 24 months		
Event†	Patients	Risk Ratio (95%	Patients with	Risk Ratio (95%	
	with rhBMP-	CI)	rhBMP-2 vs.	CI)	
	2 vs. ICBG	Sample Size, <i>n</i>	ICBG	Sample Size, I	
		(Studies)		(Studies)	
Overall adverse events					
≥ 1 Adverse event, any type	48% vs. 52%	0.93 (0.66 to 1.31) 722 (4)	93% vs. 87%	1.02 (0.95 to 1.10) 722 (4)	
≥ 1 Serious adverse event	20% vs. 23%	0.89 (0.67 to 1.18) 722 (4)	50% vs. 52%	0.96 (0.83 to 1.11) 722 (4)	
≥ 1 device-related adverse event			6% vs. 5%	1.36 (0.57 to 3.23) 722 (4)	
Specific adverse events					
Anatomical/technical difficulty	1% vs. 0%	4/337 vs. 0/323 660 (2)	Same a	s four weeks	
Back and/or leg pain	8% vs. 4%	1.83 (1.15 to 2.93) 706 (3)	49% vs. 42%	1.18 (0.91 to 1.52) 722 (4)	
Cardiovascular	14% vs. 14%	0.85 (0.40 to 1.81) 706 (3)	19% vs. 21%	0.90 (0.57 to 1.40) 722 (4)	
Dural injury	6% vs. 7%	0.76 (0.55 to 1.04) 722 (4)	6% vs. 8%	0.79 (0.50 to1.23) 722 (4)	
Gastrointestinal	7% vs. 10%	0.71 (0.36 to 1.44) 722 (4)	16% vs. 18%	0.88 (0.64 to 1.21) 722 (4)	
Implant problems	2% vs. 0.6%	2.83 (0.87 to 9.26) 706 (3)	3% vs. 2%	1.58 (0.58 to 4.29) 706 (3)	
Infection (all types)	9% vs. 10%	0.99 (0.57 to 1.73) 706 (3)	18% vs. 19%	0.96 (0.71 to 1.31) 706 (3)	
Neurological	5% vs. 3%	1.53 (0.88 to 2.65) 722 (4)	26% vs. 23%	0.97 (0.62 to 1.51) 722 (4)	
Possible lumbar radiculitis (primary)‡	3% vs. 2%	1.30 (0.69 to 2.46) 722 (4)	24% vs. 26%	0.95 (0.73 to 1.22) 722 (4)	
Possible lumbar radiculitis (definition 2)	3% vs. 2%	1.65 (0. 62 to 4.40) 722 (4)	14% vs. 15%	0.90 (0.54 to 1.51) 722 (4)	
Possible lumbar radiculitis (definition 3)‡	3% vs. 3%	1.32 (0.73 to 2.38) 722 (4)	24% vs. 26%	0.91 (0.71 to 1.18) 722 (4)	
Possible lumbar radiculitis (definition 4);	2% vs. 1%	1.54 (0.45 to 5.20) 455 (4)	10% vs. 11%	0.89 (0.42 to 1.87) 455 (4)	
Respiratory	4% vs. 3%	1.38 (0.42 to 4.55) 706 (3)	7% vs. 5%	1.44 (0.87 to 2.39) 706 (3)	
Spinal event	1% vs. 1%	1.05 (0.21 to 5.17) 676 (3)	9% vs. 10%	0.89 (0.61 to 1.29) 722 (4)	
Urogenital	7% vs. 7%	1.03 (0.53 to 2.01) 722 (4)	13% vs. 12%	1.04 (0.60 to 1.82) 722 (4)	
Vertebral fracture	2% vs. 0.9%	1.26 (0.23 to 6.94) 660 (2)	1% vs. 1%	0.94 (0.16 to 5.42 660 (2)	
Relevant additional surgeries			12% vs. 14%	0.72 (0.38 to 1.34) 722 (4)	

ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2; PLF = posterolateral lumbar fusion.

Values in bold font are significant at 0.05 level.

†Categories of adverse events are based on Medtronic datasets, except for those indicated otherwise.

Based on individual adverse event case histories in the proprietary reports provided by Medtronic.

A total n=722 was included in the analysis, excluding 11 patients randomized to rhBMP-2 without instrumentation in study 12.

In longer follow-up beyond 24 months, there was no significant difference for any adverse events at 48 months based on IPD from two trials (Studies13 and 14), and at 60 months based on IPD from one trial (Study 14). The strength of evidence based on the trial data was insufficient for these outcomes at all time periods.

Three cohort studies,^{75, 76, 78} one intervention series,⁸¹ and one case series⁸⁴ provided limited evidence on specific adverse events. One of these, a small cohort study, reported rates of leg pain within the first 72 hours after surgery.⁷⁸ This study combined patients receiving posterolateral fusion and posterior lumbar interbody fusion and reported 25% of 64 rhBMP-2 patients experienced leg pain versus 12.5% of 40 patients in the control group. The other observational studies did not report rates of back and/or leg pain. Results from cohort studies were consistent with the randomized controlled trials in finding no differences between rhBMP-2 and control groups at 24 months in dural injury (ranges, 4 to 5% compared with 0 to 5%),^{75, 76} and spinal events (transitional stenosis, 2.5% compared with 0%).⁷⁵ The intervention series reported that 7.8% of 1,037 rhBMP-2 patients experienced major surgical complications, 10.2% experienced minor complications, and 0.7% developed new or more severe postoperative radicular symptoms.⁸¹ In the same series, three new onset radiculopathy were reported in 51 patients with dural tear and none from the 51 propensity score matched patients without dural tear.⁸⁴

Posterior Lumbar Interbody Fusion

Summary Findings

• One small randomized trial of PLIF sponsored by Medtronic (n=67) generally provided insufficient evidence to make any definitive statements on benefits and harms at any time point.

Overview of Included Evidence

Evidence for the comparative effectiveness of rhBMP-2 or autogenous iliac crest bone graft in PLIF is available from the IPD analysis from one Medtronic trial (Study 6, n=67). Patients were randomized to interbody fusion with NOVUSTM LC (Medtronic Sofamor Danek; Memphis, TN) cages containing either rhBMP-2 or ICBG and were followed to 24 months.

This trial was rated fair quality and was downgraded due to methodological limitations that included unclear blinding of outcome assessors other than radiologists and missing data. There were fewer patients enrolled in this study than originally planned after increased posterior bony overgrowth was detected in rhBMP-2 patients which led to a suspension of enrollment. Because this is a single, very small, fair quality study and outcomes are imprecise and consistency cannot be determined, the strength of the evidence is found to be insufficient for all but two outcomes highlighted below.

Comparative Effectiveness of rhBMP-2 Versus ICBG

Table 10 shows the results of the IPD analysis for clinical outcomes at 6 weeks and 3, 6, 12, and 24 months. There were no differences between the groups on overall success, fusion, neurologic success, or any measures of pain or function at any time point. Evidence for fusion is low strength, while the rest is insufficient because of a lack of precision in estimates.

Outcome	6 weeks	3 months	6 months	12 months	24 months
			ve risk		
		(95%	% CI)		
		Samp	le size		
Overall success			1.25	1.24	1.50
			(0.70 to 2.23)	(0.68 to 2.24)	(0.80 to 2.81)
			64	61	62
Fusion			1.01	0.98	1.15
			(0.79 to 1.28)	(0.75 to 1.27)	(0.86 to 1.54)
			63	60	61
Neurologic	0.93	1.04	1.10	1.25	0.94
success	(0.73 to 1.18)	(0.79 to 1.37)	(0.87 to 1.39)	(0.97 to 1.61)	(0.72 to 1.23)
	63	64	61	60	60
ODI success	0.94	1.20	1.13	1.17	1.03
	(0.48 to 1.85)	(0.79 to 1.81)	(0.76 to 1.67)	(0.75 to 1.81)	(0.71 to 1.51)
	64	65	63	60	. 59 ´
Return to work*	2.78	1.67	1.24	1.17	1.23
	(0.86 to 8.94)	(0.66 to 4.20)	(0.83 to 1.86)	(0.94 to 1.44)	(0.80 to 1.87)
	24	24	23	23	22
		Weighted me	an difference		
		(95%	% CI)		
		Samp	le size		
ODI (0-50)	5.80	-1.22	-1.80	-4.64	1.28
. ,	(-2.30 to 13.9)	(-9.37 to 6.93)	(-10.9 to 7.31)	(-13.5 to 4.26)	(-8.61 to 11.2)
	64	65	63	60	59
Back pain (0-10)	0.05	-0.33	0.09	-0.53	-0.96
,	(-1.33 to 1.42)	(-1.68 to 1.02)	(-1.19 to 1.37)	(-2.00 to 0.95)	(-2.52 to 0.60)
	63	64	63	60	59
Leg pain (0-10)	-0.48	-0.51	-0.63	-1.20	-0.02
0 1 ()	(-2.14 to 1.17)	(-2.07 to 1.05)	(-2.24 to 0.98)	(-2.90 to 0.51)	(-1.78 to 1.74)
	63	64	63	6 0	` 59 ´
SF-36 PCS	3.23	2.41	2.98	3.92	1.30
(0-100)	(-0.21 to 6.66)	(-2.24 to 7.06)	(-2.23 to 8.19)	(-2.27 to 10.1)	(-5.21 to 7.82)
. /	62	64	`	5 8	`
SF-36 MCS	1.84	0.72	0.49	0.86	2.1
(0-100)	(-3.03 to 6.71)	(-4.52 to 5.97)	(-5.77 to 6.75)	(-5.73 to 7.45)	(-4.59 to 8.77)
· /	62	64	61	58	56

Table 10. Effectiveness endpoints for PLIF with rhBMP-2 vs. ICBG

*Includes only patients who did not work before surgery

ICBG = iliac crest bone graft; PLIF = posterior lumbar interbody fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2

Comparative Harms of rhBMP-2 Versus ICBG

Overall adverse events. Based on IPD analysis, there were 43 adverse events in the 34 patients in the rhBMP-2 group and 55 in the 33 patients in the ICBG group up to 4 weeks, and the difference was not significant (rate ratio 0.76; 95% CI 0.45 to 1.28). The rates of adverse events were also similar up to 24 months, with 112 adverse events in the rhBMP-2 group and 120 adverse events in the ICBG group (rate ratio 0.91; 95% CI 0.65 to 1.26).

At 4 weeks, 65% of patients in the rhBMP-2 group and 70% of patients in ICBG group had at least one adverse event (RR 0.93; 95% CI 0.66 to 1.30). Up to 24 months, 97% of patients in the rhBMP-2 group and 100% of patients in ICBG group had at least one adverse event. No difference was found at either time point. In contrast, patients in the rhBMP-2 group were less likely to experience at least one serious adverse event compared with the ICBG group at 4 weeks

(12% vs/ 33%; RR 0.35; 95% CI 0.12 to 0.998), though not at 24 months (32% vs. 48%; RR 0.67; 95% CI 0.37 to 1.22).

Specific adverse events. Table 11 shows results of the IPD analysis of specific adverse events in patients fused with rhBMP-2 versus ICBG. There were no differences between treatment groups in the occurrence of any specific adverse by 4 weeks or 24 months. Retrograde ejaculation was not reported as a specific adverse event in Study 6.

	Patients experiencing adverse events rhBMP-2 (<i>n</i> =34) vs. ICBG (<i>n</i> =33) RR (95% CI)			
Adverse Event	≤ 4 weeks	≤ 24 months		
Back and/or leg pain	0% vs. 6%;	35% vs. 24%		
	0/34 vs. 2/33	1.46 (0.68 to 3.10)		
Cardiovascular	18% vs. 27%	18% vs. 30%		
	0.65 (0.26 to 1.62)	0.58 (0.24 to 1.42)		
Dural injury	9% vs. 6%	The same as 4 weeks		
	1.46 (0.26 to 8.16)			
Gastrointestinal	21% vs. 24%	26% vs. 33%		
	0.85 (0.35 to 2.07)	0.79 (0.38 to 1.66)		
Infection	9% vs. 12%	21% vs. 15%		
	0.73 (0.18 to 3.01)	1.36 (0.48 to 3.86)		
Neurological	12% vs. 9%	41% vs. 39%		
	1.29 (0.31 to 5.35)	1.05 (0.58 to 1.87)		
Respiratory	0% vs. 6%	The same as 4 weeks		
	0/34 vs. 2/33			
Spinal event		15% vs. 15%		
		0.97 (0.31 to 3.05)		
Trauma	0% vs. 3%	21% vs. 15%		
	0/34 vs. 1/33	1.36 (0.48 to 3.86)		
Urogenital	0% vs. 12%	3% vs. 12%		
	0/34 vs. 4/33	0.24 (0.30 to 2.06)		

Table 11. Specific adverse events for PLIF with rhBMP-2 vs. ICBG

PLIF = posterior lumbar interbody fusion; ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2

Circumferential Posterior Lumbar Interbody Fusion/Transforaminal Lumbar Interbody Fusion

Summary Findings

- There were no randomized trials of circumferential PLIF/TLIF. Evidence is limited to observational studies.
 - Two small cohort studies (n=159) reported no difference between fusion with rhBMP-2 with or without ICBG versus ICBG alone (strength of evidence: low).
 - Evidence on surgery-related complications was insufficient strength to draw conclusions.

• Two cohort studies (n=159) demonstrated non-significantly increased incidence of radiculitis with rhBMP2, with or without local autograft, compared with local or iliac crest bone graft (strength of evidence: low).

Overview of Included Evidence

We found no randomized controlled trials of circumferential transforaminal lumbar interbody fusion. The only comparative evidence available comes from three poor-quality cohort studies (*n*=202).⁸⁵⁻⁸⁷ These studies were downgraded due to methodological limitations including: unclear comparability of groups at baseline,^{85, 87} unclear blinding of outcome assessors,⁸⁵⁻⁸⁷ and failure to adjust for potential confounding variables.⁸⁵⁻⁸⁷ Cohort studies compared rhBMP-2 with ICBG,⁸⁷ rhBMP-2 plus local autograft to local autograft plus allograft,⁸⁵ or rhBMP-2 plus ICBG or local autograft with ICBG.⁸⁶ Mean follow-up ranged from 9 months⁸⁶ to 19 months⁸⁷ or was unclear.⁸⁵

We also identified 14 published intervention series describing outcomes in patients receiving PLIF or TLIF using rhBMP-2,^{52-55, 88-97} one unpublished intervention series for which we were also provided IPD (Study 11), and 15 case reports of adverse events in patients who received circumferential transforaminal or posterior interbody lumbar fusion.^{18, 98-111}

Comparative Effectiveness of rhBMP-2 Versus Autograft/allograft

Radiographic fusion. Low strength evidence based on combined data from two cohort studies found no significant difference in fusion between rhBMP-2, with or without autograft, compared with iliac crest autograft (96% in both groups; RR 1.00; 95% CI 0.93 to 1.07).^{86, 87}

Compared with the fusion rates for the rhBMP-2 groups in the cohort studies, rates were similarly high for rhBMP-2 based on IPD analysis of the unpublished intervention series (Study 11) at 6 months (90%, 27/30), 12 months (100%, 28/28), and 24 months (96%; 24/25). Rates of fusion for the 13 of 14 published intervention series that reported fusion ranged from 59% ⁵³ to 100% ^{55, 89, 92, 94, 97} with most in the range of 90 to 100%.

Other benefits. Cohort studies provided no additional evidence on benefits.

Comparative Harms of rhBMP-2 Versus Autograft/allograft

Overall adverse events. One cohort study (n=119) reported no difference between rhBMP-2 and ICBG in the number of patients with any complications (29.1% compared with 45.5%; RR 0.81; 95% CI, 0.60 to 1.03).⁸⁷ This evidence is insufficient strength due to poor study quality, lack of ability to assess consistency of findings, and lack of precision.

IPD analysis of one intervention series (Study 11; n=30) found the proportion of patients with any adverse event at 4 weeks was 53% and at 24 months was 97%. The proportion of patients with any serious adverse event was 13% and 37% at 4 weeks and 24 months, respectively.

Radiculitis. Low strength evidence based on combined data from two cohort studies (n=162) found higher incidence of radiculitis with rhBMP-2, with or without local autograft, compared with local or iliac crest bone graft (13% versus 2%; RR 3.74; 95% CI 0.74 to 18.90) but this difference was not significant.^{85, 87}

Based on IPD analysis of one intervention series (Study 11; n=30), 13% had radicular symptoms associated with fusion with rhBMP-2. However, rates of radicular pain observed in four published intervention series studies were lower, ranging from 2%⁹⁵ to 3%.^{54, 88, 93} We also identified one case report of radiculopathy beginning approximately 4 weeks postoperatively in a 27-year-old male who underwent L4-L5 TLIF.¹⁰⁴ Magnetic resonance imaging revealed a fluid collection compressing the right L4 nerve root requiring decompression, which resolved the radiculopathy.

Other harms. Rates of additional harms reported in one cohort study were low and did not differ significantly between rhBMP-2 and ICBG: vertebral osteolysis (5.8% versus 0), dural injury (4.7% versus 0), lumbar infection (3.5% versus 6.1%), ectopic bone formation (2.3% versus 0), and lumbar hematoma (1.2% versus 3%).⁸⁷

Compared with the rates for rhBMP-2 in cohort studies, rates for rhBMP-2 in intervention series were similar for dural injury (3.3% in Study 11 and 1.2 to 4.7% in three other intervention series),^{91, 92, 95} infection (6.7% through 4 weeks and 10% through 24 months in Study 11 and 0 to 3.5% in three other intervention series),^{54, 95, 97} ectopic or heterotopic bone formation (3 to 6.3%), ^{93, 95} and lumbar hematoma (2.1%).⁹⁵ However, for vertebral osteolysis, rates in intervention series ranged widely, from 3 to 85%.^{52, 53, 90, 93} Although back and/or leg pain were not reported in the cohort studies, we noted that back and/or leg pain was the most frequent category of adverse events reported based on IPD analysis of the Medtronic intervention series (Study 11) (23.5%).

We also identified nine cases of heterotopic ossification/ectopic bone formation,^{18, 98, 100} associated with symptomatic neural compression, nine cases of symptomatic vertebral osteolysis,^{99, 102, 106, 109} and one case each of pseudoarthrosis,¹⁰⁵ Charcot arthropathy,¹⁰¹ inflammatory cyst formation,¹¹⁰ and acute renal insufficiency, supraventricular tachycardia, and confusion¹⁰³ associated with rhBMP-2. There was also one case of cauda equina syndrome after the sealant used to protect against radiculitis when rhBMP-2 is used in conjunction with a TLIF expanded.¹¹¹

Circumferential Anterior Lumbar Interbody Fusion

Summary Findings

• There were no randomized trials of circumferential ALIF. Evidence is limited to observational studies; we were not able to make any definitive statements on effectiveness and harms (strength of evidence: insufficient).

Overview of Included Evidence

Our literature search identified no randomized trials for this fusion technique. There were also no individual patient data available. Three small, poor quality cohort studies (combined n=190) provided the only comparative data on benefits and harms.^{10, 112, 113} The first (n=55) compared rhBMP-2 with ICBG in patients undergoing long spinal deformity surgery;¹¹³ the second (n=60) compared rhBMP-2 with ICBG and/or rib autograft (local autograft was used in three cases) in patients needing extension of previous idiopathic scoliosis fusion to the sacrum;¹¹²

and the third (n=75) compared rhBMP-2 plus allograft with allograft alone in 1-3 level fusion.¹⁰ Studies were downgraded due to methodological limitations such as: surgeries not performed during same time frame,¹¹³ baseline differences between groups or information on important characteristics missing,^{10, 112} unclear blinding,¹¹³ and failure to adjust for potential confounders.^{10, 112, 113}

Three intervention series also provided information on fusion and adverse events.¹¹⁴⁻¹¹⁶ In the first (n=32), patients undergoing single-level fusion received rhBMP-2 with a titanium cage and either a spinous process plate (CD HORIZON SPIRE; Medtronic Sofamor Danek, Memphis, TN) fixation in 21 cases or bilateral pedicle screw fixation in 11 cases;¹¹⁶ in the second (n=130), rhBMP-2 was used in conjunction with local bone graft with or without allograft with a mean of 3.2 levels fused;¹¹⁴ and the third (n=50) used rhBMP-2 combined with a fresh frozen femoral ring allograft in one- or two-level fusion.¹¹⁵ Additionally, three case reports provided information on heterotopic bone formation^{117, 118} or bone resorption.¹¹⁹

Strength of the evidence for all outcomes was found to be insufficient due primarily to methodological limitations, lack of precision, and for some outcomes lack of ability to determine consistency with other study findings.

Comparative Effectiveness of rhBMP-2 Versus Fusion Without rhBMP-2

Radiographic fusion. In patients undergoing spinal deformity surgery due to scoliosis, fusion was reported in 96% of 23 rhBMP-2 patients versus 72% of 32 ICBG patients at 2 years (p=0.057).¹¹³ Although patient characteristics were similar in the two groups, there were differences in surgical approach (40% paramedian retroperitoneal in the ICBG group versus 100% in the rhBMP-2 group). Also different were the number of vertebrae fused anteriorly, with an average of 7.1 in the ICBG group versus 3.9 in the rhBMP-2 group.

In a second cohort of patients undergoing extension of previous scoliosis fusion to the sacrum, fusion was reported in 89% of 36 patients receiving rhBMP-2 versus 79% of 24 patients in the ICBG/rib group at 2 years, which was not significant (*P*-value not reported).¹¹² Differences in grading fusion existed between raters in 49% of patients. Whenever there was a difference between fused and not fused, a consensus was reached by averaging the ratings.

The third cohort reported 100% of 45 patients receiving rhBMP-2 plus allograft fused at 2 years versus 89% of 30 patients who received allograft alone, which was statistically significant (p<0.001).¹⁰ Diagnoses included degenerative disc disease, spondylolisthesis, and degenerative scoliosis and were reported to be similar between groups but the percentage of patients within each diagnosis by group was not given.

Fusion rates in intervention series ranged from 86 to 94%, depending on the observer grading the radiographs $(n=50)^{115}$ to 100% (combined n=162).^{114, 116} However, follow-up in one study was short, in some cases as short as 1 month, with a mean of 4.9 months for patients receiving rhBMP-2 in conjunction with minimal access spinal techniques and pedicle screws.¹¹⁶

Disability. Two cohort studies included ODI scores as outcomes^{10, 112} and one included the Scoliosis Research Society forms SRS-22 and SRS-30.¹¹² One found no difference in improvement between groups on either disability measure at any time point,¹¹² while the other found rhBMP-2 associated with greater improvement in ODI scores at 6 months, but not at 12 or 24 months, when compared with the control group (p<0.001 at 6 months, p-values for 12 and 24 months were not reported).¹⁰

Pain. One cohort study evaluated pain using a numerical rating scale and found that rhBMP-2 was associated with improvements in pain scores at 6 months but not at 12 or 24 months (p<0.001 at 6 months, p-values for 12 and 24 months were not reported).¹⁰

Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Total adverse events. There were no significant differences in complication rates between groups reported in the three cohort studies.^{10, 112, 113} One study reported 25 total adverse events, with 18 complications in 36 patients in the rhBMP-2 group and 17 complications in 24 patients in the control group (p=0.181).¹¹² The second reported two complications in 45 patients receiving rhBMP-2 versus one in 30 control patients.¹⁰ The third reported one perioperative complication in the 23 rhBMP-2 patients and zero in the 32 ICBG patients.¹¹³ Additionally, a single intervention series reported a 12% complication rate in 50 patients receiving rhBMP-2 in one- or two-level fusion.¹¹⁵

Urinary retention. A single instance of urinary retention was reported in one patient in an intervention series of 50 patients.¹¹⁵

Wound infection. A single deep wound infection was reported in both groups of one cohort study, representing 3% of patients in the rhBMP-2 arm versus 4% of patients in the control arm.¹¹²

Wound dehiscence. One cohort study reported one superficial wound dehiscence out of 30 patients in the control group (3%) versus none in 45 rhBMP-2 patients.¹⁰

Endplate resorption and subsidence. There was one case report of osteoclastic stimulation leading to back and buttock pain.¹¹⁹

Heterotopic bone formation. One cohort study reported no ectopic bone formation,¹⁰ and two case reports of heterotopic bone formation within the abdomen following circumferential fusion with ALIF have been reported.^{117, 118}

Reoperations. Rates of repeat surgeries for revision, supplemental fixation, hardware removal, and reoperations for other wound-related reasons were not different in two cohort studies, 6% of 36 patients in the rhBMP-2 group versus 13% of 24 patients in the autograft group¹¹² and 0% out of 45 in the rhBMP-2 group versus 13% out of 30 patients in the control group.¹⁰

Other Complications. One cohort study reported that 1 patient out of 23 in the rhBMP-2 group developed acute tubular necrosis following surgery.¹¹³ This was attributed to the intraoperative use of Aprotinin.

Circumferential Axial Lumbar Interbody Fusion

Summary Findings

• Evidence is limited to two small observational studies and is insufficient strength for all outcomes.

Overview of Included Evidence

We identified no randomized axial lumbar interbody fusion trials, a single matched cohort study (n=99),¹²⁰ and one intervention series (n=12).¹²¹ The cohort study matched 45 patients in one hospital who received rhBMP-2 with 54 patients in a second hospital in a different city who did not receive rhBMP-2.¹²⁰ All patients underwent L5-S1 fusion. This cohort study was rated poor quality due to methodological limitations including: failure to describe the fusion material used in the patients who did not receive rhBMP-2, failure to describe the factors on which the patients were matched, unclear blinding of outcome assessors, and missing information on prognostic characteristics such as smoking status and comorbidities. The intervention series consisted of adults with lumbar degenerative scoliosis with a mean of 3.5 (range 2 to 8) levels fused.¹²¹

Comparative Effectiveness of rhBMP-2 Versus Fusion Without rhBMP-2

Radiographic fusion. Based on the cohort study results, there was no significant difference in overall fusion rates between patients who did and did not receive rhBMP-2 (p=0.27).¹²⁰ The rate of fusion was 96% in the rhBMP-2 group and 93% in the group without rhBMP-2. The intervention series did not report fusion results.¹²¹

Pain. In the cohort study, at the 24-month postoperative follow up, there was no difference in mean visual analog scores (VAS) (7.5, 95% CI -1.8 to 7.7) between the two groups, despite a significant difference in preoperative VAS scores (-8.4, 95% CI -1.4 to -0.2).¹²⁰

Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Adverse events. In the cohort study, one infection developed in each group.¹²⁰ Both infections were due to the supplemental instrumentation which resulted in removal of pedicle screws in seven (15.5%) patients in the rhBMP-2 group and two (3.7%) patients in the control group, due to complaints of persistent pain and tenderness at the site of the screws. Additionally, one patient in each group underwent extension of fusion from L5-S1 to L4-L5.

In the intervention series, three patients had thigh dysathesias postoperatively and one patient was noted to have transient quadriceps weakness.¹²¹

Mixed Lumbar Spine Fusion

Summary Findings

- Compared with fusion without rhBMP-2, fusion with rhBMP-2 was associated with a lower risk of repeat fusion (strength of evidence: moderate).
- There was low strength evidence for no difference in total complications or wound complications between fusion with rhBMP-2 or without rhBMP-2.

Overview of Included Evidence

Four cohort studies, three fair quality^{11,122,123} and one poor quality,¹²⁴ provided evidence on the harms of rhBMP-2 when used in various lumbar fusion types. One study used a health insurance claims database,¹²² a second used data from the Nationwide Inpatient Sample,¹¹ a third used Veterans Affairs clinic records,¹²⁴ and the fourth used data from a tertiary referral spine trauma center.¹²³ These studies included various surgical approaches (e.g., use of an interbody device, circumferential fusion, posterior approach, transforaminal approach) in a combined analysis. Although two of these cohort studies did not specify the BMP used (rhBMP-2 or rhBMP-7), due to the restrictions imposed on the use of rhBMP-7 by the Humanitarian Use Device of not more than 4,000 cases per year, most of the surgeries reported would have used rhBMP-2.^{11, 122} However, since the outcomes of rhBMP-2 may differ based on surgical approach is unclear. Studies were downgraded due to methodological limitations such as baseline differences between groups,^{123, 124} unclear blinding of outcome assessors,^{11, 122-124} and failure to adjust for potential confounding variables.¹²⁴

Comparative Effectiveness and Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Repeat fusion. Two cohort studies (N=6,142) provided moderate strength evidence for repeat fusion surgery.^{122, 123} Use of rhBMP-2 was associated with a significantly lower risk of repeat fusion surgery at 1 year (2.3% compared with 3.4%; adjusted odds ratio, 0.66; 95% CI 0.47 to 0.94).¹²² Compared with rhBMP-2 use in circumferential fusion, risk of repeat fusion was higher with rhBMP-2 use in posterolateral fusion (adjusted odds ratio, 2.12; 95% CI 1.29 to 3.47), but similar with interbody fusion (adjusted odds ratio, 1.50; 95% CI 0.97 to 2.32).¹²² A second cohort study also found a lower risk of repeat fusion with rhBMP-2 (41/947, 4.3%) compared to demineralized bone matrix (40-306, 13.1%, p<0.001) and autograft (22/145, 15.2%, p<0.001).¹²³

Renal insufficiency. Based on a poor quality retrospective review of New York Harbor Health Care System Manhattan Veterans Affairs computerized clinic records, 12.5% of patients developed transient renal insufficiency after fusion with rhBMP-2 (3/24) compared with no cases in 125 patients who did not receive rhBMP-2 (P = 0.006).¹²⁴ Interbody cage placement was used in 70% in the rhBMP-2 group and 30% in the non-rhBMP-2 group (P = 0.001). This evidence is insufficient strength due to the methodological limitations of the study, the lack of ability to determine consistency with other studies, the indirectness of the outcome measure, and low precision of the estimate.

Other complications. Based on low strength evidence from data from the Nationwide Inpatient Sample database (n=36,807), there was no significant difference between fusion surgery with or without rhBMP-2 in total complications (adjusted odds ratio, 1.03; 95% CI 0.95 to 1.12), wound complications (adjusted odds ratio, 0.93; 95% CI 0.80 to 1.08), or other complications (adjusted odds ratio, 1.05; 95% CI 0.95 to 1.15).¹¹

Other studies. One case series reported 17 children successfully fused using rhBMP-2 at various fusion levels ranging from the occiput to L4 with both posterior or anterior and posterior approaches.¹²⁵ Other studies of rhBMP-2 did not analyze data in a usable manner.^{126, 127}

Effectiveness and Harms for Cervical Spine

Anterior Cervical Spine Fusion

Summary Findings

- No differences in effectiveness outcomes were found.
- Based on IPD analysis of one small randomized trial (*n*=33) and three small cohort studies (*n*=135), there were no differences between rhBMP-2 and ICBG or autograft/allograft in likelihood of fusion, improvements in disability, arm pain, or neck pain (strength of evidence: low).
- Adverse events rates were greater with rhBMP-2 than with the control. One large cohort study (n=27,067) and four smaller cohort studies (n=1113) reported increased dysphagia/dysphonia (strength of evidence: moderate) and the large cohort study reported increased wound-related complications with rhBMP-2 (strength of evidence: low).

Overview of Included Evidence

One Medtronic sponsored randomized trial with IPD (Study 7), six cohort studies,^{11, 15-17, 61,} and seven intervention series^{17, 50, 129-134} provided evidence for effectiveness and harms.

The randomized trial was small (n=33) and rated fair quality. The intervention group (n=18) for the pilot RCT received an ACDF using rhBMP-2 with a CORNERSTONE-SRTM (Medtronic; Memphis, TN) Allograft Ring and an ATLANTISTM Anterior Cervical Plate (Medtronic; Memphis, TN). The control group (n=15) received the same surgery except that iliac crest autograph bone was used in lieu of rhBMP-2. Ten intervention patients and eight control patients had surgery to fuse one level, whereas the remaining patients had two-level arthrodesis. The patients were followed for 24 months. This RCT was downgraded due to methodological limitations including: missing data, and uncertain blinding of outcome assessors other than radiologists.

Three cohort studies were rated fair quality^{11,15,128} and three poor quality.^{16,17,61} Studies were downgraded due to methodological limitations including: lack of information on prognostic baseline characteristics such as comorbidities and smoking status,^{15-17, 61, 128} lack of blinding information on outcome assessors,^{11, 15-17, 61, 128} and failure to control for potential confounding variables.^{16, 17, 61} One cohort study compared rhBMP-2 plus allograft with ICBG (n=66);¹⁶ a second compared rhBMP-2 plus allograft with allograft plus demineralized bone matrix (n=23);⁶¹ a third compared rhBMP-2 plus PEEK cages with allograft plus demineralized bone matrix (n=46).¹⁷ Additionally, seven intervention series reported fusion and/or adverse events.^{17, 50, 129-134}

Comparative Effectiveness of rhBMP-2 Versus Fusion with Autograft/Allograft

Radiographic fusion. Low strength evidence, based on one small trial and three small cohort studies, does not indicate important differences in fusion rates between rhBMP-2 and controls using various forms of autograft or allograft. Based on IPD analysis of one randomized trial (Study 7), patients in the rhBMP-2 group experienced a similar likelihood of fusion versus ICBG at 3, 6, 12, and 24 months with fusion rates in the rhBMP-2 group between 81 and 94% and between 73 and 100% in the ICBG group (Table 12). Three small cohort studies (combined n=135)^{16,17,61} reported fusion outcomes. One cohort study (n=23) reported 100% fusion with rhBMP-2 plus allograft versus 92% with allograft plus demineralized bone matrix,⁶¹ a second (n=46) reported 100% with rhBMP-2 plus PEEK cages versus 96% with allograft plus demineralized bone matrix,¹⁷ and a third (n=66) reported 94% fused with rhBMP-2 plus allograft versus 97% with ICBG.¹⁶ Overall, there was no difference in fusion between the rhBMP-2 and no rhBMP-2 groups based on the three cohort studies (RR 1.04, 0.96 to 1.12). Fusion rates were also reported in six intervention series ranging from 89 to 100%, comparable to the one RCT and cohort studies.^{50, 129-131, 133, 134}

Outcome (scale)	6 weeks	3 months	6 months	12 months	24 months		
Overall success			67% (12/18)	80% (12/15)	71% (10/14)		
			VS	VS.	VS.		
			85% (11/13)	64% (9/14)	77% (10/13)		
Fusion			94% (15/16)	93% (14/15)	92% (11/12)		
			VS.	VS.	VS.		
			92% (12/13)	86% (12/14)	100% (12/12)		
Neurologic	78% (14/18)	94% (17/18)	89% (16/18)	93% (14/15)	100% (14/14)		
success	VS.	VS.	VS.	VS.	VS.		
	93% (14/15)	93% (14/15)	100% (13/13)	86% (12/14)	92% (12/13)		
NDI success	89% (16/18)	88% (15/17)	89% (16/18)	93% (14/15)	93% (13/14)		
	VS.	VS.	VS.	VS.	VS.		
	8%7 (13/15)	93% (14/15)	92% (12/13)	93% (13/14)	92% (12/13)		
Return to work	58% (7/12)	83% (10/12)	92% (11/12)	100% (10/10)	100% (8/8)		
	VS.	VS.	VS.	VS.	VS.		
	67% (6/9)	100% (9/9)	100% (8/8)	100% (9/9)	100% (8/8)		
		Weighted mea					
		(95%					
		sample					
NDI (0-50)	-0.21	-3.44	-1.64	3.22	-4.66		
	(-11.47 to 11.06)	(-16.19 to 9.30)	(-11.72 to 8.45)	(-9.73 to 16.16)	(-16.94 to 7.62)		
	33	32	30	29	27		
Neck pain (0-10)	-2.04	-1.03	0.15	-2.55	-2.92		
	(-5.56 to 1.47)	(-4.90 to 2.83)	(-3.30 to 3.59)	(-6.43 to 1.33)	(-6.26 to 0.41)		
	33	32	30	29	27		
Arm pain (0-10)	0.14	-0.28	1.67	2.21	0.82		
	(-4.23 to 4.52)	(-5.32 to 4.77)	(-1.56 to 4.89)	(-2.08 to 6.50)	(-3.46 to 5.09)		
	33	32	30	29	27		
SF-36 PCS (0-100)	0.89	1.01	1.45	-1.84	2.48		
	(-6.23 to 8.00)	(-6.23 to 8.24)	(-7.49 to 10.40)	(-9.55 to 5.85)	(-6.64 to 11.61)		
	32	30	26	28	26		
SF-36 MCS (0-100)	1.71	7.75	3.93	6.20	5.13		
	(-6.16 to 9.57)	(-1.42 to 16.93)	(-3.62 to 11.48)	(-1.22 to 13.62)	(-4.13 to 14.39)		
	32	30	26	28	26		

Table 12. Effectiveness endpoints for anterior cervical spine fusion with rhBMP-2 vs. ICBG

Percent of Events (n/N): rhBMP-2 vs. ICBG

NDI = Neck Disability Index; MCS = Mental Component Summary; PCS = Physical Component Summary

Overall success, neurological success and NDI success. Evidence was insufficient to draw conclusions concerning rhBMP-2's effect on overall success, neurological success, Neck Disability Index (NDI) success, SF-36 physical and mental component summary scores, and return to work (Table 12).

Disability, neck and arm pain, return to work, physical and mental health. Based on IPD analysis of a single randomized trial (Study 7), there were no differences between rhBMP-2 versus ICBG in disability, neck pain, or arm pain Table 12). Two cohort studies (combined n=112) also found no differences between rhBMP-2 plus PEEK cages or allograft versus ICBG or allograft plus DBM and on neck disability, neck pain, and arm pain scores, but did not report quality-of-life or return-to-work outcomes.^{16, 17} The strength of this evidence is low, with low precision and moderate risk of bias.

Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Overall adverse events. In a large cohort study (n=27,067), the use of rhBMP-2 was associated with an increased risk of any complication immediate postoperative (OR 1.43, 95% CI 1.12 to 1.70) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, medical comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹ This increase was primarily due to increased dysphagia/dysphonia and wound-related complications.

Based on IPD analysis of one randomized trial (Study 7), more adverse events were reported in the rhBMP-2 group (45 in 18 patients) versus the ICBG group (13 in 15 patients) over the 24 months of followup (Rate Ratio 2.88, 95% CI 1.30 to 6.41), although there was no difference between groups in the first 4 weeks after surgery (Rate Ratio 1.83, 95% CI 0.58 to 5.79).⁹ The strength of this evidence is low, based primarily on the large cohort study.

Dysphagia. Moderately strong evidence indicates a higher rate of dysphagia and related outcomes with rhBMP-2 compared with controls. While the small trial (Study 7) found no statistically significant difference in rates of dysphagia between groups (one patient in the rhBMP-2 group [6%] and two patients in the ICBG group [13%] experienced dysphagia [difficulty swallowing] and/or dysphonia [hoarseness]) up to four weeks since surgery, five cohort studies found significantly increased risk with rhBMP-2. A large cohort study found the use of rhBMP-2 was associated with an increase in dysphagia and/or dysphonia, (OR 1.63; 95% CI 1.30 to 2.05) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, medical comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹

A second cohort study (n=234) reported 28% of patients in the rhBMP-2 group experienced clinically significant neck swelling versus 4% in the control group (p<0.0001).¹⁵ In this study, there was a significant increase in complications due to prevertebral swelling associated with rhBMP-2 use compared to no rhBMP-2 use (OR 10.1; 95% CI 3.8 to 26.6) after adjustment for age, combined anterior/posterior surgery, surgery level, plating, myelopathy, number of levels fused, smoking status, prior anterior surgery, and gender, although this study was not able to control for dose of rhBMP-2 used. Another cohort (n=775) reported a significant increase in dysphagia (P=0.001) and in respiratory failure (P=0.001) related to the use of rhBMP-2 after adjustment for covariates.¹²⁸ Two other cohort studies also found increased neck swelling

complications associated with rhBMP-2 use, but these studies did not control for potential confounding variables.^{16, 17} Five intervention series reported 5% to 60% of patients with dysphagia depending on how dysphagia was defined.¹³⁰⁻¹³⁴

Wound complications. Low strength evidence suggests there is a significantly increased risk of wound complications associated with rhBMP-2. In a large cohort study, use of rhBMP-2 was associated with increased wound complications (OR 1.67, 95% CI 1.10 to 2.53) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, medical comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹ Wound complications included infection, dehiscence, seroma, and hematoma.

In the randomized trial (Study 7), two patients in the rhBMP-2 group experienced wound complications (one patient experienced self-limiting wound drainage and one experienced wound swelling that necessitated a return to the operating room for incision and drainage of the wound) versus none in the ICBG group.

Heterotopic bone formation. The randomized trial (Study 7) reported two patients in the rhBMP-2 group (11%) and one patient in the control group (7%) demonstrated bone formation immediately anterior to segments adjacent to the treated level, which was visible on the 12-month postoperative radiographs.

Two intervention series also reported excess interbody bone formation in 13% of 24 patients,¹³⁵ and excessive bone growth into the foramina or spinal canal in 68% of 22 patients.¹²⁹ However, heterotopic bone formation was not associated with neurological sequelae in either of these studies.

This evidence was found to be insufficient strength due to imprecision and lack of ability to assess consistency of findings, given evidence is limited to a very small trial.

Endplate resorption and subsidence. One cohort study found early lucencies and subsidence at 12 months postoperatively in 33% of 18 levels fused with rhBMP-2 plus allograft compared with no instances of lucencies and subsidence in 0 of 22 levels fused with allograft and DBM.⁶¹ The incidence of endplate resorption was 100% of 34 patients in one intervention series,⁵⁰ while another reported moderate or severe endplate resorption in 57% of 38 levels fused, with 39% having lucencies in the PEEK grafts larger than 3mm at 15 months postoperatively.¹²⁹ There was no mention of association between endplate resorption, subsidence, lucencies, and increased neurological symptoms in any of these studies. This evidence is considered insufficient strength due to methodological limitations of this study to assess the outcomes, lack of ability to assess consistency with other studies, and low precision.

Additional surgeries. A pooled estimate of four cohort studies (n=369) indicates low strength of evidence that there is no significantly increased risk of additional surgeries associated with rhBMP-2 (RR 3.84, 95% CI 0.56 to 26.5).^{15-17, 61} The randomized trial reported one patient in the rhBMP-2 group required surgical intervention at an adjacent level, unrelated to the first surgery, necessitating the removal of the anterior plate.⁹ One additional surgery, due to swelling, was necessary in the rhBMP-2 group based on IPD analysis. However, this patient did not require surgical revision, hardware removal, or supplemental fixation. No additional surgeries were reported with ICBG.

Other complications. Based on MedWatch data provided by the manufacturer, six deaths were reported in the immediate postoperative period in patients who had cervical fusion, no cases of cancer, and eight required tracheotomy (four who had anterior cervical fusion and four with less specific cervical fusion). One cohort study reported increased 90-day mortality associated with cervical spine fusion with rhBMP-2 (p=0.047).¹²⁸

Posterior Cervical Spine Fusion

Summary Findings

- We found insufficient evidence to evaluate effectiveness of rhBMP-2 in posterior cervical spine fusion.
- Based on four cohort studies (n=3,233) there was no difference in adverse events between fusion with rhBMP-2 and fusion without rhBMP-2 immediately postoperative and at later time points (strength of evidence: low).
- Based on one cohort study (n=2,869) there was no difference in wound complications when using rhBMP in posterior spinal fusion (strength of evidence: low).
- Two cohort studies provided low strength evidence of no increase in dysphagia or dysphonia associated with rhBMP or rhBMP-2.

Overview of Included Evidence

There were no published RCTs and no individual patient data (IPD) involving rhBMP-2 in posterior cervical fusion identified in this review. Four retrospective cohort studies (n=3,233), one fair quality¹¹ and three poor quality;¹³⁶⁻¹³⁸ two intervention series (n=53);^{139, 140} and (n=29) three case reports¹⁴¹⁻¹⁴³ provided data on benefits and harms. Studies were downgraded due to methodological limitations such as baseline differences between groups,^{136, 138} unclear blinding of outcome assessors,^{11, 137} differential loss to followup,¹³⁸ and failure to adjust for potential confounding variables.¹³⁶⁻¹³⁸

Additionally, several case reports/case series⁵⁶⁻⁶⁰ reported fusion and/or adverse events associated with use of rhBMP-2 in the pediatric population.

Comparative Effectiveness of rhBMP-2 Versus Fusion Without rhBMP-2

Evidence on effectiveness outcomes was insufficient, with only one small poor quality cohort study with low to moderate precision, depending on specific outcome. A small retrospective cohort study of 204 patients with degenerative cervical spinal conditions found that patients receiving rhBMP-2 were more likely to have a successful fusion than those who did not (100% versus 88%, respectively, p=0.01) but also more likely to experience recurrent neck pain (48% versus 29%, p=0.003) during the 24-month follow-up period.¹³⁸ There were no differences between groups on improvement in Nurick myelopathy and American Spinal Injury Association (ASIA) scores. There was no adjustment for potentially confounding variables. In a small intervention series, 100% of 53 patients achieved fusion by 24 months postoperatively.¹³⁹ A second intervention series reported 26 of 29 patients experienced successful fusion with rhBMP-2.¹⁴⁰

Effectiveness of rhBMP-2 in Posterior Cervical Spine Fusion in Children

Evidence in children was insufficient, with only five case reports/case series reporting the use of rhBMP-2 in posterior cervical spine fusion in children.⁵⁶⁻⁶⁰ One case series involved 48 children, average age 11 (range 3-18), who received rhBMP-2 to facilitate occipitocervical

decompression and fusion to treat congenital and acquired defects such as Chiari malformation, Klippel-Feil syndrome, odontoideum, Down syndrome, and basilar invagination.⁵⁸ All patients achieved successful fusion in an average of 6.7 months (range 4-14 months).

Cases of 14 children ranging from 19 months-14 years of age with craniosynostosis, Down syndrome with craniovertebral instability, and trauma-induced cervical spinal instability were reported to have successful fusions using rhBMP-2.^{56, 57, 59, 60}

Comparative Harms of Fusion With rhBMP-2 and Fusion Without rhBMP-2

Total adverse events. Low strength evidence indicates no increased risk of overall adverse events with rhBMP-2. A cohort study of 2,869 patients reported no increased risk of complications associated with the use of rhBMP-2 in posterior cervical spine fusion in the immediate postoperative period (OR1.03, 95% CI 0.73 to 1.44) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹ The remaining three cohort studies also reported no differences in frequency of adverse events associated with the use of rhBMP-2 compared with no rhBMP-2 use, but did not control for confounding factors (RR 0.80, 0.43 to 1.49).¹³⁶⁻¹³⁸

Dysphagia. Low strength evidence from two cohort studies found no increased risk of dysphagia associated with the use of rhBMP or rhBMP-2 in posterior cervical fusion.^{11, 138}

Neck swelling. There are four cases of substantial posterior cervical swelling after fusion with rhBMP-2 reported in the published literature.¹⁴¹⁻¹⁴³ Symptoms typically began several days postoperatively (range 3 days to 2 weeks) and involved compression of the spinal cord, neurological decline, and need for urgent surgical intervention. All four patients survived.

Wound complications. Low strength evidence, based on three cohort studies, indicated no increased risk of wound complications associated with rhBMP-2 use. Three cohort studies (n=2,869, 204, and 77) found no increased risk of wound complications.^{11, 136, 138} The largest study reported on wound complications, including infection, dehiscence, seroma, and hematoma (OR 1.11, 95% CI 0.60 to 2.05) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹ The smaller study reported only wound dehiscence (p=0.37) and hematoma rates (p=0.94).¹³⁸ A very small cohort study (*n*=77) reported more wound complications requiring treatment in the rhBMP-2 group (15% vs. 3%), but given the small sample size, this difference was not significant (*P*=0.11).¹³⁶ One superficial wound infection was reported out of 53 patients receiving rhBMP-2 in an intervention series.¹³⁹

Reoperations. No difference in reoperation rates was found between rhBMP-2 use and non-use (P = 0.36) in a small cohort study (n=204).¹³⁸ Because this is based on a single, small, poor quality observational study this evidence is considered insufficient strength.

Harms of rhBMP-2 in Posterior Cervical Spine Fusion in Children

A case series involving 48 children, average age 11 (range 3-18 years), who received rhBMP-2 to facilitate occipitocervical decompression and fusion to treat congenital and acquired defects such as Chiari malformation, Klippel-Feil syndrome, odontoideum, Down syndrome, and

basilar invagination, reported six complications felt to be a result of rhBMP-2 and which had never been experienced by the study's senior author prior to introduction of rhBMP-2 into the practice. ⁵⁸ There were five instances of postoperative seroma formation and one of excessive ectopic bone formation. Two of the seroma patients developed symptoms due to compression of the brainstem requiring emergency reoperation. Both survived. This evidence is insufficient strength due to methodological concerns.

Benefits and Harms for Thoracic Spine

Summary Findings

- Evidence is unavailable for the benefits of rhBMP-2 in thoracic fusion (strength of evidence: insufficient).
- Based on one cohort study (n=3,257) fusion with or without rhBMP-2 is associated with similar rates of complications (strength of evidence: low).

Overview of Included Evidence

We found no eligible studies with evidence on the potential benefits of rhBMP-2 in thoracic fusion. Limited evidence on harms came from a subgroup of 3,257 thoracic patients from the fair-quality Nationwide Inpatient Sample database cohort study,¹¹ a case series of 10 patients,¹⁴⁴ and two case reports.¹⁴⁵ The cohort study was downgraded due to unclear blinding of outcome assessors.¹¹ Although one cohort study did not specify whether rhBMP-2 or rhBMP-7 was used, based on the restriction imposed on the use of rhBMP-7 by the Humanitarian Use Device to 4,000 uses per year, most of the fusion surgeries would have used rhBMP-2.

Comparative Harms of rhBMP-2 Versus Fusion Without rhBMP-2

Low strength evidence suggests that there is no significant difference between fusion surgery with or without rhBMP-2 in any complications (adjusted odds ratio, 1.05; 95% CI 0.83 to 1.32), wound complications (adjusted odds ratio, 0.78; 95% CI 0.53 to 1.17), or other complications (adjusted odds ratio, 1.27; 95% CI 0.98 to 1.66) after adjustment for age, race, sex, income, elective admission, teaching hospital, revision surgery, diagnosis, comorbidities, levels fused, primary payer, and geographic location of hospital.¹¹

A case series of 10 patients¹⁴⁴ and a report of two cases¹⁴⁵ provided additional noncomparative evidence on harms. Clinically significant pleural effusion occurred in four of 10 patients following thoracic spinal fusion using rhBMP-2.¹⁴⁴ No adverse events were reported following use of rhBMP-2 in posterior-only pedicle screw-based instrumented spinal fusion involving the thoracic spine in a 17-year-old boy and a 30-year-old male, both with type-1 neurofibromatosis.¹⁴⁶

Overall Cancer and Death

Summary Findings

Based on meta-analysis of five trials (n=1450), risk of cancer was significantly higher at 24 months in the rhBMP-2 group versus the control group (RR 3.45; 95% CI 1.98to 6.00) with a 1.9% absolute risk increase (95% CI 0.5 to 3.2%; number needed to harm [NNH] = 53). The difference was not statistically significant at 48 months (RR 1.82; 95% CI 0.84 to 3.95) (strength of evidence: low).

• There was no significant difference in death rate between the rhBMP-2 and the control groups at 24 and 48 months (strength of evidence: low).

Cancer

Five Medtronic-sponsored trials with IPD (Studies 2, 4, 5, 10, 14; n=1450) reported at least one cancer through 24 months and were included in our meta-analysis (see Table 13 for detailed information about cancer events—the included cancer types were very heterogeneous). One preexisting cancer (renal cancer) in the rhBMP-2 group in Study 8 and another pre-existing cancer (pancreatic cancer) in the rhBMP-2 group in Study 13 were excluded from the analysis. Compared with the control group, there was low strength evidence that rhBMP-2 was associated with a 1.9% increase in the absolute risk of cancer (95% CI 0.5 to 3.2; NNH=53, 95% CI 31 to 200) with an RR of 3.45 (95% 1.98 to 6.00) (Figure 12). The effect of dosage was unclear: 10 of 17 cancers in the rhBMP-2 group occurred in the AMPLIFY trial (Study 14), but another highdose study (Study 13) had no cancers in the rhBMP-2 group (n=98). It was also unclear whether under-reporting played a role.

To assess the potential impact of the seven Medtronic trials with zero cancers in both treatment groups (sample sizes 14 to 197), we performed a sensitivity analysis by considering these trials as a combined "pseudo-trial" (*n*=429) and included it in the meta-analysis by conservatively assuming that no cancer occurred in the rhBMP-2 group and one cancer occurred in the control group. The sensitivity analysis showed a 1.3% (95% CI 0.2 to 2.4; NNH=77, 95% CI 42 to 500) absolute increase in cancer risk associated with rhBMP-2 (RR 2.90; 95% CI 1.19 to 7.08). Three non-SEER cancers (one basal cell carcinoma and two squamous cell carcinomas) occurred in the rhBMP-2 group and zero occurred in ICBG group during the 24-month period. When these three cases were excluded, the association between rhBMP-2 and increased cancer risk remained significant (RR 2.92; 95% CI 1.75 to 4.87).

At 48 months, four trials (Studies 4, 10, 13, 14; n=1183) provided IPD data on cancer risk for the meta-analysis. The rhBMP-2 arm of the INFUSE-LT-Cage Pivotal trial (Study 2) had three additional cancers at 48 months, but was not included in the analysis since there were no follow-up data for the ICBG group. Based on the four trials with follow-up data in both groups, there was no statistically significant difference in cancer risk between rhBMP-2 and the control groups (RR 1.82; 95% CI 0.84 to 3.95). One non-SEER cancer (one squamous cell carcinoma) occurred in the ICBG group and no non-SEER cancers occurred in the rhBMP-2 group between 24 months and 48 months. Results were similar when the four non-SEER cancers (three from the rhBMP-2 group up to 24 months and one from ICBG group between 24 and 48 months) were excluded from the 48-month analysis (RR 1.92; 95% CI 0.86 to 4.32).

After 48 months, one additional patient developed cancer in the rhBMP-2 group in one trial (Study 13) at 72 months and two additional patients developed cancers in the control group (artificial disc) in one trial (Study 10) at 60 months. The sensitivity analysis including cancers through 48 months and these three additional cancer patients after 48 months showed no difference in cancer risk between rhBMP-2 and control groups (RR 1.69; 95% CI 0.94 to 3.03).

Additionally, two cohort studies^{124, 147} provided evidence of cancer. One of them included 125 patients (24 rhBMP-2, 101 ICBG) undergoing lumbar and lumbosacral fusion. Four cancers occurred in the rhBMP-2 group within 24 months after surgery, and eight cancers occurred in the rhBMP-2 group between 3 to 63 months after the surgery. The results (RR 2.10; 95% CI 0.69 – 6.41) were consistent with those from the Medtronic RCTs, but the difference was not significant.

A retrospective cohort study using U.S. Medicare claims data assessed the association between the use of BMP during lumbar spinal fusion surgery with subsequent risk of pancreatic cancer specifically.¹⁴⁷ The results were not reported separately by rhBMP-2 and rhBMP-7; however, due to the restrictions imposed on the use of rhBMP-7 by the Humanitarian Use Device of not more than 4,000 cases per year, most of the surgeries reported would have used rhBMP-2. The study did not find an increased risk (adjusted HR=0.70, 95% CI 0.34-1.45) for pancreatic cancer. The study was sponsored by Wyeth, the manufacturer of rhBMP-2, and the mean followup of the BMP group (1.04 ± 0.73 years) was shorter than the non-BMP group (1.46 ± 0.86 years). The study population was older than the patients included in the RCTs, with a mean age of 75 years old.

Among the four Medtronic intervention series, only Study 3 reported a single case of breast cancer at 36 months and a single non-SEER cancer (squamous cell carcinoma) at 72 months.

The strength of this evidence is considered low due to moderate risk of bias and low precision. Additionally, the cancers identified were very heterogeneous.

		Patients Rec	ceiving rhBN	Patient	Patients Receiving ICBG or Artificial Disc					
	Number of Cancers	Time Period from Surgery, months	Type of Surgery	rhBMP-2 Dose, mg	Number of Cancers	Time Period from Surgery, months	Type of Surgery			
Cancers up to 24-	month follow	wup								
Basal cell carcinoma†	2	1.5, 3	PLF	40	0					
Breast	2	24	ALIF	4.2-8.4;8.1-11.7	1	3	ALIF			
Carcinoid	1	24	ALIF	4.2-12	0					
Colon	0				1	6	PLF			
Larynx	1	6	PLF	40	0					
Liver	1	6	ALIF	4.2-12	0					
Lung	1	6	PLF	40	0					
Melanoma	1	24	ALIF	4.2-12	0					
Lymphoma	1	24	PLF	40	2	12, 24	PLF, AD			
Ovarian	1	12	PLF	40	0					
Pancreatic	2	12	ALIF, PLF	4.2-8.4;40	0					
Prostate	1	12	PLF	40	1	3	AD			
Squamous cell carcinoma†	2	12, 24	PLF	40	0					
Stomach	1	24	PLF	40	0					
Thyroid	1	12	ALIF	8.1-11.7	1	24	AD			
Total cancers up	18				6					

Table 13. Cancer occurrence at 24 and 48 months in randomized trials*

to 24 months

(in 17 patients; total *n*=633 patients)

(in 6 patients; total *n*=817 patients)

		Patients Rec	ceiving rhBMI	Patients Receiving ICBG or Artificial Disc				
	Number of Cancers	Time Period from Surgery, months	Type of Surgery	rhBMP-2 Dose, mg	Number of Cancers	Time Period from Surgery, months	Type of Surgery	
Cancers occurring	j between 2	4- and 48-month	follow-ups‡					
Breast	0				1	36	PLF	
Leukemia	1	36	PLF	40	0			
Melanoma	2	36, 48	PLF, ALIF	40, 4.2-8.4	0			
Merkle cell carcinoma	0				1	36	AD	
Prostate	1	36	PLF	40	1	48	PLF	
Squamous cell† carcinoma	0				1	48	PLF	
Thyroid	1	36	PLF	40	1	48	PLF	
Uterine	0				1	36	AD	
Total cancers up to 48 months§	20 (in 16 pa	atients; total <i>n=</i> 48	33 patients)		11 (in 11 p	atients; <i>n=</i> 700 patier	nts)	

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2; PLF = posterolateral lumbar fusion; AD = artificial disc.

* Does not include 1 pancreatic cancer and 1 renal cancer that were discovered during the study but determined to exist prior to the study.

† Non-SEER cancers (for which data is not reportable by the Surveillance, Epidemiology and End Results [SEER] Program, National Cancer Institute) ‡ Does not include cancers occurring after 48 months of followup or cancers occurring in rhBMP-2 arms of studies without a control arm (intervention series or when only the rhBMP-2 arm experienced continued followup); additional cancers reported in these rhBMP-2 patients were 1 each—colon cancer, breast cancer, squamous cell carcinoma, thyroid cancer, testicular cancer—and 2 basal cell carcinomas. Does not include 1 thyroid cancer and 1 leukemia in the control arms of studies after 48 months.

§ Total from studies following patients up to 48 months, excluding patients for whom only 24-month data were available.

Figure 12. Comparison of cancer risk between the rhBMP-2 and ICBG groups

Study (Number)	Control Rate			Risk Ratio (95% CI)	Events, rhBMP-2	Events, Control
24 month						
Infuse LT Cage Pivotal (2)	0.74%			1.90 (0.17, 20.74)	2/143	1/136
Infuse Bone Dowel Pilot (4)	0%			2.76 (0.12, 64.41)	1/24	0/22
Infuse Bone Dowel Pivotal (5)	0%		 -	1.66 (0.07, 39.55)	1/55	0/30
Maverick Disc Pivotal (10)	0.74%	_		2.35 (0.48, 11.55)	3/172	3/405
Amplify Pivotal (14)	0.89%		∎	4.69 (1.04, 21.15)	10/239	2/224
Combined			\diamond	3.45 (1.98, 6.00)*	17/633	6/817
48 month						
Infuse Bone Dowel Pilot (4)	0			2.76 (0.12, 64.41)	1/24	0/22
Maverick Disc Pivotal (10)	1.24%		│ ■───	1.41 (0.34, 5.85)	3/172	5/405
BCP Canada (13)	2.04%		<u> </u>	0.34 (0.01, 8.15)	0/48	1/49
Amplify Pivotal (14)	2.23%	-	╞╌═	2.25 (0.81, 6.28)	12/239	5/224
Combined			\diamond	1.82 (0.84, 3.95)*	16/483	11/700
	Fa	vor rhBMP-2	Favor Control			
		.25	1 4 16			

*The combined risk ratio (RR) was obtained using a generalized linear fixed effects model with binomial distribution and log link without correction for zero events. The RR from each study was estimated, when there is zero event, by adding a continuity correction of 0.5, for illustrative purposes.

ICBG = iliac crest bone graft; rhBMP-2 = recombinant human bone morphogenetic protein-2

Death

Nine Medtronic RCTs provided adequate data to be included in a meta-analysis of death at 24 months (Studies 2, 4, 6-10, 13-14). There was low strength of evidence of no significant difference in mortality between rhBMP-2 and the control groups (RR 0.67; 95% CI 0.28 to 1.63). Four Medtronic RCTs (Studies 4, 10, 13-14) were included in the meta-analysis at 48 months and the results were similar (RR 0.65; 95% CI 0.33 to 1.30).

MedWatch Forms

Summary Findings

We received 1,229 MedWatch adverse event reports submitted to the FDA between July 2003 and July, 2012.

Most of the forms concerned TLIF, PLF, and ACDF.

- Occurrence of cancer did not play a role in the forms we examined.
- Most of the patients who died had undergone cervical spine fusion.
- TLIF was associated with leg pain, fluid collection, and heterotopic bone formation.

Overview of Included Evidence

Medtronic provided us with 1,229 MedWatch reports concerning rhBMP-2 spanning a period of 8 years from July 2003 to July 2012. Many of these reports were responses Medtronic provided to published articles, abstracts, or presentations, and are referred to here simply as publications. We were primarily interested in the MedWatch forms about patients not already reported in studies.

We initially searched the MedWatch data files for words we thought would provide the highest yield of important reports. We chose: "died," "expired," "arrest," "cancer" and the prefix "tracheo". This yielded 45 hits of which four were duplicates.

Of the 17 hits for cancer, six MedWatch reports were in response to a publication. Of the remaining 11, one was actually a lipoma and 10 were due to a pre-existing cancer. Of the 10 due to a pre-existing cancer, there was one report of cancer growth accelerating following fusion surgery. Of the 14 hits for died/expired, three did not involve a death and three were in response to a publication. Of the remaining eight, five were in the postoperative period of patients who had ACDF or other cervical spine fusion. Of the remaining three hits, one was a postoperative PLF patient, one was a postoperative posterior fusion with screws, and one was an operative PLIF patient who went into cardiac arrest during the surgery. Of the 11 hits for "tracheo", three were in response to a publication, one involved mandible surgery, and the remaining were patients having ACDF or other cervical spine fusion. All of the three hits for cardiac and/or respiratory arrest were captured in the "died" and "expired" searches.

Out of concern that our limited ability to search the MedWatch data files might have caused us to miss other deaths, cancers, or other important events, we reviewed 200 random MedWatch forms. Of these 200 forms, 93 (46.5%) were in response to a publication. The surgical approaches most often involved were TLIF (44 total hits with 18 in response to a publication), PLF (23 total hits with 11 in response to a publication), and ACDF (20 hits with 15 in response to a publication). Only information on the three approaches that received the most MedWatch forms are discussed here, as data on other approaches is too sparse to be meaningful.

Of the 26 TLIF hits not involving a publication, 12 involved new, worsening, or recurrent pain in the legs, 10 involved a fluid collection or cyst formation, six involved heterotopic

ossification or unexpected bone growth, and 17 involved another surgery. Of the 12 PLF hits not involving a publication, five involved pain, three involved a seroma formation, one involved the Guillain-Barre syndrome, one involved a compression fracture, and one involved ectopic bone formation. Of the five ACDF hits not involving a publication, one person died, three involved swelling, one involved difficulty breathing, and one involved a hematoma.

In review, occurrence of new cancer did not play a role in the forms we examined, most of the patients who died had cervical fusion, and TLIF was associated with leg pain, fluid collections, and heterotopic bone formation.

Publication and Reporting (Key Question 3)

Nine of the 12 included Medtronic trials were published in medical journals as individual trials (Table 14).^{4, 5, 7, 9, 25, 26, 28, 29, 148} One trial was partly described in an article that analyzed two trials together (Table 14).⁸ One of the four Medtronic intervention series (Study 3) was presented in publications that combined the data with data from other studies.^{24, 149} Results of another intervention series (Study 16) was not formally published but mentioned in a publication¹⁵⁰ that did not present details of the design or analysis. The other two intervention series (Studies 11 and 15) were not published.

Summary results from four of the trials (Studies 1, 2, 8, and 14) and one intervention series (Study 3) are available to the public from the FDA.¹⁵¹⁻¹⁵³ For the other eight trials, no reports of results were available from the FDA. No study results were available from ClinicalTrials.gov.

Primary				Results	Primary
Publication,		Medtronic study name		Available from	Outcome
Year*	Label	(study number)	Ν	FDA?	Measure
Anterior lumbar int	erbody fu				
Boden 2000 ⁴	On-	INFUSE®/LT-CAGE® Pilot RCT	14	Yes	Fusion
	label	(Study 1)			
Burkus 2002 ⁵	On-	INFUSE®/LT-CAGE® Open	279	Yes	Overall success
	label	Pivotal RCT (Study 2)			
Published in	On-	INFUSE®/LT-CAGE®	134	Yes	Overall success
combined analysis	label	Laparoscopic Pivotal intervention			
only		series (Study 3)			
Burkus 2003 ²⁴					
Unpublished	On-	INFUSE®/INTER FIX™ ALIF Pilot	45	No	Fusion,
	label	RCT (Study 9)			ODI
					Neurological
					status
Burkus 2002 ²⁴	Off-	INFUSE®/Bone Dowel Pilot RCT	46	No	Fusion,
	label	(Study 4)			Disc height,
					ODI,
					Neurological
					status,
					Implant AEs,
					Surgery for
					implant AEs,
					Permanent AEs
Published in	Off-	INFUSE®/Bone Dowel Pivotal	85	No	Overall success
combined analysis	label	RCT (Study 5)			
only					
Burkus 2005 ⁸					
Gornet 2011 ²⁷	On-	MAVERICK™ Disc Pivotal RCT	577 [†]	No	Overall success
	label†	(Study 10)			
Posterolateral fusion					
Dawson 2009 ²⁶	Off-	INFUSE®/MASTERGRAFT® Pilot	46	Yes	Overall success
	label	RCT (Study 8)			
Boden 2002	Off-	rhBMP-2/BCP US Pilot RCT	27	No	Fusion,
	label	(Study12)			ODI
Unpublished	Off-	rhBMP-2/BCP Canada Pivotal	197	No	Fusion,
	label	RCT(Study13)			ODI
Dimar 2009 ²⁹	Off-	AMPLIFY™ (rhBMP-2/CRM)	463	Yes	Overall success
	label	Pivotal RCT (Study 14)			
Unpublished	Off-	rhBMP-2/ CRM	29	No	Overall
1	label	2-level Pilot intervention series	-	-	Success
		(Study 15)			
Unpublished ‡	Off-	rhBMP-2/BCP Mexico Pilot	15	No	Fusion§
	label	intervention series (Study 16)			
Posterior lumbar in					
Haid 2004 ²⁵	Off-	INFUSE®/INTER FIX™ PLIF RCT	67	No	Fusion,
	label	(Study 6)	••		ODI,
		(Neurological
					status
Circumferential no	sterior Iu	mbar interbody fusion trial			514140
Unpublished	Off-	INFUSE®/ TELAMON PEEK PLIF	30	No	Overall Success
Chipabilonea	label	Pilot intervention series (Study 11)	00		
Anterior Cervical Sp					
Baskin 2003 ⁹	Off-	INFUSE®/CORNERSTONE®	33	No	Fusion,
Dasnii 2003	-		33	UVI	
	label	ACDF Pilot RCT (Study 7)			NDI, Nourological
					Neurological
					status

*Includes references for journal publication(s) and publicly available FDA reports, if applicable.
†Control arm (n=172) is on-label, intervention arm (n=450) is off-label.
‡This study is partially published in McKay 2002.¹⁵⁰
\$This is based on the registered protocol in ClinicalTrials.gov.
FDA = U.S. Food and Drug Administration; N = no; NDI = Neck Disability Index; ODI = Oswestry Disability Index

Primary Study Endpoints

Overall success was the primary study endpoint for six published Medtronic-sponsored trials (Studies 2, 3, 5, 8, 10, and 14) but only two of the primary publications reported results for overall success.^{26, 27} In one of these two trials there was no statistically significant difference between rhBMP-2 and iliac crest bone graft for overall success.²⁶ In the other, results favored the artificial disc intervention group²⁷ over rhBMP-2. In studies where overall success was not reported in the primary journal publication, IPD analysis indicated no differences between groups in overall success (Table 15).

Fusion was listed as a primary outcome or primary effectiveness outcome in ten Medtronicsponsored studies (Studies 2, 3, 4, 5, 6, 7, 8, 12, 14, and 16) and was reported in all nine primary publications (Table 15), although in five of the nine studies, no p-values for fusion were given or results were not provided for all three time points (6, 12, and 24 months).

We also identified several trials with multiple publications (studies 2, 3, 4, 5, and 14). Details on publication bias and other issues for effectiveness and harms can be found below by relevant surgical approach.

IDE Clinical Trial Name, Design, (Study #)	Sam Size		Overall	Success	, 24 Months			Fusion,	24 Montl	าร					mber of s up to 24	
(References*)			IPD Res	sults		Publishe Results†		IPD Res	sults		Publish Results		IPD Re	sults‡	Publis Result	
	I	С	rhBMP-2 (%)	ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2 (%)	ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2	2 ICBG	rhBMP-	2 ICBG
Anterior lumbar interb	ody fu	sion	– on-label	use												
INFUSE®/LT-CAGE® Pilot (1) Boden, 2000 ⁴ RCT/Poor	11	3	NA	NA	NA	NA	NA	11/11 (100%)	3/3 (100%)	1.00	11/11	2/3	20	7	6	2
INFUSE®/LT-CAGE® Pivotal (2) Burkus, 2002⁵ RCT/Fair	143	136	6 77/133 (58%)	68/123 (55%)	1.05 (0.84, 1.30)	NR	NR	127/132 (96%)	108/121 (89%)	1.08 (1.00,1.16)	120/127 (94.5%)	102/115 (88.7%)	315	274	6	13
INFUSE®/ LT-CAGE® Lap Pivotal (Study 3) Burkus, 2003 ²⁴ ∥ IS/Fair	134		70/115 (61%)	NA	NA	NR	NA	93/114 (81.6%)	NA	NA	81/86 (94.2%)	NA	264	NA	NR	NA
INFUSE®/ INTER FIX™ ALIF Pilot (Study 9) Unpublished RCT/Fair	' 25	20	11/23 (48%)	7/17 (41%)	1.16 (0.57, 2.36))		15/22 (68%)	13/15 (87%)	0.79 (0.56, 1.11))		28	25		
MAVERICK [™] Disc Pivotal (Study 10)	172	405	5 58/139 (42%)	233/371 (63%)	0.64 (0.53, 0.77)	57/103 (55.3%)	230/313 (73.5%)		NA	NA	100%††	NA	449	1,139	407	982
Gornet, 2011 ²⁷ RCT/Fair**							p<0.001									
Anterior lumbar interb	ody fu	sion	- off-labe	use												
INFUSE®/ Bone Dowel Pilot RCT (Study 4) Burkus, 2002 ⁷	24	22	17/24 (71%)	4/20 (20%)	3.54 (1.42, 8.83)	NR	NR	24/24 (100%)	12/20 (60%)	1.65 (1.15,2.35)	24/24 (100%)	13/19 (68.4%)	40	24	0	0
INFUSE®/ Bone Dowel Pivotal (Study 5) Burkus, 2005 ⁸ ¶	55	30	33/50 (66%)	15/27 (56%)	1.19 (0.80, 1.76)	NR	NR	43/47 (91%)	24/25 (96%)	0.95 (0.85,1.07)	NSR	NSR	95	76	0	0

 Table 15. Comparison of individual patient data analysis with published data in Medtronic-sponsored studies of rhBMP-2

IDE Clinical Trial Name, Design, (Study #)	Samı Size,		Overall	Success	, 24 Months			Fusion,	24 Mont	hs					nber of up to 24	
(References*)			IPD Res	sults		Publishe Results†		IPD Res	sults		Publish Results		IPD Res	sults‡	Publish Results	
	I	С	rhBMP-2 (%)	2 ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2 (%)	ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2	ICBG	rhBMP-2	ICBG
Posterior lumbar intert	body fu	isior	n – off-labe	el use												
INFUSE®/ INTER FIX™ PLIF RCT (Study 6) Haid, 2004 ²⁵	34	33	15/31 (48%)	10/31 (32%)	1.50 (0.80, 2.81)	NR	NR	25/31 (81%)	21/30 (70%)	1.15 (0.86, 1.54)	92.3%††¶¶	77.8%†† NS	112	120	29	35
INFUSE®/ TELAMON PEEK PLIF Pilot IS (Study 11) Unpublished	30		13/25 (52%)	NA	NA		NA	24/25 (96%)	NA	NA			103	NA		NA
Posterior lumbar fusio	n – off	labe	l use													
rhBMP-2/BCP Mexico Pilot IS (Study 16) Unpublished ‡‡	l1: 7 l2: 8		NA	NA	NA			NA	NA	NA			8	NA		NA
rhBMP-2/BCP US Pilot RCT (Study 12) §§ Boden, 2002 ²⁸	l1: 11 l2: 11	-	l1: 4/11 (36%) l2: 4/10 (40%)	2/4 (50%)	I1 vs. C: 0.73 (0.21, 2.55)	NR	NR	I1: 10/10 (100%) I2: 9/10 (90%)	3/4 (75%)	I1 vs. C: 1.36 (0.76, 2.46)	l1: 11/11 (100%) l2: 9/9 (100%)	2/5 (40%)	44	5	4	0
rhBMP-2/BCP Canada Pivotal RCT (Study 13) Unpublished	99	98	48/97 (49%)	40/95 (42%)	1.18 (0.86, 1.60)			89/96 (93%)	68/94 (72%)	1.28 (1.12, 1.47)			345	330		
INFUSE®/ MASTER GRAFT® Pilot RCT (Study 8)	25	21	15/24 (63%)	10/20 (50%)	1.25 (0.73, 2.14)	17/21 (81%)	11/20 (55%)	19/22 (86%)	14/20 (70%)	1.23 (0.89, 1.72)	18/19 (95%)	14/20 (70%)	70	59	2	3
Dawson, 2009 ²⁶							p=0.345					p=0.174				

IDE Clinical Trial Name, Design, (Study #)	Sample Overall Succ , Size, <i>n</i>			Success	, 24 Months	Fusion, 24 Months					Cumulative Number of Adverse Events up to 24 Months					
(References*)			IPD Res	sults		Publishe Results		IPD Res	sults		Publish Results		IPD Res	sults‡	Publish Results	
	I	С	rhBMP-2 (%)	ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2 (%)	ICBG (%)	RR (95% CI)	rhBMP-2 (%)	ICBG (%)	rhBMP-2	ICBG	rhBMP-2	2 ICBG
AMPLIFY™ (rhBMP-2/ CRM) Pivotal RCT (Study 14) Dimar, 2009 ²⁹	239	224	118/211 (56%)	105/186 (56%)	0.99 (0.83, 1.18)	NR	NR	189/210 (90%)	162/181 (90%)	1.01 (0.94, 1.08)	186/194 (96%)	151/169 (89%) p=0.014	758	673	603	579
rhBMP-2/ CRM 2-level Pilot IS (Study 15) Unpublished	29		12/26 (46%)	NA	NA		NA	18/26 (69%)	NA	NA		NA	97	NA		NA
Anterior cervical disc	ectomy	and	fusion – c	off-label u	se											
INFUSE®/ CORNER STONE® ACDF Pilot (Study 7)	18	15	10/12 (83%)	10/12 (83%)	1.00 (0.70, 1.43)	NR	NR	11/12 (92%)	12/12 (100%)	0.92 (0.77, 1.09)	10/10	10/10	45	13	2	1

Baskin, 20039

ACDF = anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; C = comparator group (ICBG group); CI = confidence interval; CRM = compression resistant matrix; I = investigational group (rhBMP-2 group); ICBG = iliac crest bone graft; IDE = investigational device exemption; IPD =Individual patient data; IS = intervention series; NA = not applicable; NR = not reported; NS = not significant; NSR = not separately reported; PEEK = polyetherethereketone; PLF = posterior lumbar fusion; PLIF = posterior lumbar interbody fusion; RCT = randomized controlled trial; rhBMP-2 = recombinant human bone morphogenetic protein-2; US = United States.

* The primary study publication is referenced in the table. Study results are also reported in the following publications—Study 1: Khan, 2002,¹⁵⁴ McKay, 2002,¹⁵⁰ Poynton, 2002,¹⁵⁵ Sandhu, 2003;¹⁵⁶ Study 2: McKay, 2002,¹⁵⁰ Burkus, 2003,²⁴ Sandhu, 2003,¹⁵⁶ Burkus, 2004,⁶⁸ Burkus, 2004,⁶⁷ Burkus, 2004,⁶⁷ Burkus, 2004,¹⁵⁹ Study 3: Kleeman, 2001,¹⁵⁸ Khan, 2002,¹⁵⁴ McKay, 2002,¹⁵⁰ Poynton, 2002,¹⁵⁵ Sandhu, 2003,¹⁵⁶ Sandhu, 2003,¹⁵⁶ Burkus, 2004,⁶⁸ Burkus, 2004,⁶⁷ Burkus, 2004,⁶⁸ Burkus, 2004,⁶⁷ Burkus, 2004,⁶⁸ Burkus, 2004,¹⁵⁹ Study 4: Khan, 2002,¹⁵⁴ McKay, 2002,¹⁵⁶ Burkus, 2004,⁶⁸ Burkus, 2005,¹⁵⁷ Burkus, 2005,¹⁵⁷ Burkus, 2005,¹⁵⁷ Burkus, 2005,¹⁶⁰ Study 5: Burkus, 2004,⁶⁸ Burkus, 2005,⁸ Burkus, 2005,¹⁵⁷ Burkus, 2005,¹⁶⁰ Study 6: McKay, 2002,¹⁵⁰ Poynton, 2002,¹⁵⁵ Sandhu, 2003,¹⁵⁶ Burkus, 2005,¹⁵⁷ Burkus, 2

[†] For unpublished studies, cells are blank.

‡ More information about the type and number of specific adverse effects can be found in Appendix L. These numbers do not include non-union and non-union pending.

§ The type and number of specific adverse effects reported by each journal publication can be found in Table 16.

Study 3 data not published independently. Burkus, 2003²⁴ contains pooled data from Studies 3 and 2.

¶ Study 5 data not published independently. Burkus, 2005⁸ contains pooled data from Studies 4 and 5.

** The comparison group in this study received artificial disc, not ICBG. Discrepancy in numbers between published trial and IPD partially due to an updated Medtronic data set provided to the authors. †† n not reported; results reported only as percentages.

‡‡ The Mexico pilot study was an intervention series with two cohorts.

Il = rhBMP-2 without internal fixation; I2 = rhBMP-2 + TSRH (Texas Scottish Rite Hospital) pedicle screw instrumentation; C = autograft + TSRH. This study only followed patients for 12 months, so there were no data at 24 months.

II The cumulative number of adverse events up to 12 months.

M The table in this publication reports a slightly higher percentage (97.3%).

RCT/Fair

Lumbar Spinal Fusion

Reporting of Effectiveness

There was important bias in the way the results of the ALIF studies reported effectiveness outcomes. Overall success was the primary effectiveness endpoint in Study 2, 3, 5 and 10 and the rate of overall success was in the range of 50 to 60% based on our IPD analysis. Only the published article for Study 10^{27} reported the results for overall success that the rhBMP-2 group had lower rate (55.3%, 57/103) than the artificial disc group (73.5%, 230/313; *P* < 0.001).

Since the FDA's approval of rhBMP-2 with the LT-CAGE based on Studies 1-3, by 2004, at least 12 articles and reviews reporting results from these studies had been published in major orthopedic journals.^{4, 5, 24, 67, 68, 150, 154-156, 158, 161} Despite the findings of equivalence—accepted by Medtronic, the study investigators, and the FDA—many of these articles presented the results of the pivotal trials as demonstrating better fusion rates than ICBG. For example, the primary publication for Study 2 reiterated high fusion rates (94.5% vs. 88.7%) in the abstract, results, and conclusion sections, but the abstract and results failed to mention that the difference was not statistically significant.⁵ Another publication reported results for one site in Study 3 (22 of the 137 subjects), stating a 100% rate of fusion and "improvement in back pain, leg pain, and function", which did not represent the overall results for the study (Table 15, Study 3).¹⁵⁸ Seven other Medtronic-supported articles that referred to Study 3 cited this article instead of the overall results.^{8, 9, 24, 25, 67, 68, 157}

In 2003, Burkus and colleagues published a *post hoc* "integrated analysis" that promoted the idea that rhBMP-2 would have superior outcomes compared with ICBG with sufficient sample size.²⁴ The investigators argued that, because Study 2 had demonstrated a trend toward faster fusion with INFUSE, an analysis with a larger sample size would be able to show INFUSE's unequivocal superiority over ICBG in ALIF. Three of the four authors of this paper were also authors of the publication of the pivotal Study 2, in which they published pain success rates (74.6% in the rhBMP-2 group versus 78.7% in the autograft group at 2 years); leg pain (6.3 versus 6.3); back disability (23.9 versus 23.8); patient satisfaction (81.2% versus 80.4%); and fusion rates that did not differ between the two groups.⁵

Despite the overall finding that fusion rates and most patient-centered outcomes for rhBMP-2 and ICBG were equivalent in the pivotal study, the authors combined the rhBMP-2 groups from Study 2 and Study 3 and compared them with a control group that combined the ICBG arm of Study 2 (n=136) with an older, unrelated, unpublished series of patients (n=266) who underwent laparoscopic surgery with the LT-CAGE.²⁴ Using a statistical method to adjust for baseline differences and for open versus laparoscopic technique, the authors concluded that rhBMP-2 "had statistically superior outcomes" for fusion rates and for ODI scores, Physical Component Summary (PCS) scores, and Pain Index of the SF-36 scale. In 2004, in another journal, they stated, "the outcomes represent typical results from a wide variety of surgeons with different degrees of experience..."⁶⁷

There are three problems with the validity of this approach. First, the 266 patients represent historical controls, an approach that often has a very high risk of bias because of differences in surgical technique, proficiency, and other aspects of care that improve over time. In fact, Medtronic was aware that the surgeons in the earlier study were likely less skilled at laparoscopic ALIF than the surgeons in the later Study 3. In internal documents, Medtronic compared mean operative time, blood loss, and hospital stay in the two laparoscopic series: "The values in the current laparoscopic INFUSE Bone Graft/LT-CAGE device clinical trial are lower in all three

categories. This may be attributable to increased surgeon experience with laparoscopic interbody fusion procedures."¹⁵⁹ (p. 2077) In the publications, the authors did not mention this concern and concluded that rhBMP-2 "had statistically superior outcomes" for these outcomes (shorter operative times, less blood loss, and shorter hospital stays).

Second, patients and outcomes in the rhBMP-2 arms of Study 2 and Study 3 were not comparable. In its report to the FDA of Study 2, Medtronic chose not to combine the results of the open RCT with the laparoscopic INFUSE study since the overall success rates were higher in the rhBMP-2 laparoscopic arm than in the rhBMP-2 arm of the trial of open ALIF. As noted above, there were important baseline differences between these groups that could be associated with the better surgical outcomes in the laparoscopic group. Medtronic wrote that combining them would have "bolstered the overall success results of the investigational group." Instead, they focused on presenting data arising from the open RCT only and stated that such "manner of presentation has the most scientific appeal" and "is the sternest test for the investigational group."¹⁶² (p.751)

A third problem with the integrated analysis concerns conducting analyses when one already knows the results. The FDA specifically advises: "To avoid producing potentially biased results, decisions on how data will be analyzed should be done prospectively, before results are known."¹⁶³ The integrated analysis takes an open ALIF RCT which showed no significant difference in rates of fusion between INFUSE versus ICBG, and added to that a laparoscopic intervention series of INFUSE, which was known to have better results than the open RCT, and added to that a laparoscopic ICBG arm known to have worse results than the laparoscopic INFUSE arm. The practice of *post-hoc* inclusion of groups of patients with known results renders the results meaningless.

The publications do not discuss these limitations or the fact that Medtronic had previously decided not to conduct an integrated analysis of this type. Publication of this analysis in three separate journals appeared to serve no scientific purpose and suggested a publication strategy that aimed to emphasize better fusion rates rather than the actual results of equivalent effectiveness measured by overall success.

Two Medtronic studies of rhBMP-2 used bone dowels, an off-label lumbar application (Table 15, Studies 4, 5). In 2002, Burkus and colleagues reported that 24 out of 24 patients (100%) receiving rhBMP-2 achieved fusion at 24 months compared with 13 out of 19 in the control group (68%) (Table 15, Study 4).⁷ The larger, pivotal bone dowel trial (Study 5) was terminated early. Study 5 was published only in an article that combined the pilot and pivotal trials, representing them as "a two-part, prospective, randomized, multicenter study" with "two sequential phases." It reported that "fusion rates were significantly better in the study group (p<0.001)" without mentioning early termination,⁶⁸ as did two additional articles by the same author.^{8, 160} In our analysis, fusion rates for Study 5 were 91% for rhBMP-2 vs. 95% for ICBG (Table 15, Study 5).

In posterolateral fusion, although 24-month overall success was the protocol-defined primary endpoint in two randomized controlled trials (Studies 8 and 14), results for this outcome were only published for the smaller of the two trials (Study 8).²⁶ Overall success rates were higher in the published report (81% [17/21] for rhBMP-2 compared with 55% [11/20] for ICBG; P = 0.345) than we observed based on our IPD analysis (63% [15/24] compared with 50% [10/20] RR 1.25; 95% CI 0.73 to 2.14). Unpublished 24-month overall success rates for the larger trial (Study 14) were 56% (118/211) in the rhBMP-2 group and 56% (105/186) in the ICBG group based on our IPD analysis (RR 0.99; 95% CI 0.83 to 1.18). Also, based on out IPD analysis from Study 14, rhBMP-2 and ICBG did not differ in rates of overall success (56 % vs. 56%) and fusion (90% vs. 90%). In contrast, the journal publication and FDA summary reported that use of rhBMP-2 resulted in a higher fusion rate (96% vs. 89%, P = 0.014).^{29, 153}

For posterior lumbar interbody fusion, there is only one Medtronic-sponsored trial (Study 6) and the published effectiveness results²⁵ were consistent with our IPD results. The abstract of the journal article for Study 6^{25} highlighted that, at 24 months, fusion rate of the rhBMP-2 group was higher than the control's (92.3% versus 77.8%), but did point out that the difference is not statistically significant.

Reporting of Adverse Events

As a previous review noted,¹⁴ there was serious selective reporting and underreporting of adverse events in the published articles for both rhBMP-2 and ICBG groups, especially in the Medtronic trials published early. While each trial collected data on adverse events from multiple categories (> 10), no or only very few selected harms were reported in the published articles (Tables 15 and 16). The actual rates of adverse events were much higher than reported. For example, for Study 2, Burkus et al.⁵ reported only 11 intraoperative vascular events (6 rh-BMP-2, 5 ICBG), six retrograde ejaculation (not by rhBMP-2 versus ICBG groups, but by surgical approach of transperitoneal versus retroperitoneal) and eight adverse events related to iliac crest graft site at 24 months. However IPD indicated 315 adverse events in the rhBMP-2 group and 274 adverse events in the autograft group two years after surgery. As another example, although infection is an important complication that was listed on the adverse event reporting form and probably ascertained accurately, infection rates were reported in only two of nine pertinent publications (Table 17). In addition, in all trials the published articles reported no device-related adverse events. Though the ascertainment of this adverse event was problematic, as discussed earlier in the results section, it was a pre-defined outcome based on the trial protocol and occurred in both groups (Table 18). Instead, articles simply stated either "no unanticipated device-related adverse events"^{5,7,9,25} or no adverse event directly related or attributable to rhBMP-2.^{4,28} On the contrary, Medtronic provided the FDA with complete, even exhaustive information about total adverse events and serious adverse events.

Some publications sought to emphasize "donor site hip pain" which was assessed only in the control group patients and only on the side of the iliac crest operation. The primary publication for Study 2, the pivotal trial for on-label use in ALIF, represented the hip pain scores in the rhBMP-2 group as zeroes even though hip pain was not measured in that group (Figure 1 of Burkus, 2002).⁵

In December, 1999 (prior to FDA approval of rhBMP-2 for use in ALIF), Medtronic suspended enrollment in Study 6 because of ectopic bone formation in some patients,¹⁶⁴ potentially leading to radiculopathy from nerve root impingement. In March, 2002, Medtronic requested FDA permission to terminate the study. The same year, Medtronic sponsored a supplement in the journal *Spine* in which review articles were published along with conclusions from an "international panel of experts" that included outside experts, investigators associated with Medtronic, and Medtronic employees. Two articles in the supplement discussed the concern about ectopic bone formation in Study 6. While noting that large randomized trials were needed to establish the safety of rhBMP-2 in off-label procedures, the supplement argued that ectopic bone formation, and complications it might cause, were due to poor technique.^{150, 155} No data from Study 6 were presented to support this argument. The international panel stated "when used properly, BMPs currently appear to be extremely safe for spine fusion".¹⁶⁵

After Study 6 was terminated, an article published in 2004^{25} reported data on ectopic bone formation (rhBMP-2 24/34 vs. ICBG 4/33, p<0.001) for the first time. Despite the small sample, the authors emphasized the lack of association between ectopic bone formation and leg pain and gave an incomplete account of the reasons for study termination.^{14, 166}

For the two most recently published trials,^{27, 29} underreporting appeared much less of an issue and all adverse events during operation and at 24 months were completely reported. For example, the journal publication of Study 10 reported that 7% of rhBMP-2 patients had a serious adverse event that was "possibly device-related".²⁷ The Dimar publication provided detailed summary of adverse events in Study 14.²⁹ The main difference between our IPD analysis and the published data for this trial related to second surgery events. The analyses in the published report only included revisions, nonelective removals and supplemental fixations, resulting in significantly lower second surgery rates for rhBMP-2 than for ICBG (8% compared with 16%; p=0.015). However, when elective removal and reoperation were included in the IPD analysis, the difference was not significant (rh-BMP-2: 36 events in 34 patients; ICBG, 57 events in 43 patients; P = 0.15).

Anterior Cervical Spinal Fusion

There is only one Medtronic-sponsored trial (Study 7) of rhBMP-2 in anterior cervical spinal fusion, and the published article reported results on all three primary effective outcomes: fusion, NDI and neurological status.⁹ There were two effectiveness outcomes showing a discrepancy between published results and our IPD analysis. Improvement in NDI and arm pain were reported as greater in the rhBMP-2 group compared with the ICBG group (p=0.03 for both comparisons) in the published study, while the IPD analysis demonstrated no difference between groups. This difference was likely due to data analysis methods used. The published results did not adjust for the baseline score imbalance appropriately. With appropriate adjustment in the IPD analysis using ANCOVA, we found no difference. In all other efficacy outcomes examined, the published results agreed with the IPD analysis.

For harms, the published article did not report any adverse events other than the three cases of heterotopic bone formation in the section of radiographic outcomes.⁹ IPD analysis of the trial demonstrates increased rate of overall adverse events associated with rhBMP-2 use, which is consistent with the findings of a large cohort study.¹¹ Data on specific adverse events from the small trial is too sparse for any definite conclusions. In this case, the cohort studies provided better evidence for adverse events.

Author Trial	Surgical	Number Patients		Number of Adverse Even Surgery Reported by Pul		Number of A Events and A Surgery* Bas	Additional	Was Graft Site Adverse	Author Comments on Comparison of Harms
	Approach		Control	rhBMP-2	Control	rhBMP-2	Control	Event Reported?	-
Boden, 2000 ⁴ INFUSE- LT- CAGE Pilot	ALIF	11	3	Adverse events: 6 (1 ileus and delay in gait training, 1 wound dehiscence, 1 low back pain and 3 trauma)	2 (1 ileus and delay in gait training, 1 urinary retention)	20	7	No	There were few clinically relevant adverse events. None was directly related to the cage or graft material.
				Additional surgeries: 0	0	0	(1)		
Burkus, 2002 ⁵ INFUSE- LT- CAGE Pivotal [‡]	ALIF	143	136	Adverse events: 6 (6 intraoperative vascular	13 (5 intraoperative vascular, 8 graft side related)	315	274	Yes, 8 events	There were no unanticipated device- related adverse events in either treatment group.
FIVUlai				Additional surgeries: (11)	(14)	17 (13)	17 (14)		
Burkus, 2002 ⁷ INFUSE-	ALIF	24	22	Adverse events: 0	0	40	24	No	No unanticipated adverse events that were related to the use of INFUSE
Bone Dowel Pilot				Additional surgeries: (1)	4(3)	1	4(3)		occurred.
Burkus, 2005 ⁸	ALIF	55	30	Adverse events: 0	0	95	76		No comment.
INFUSE- Bone Dowel Pivotal				Additional surgeries: (1)	(4)	4(2)	5(5)	No	
Gornet, 2011 ²⁷ MAVERICK Disc	ALIF	172	405	Adverse events: 153 of 172 had at least one AE, complete reporting of AE in a table	345 of 405 had at least one AE, reported all AEs in a table	449 events occurred in 151 ^{II} patients	1139 events occurred in 345 patients	Not applicable	Overall adverse event rates for the two treatment groups showed no statistical difference
Pivotal [§]				Additional surgeries: 15(12)	15+22(15) [¶]	15(12)	34(15)		
Haid, 2004 ²⁵ INFUSE – INTER FIX PLIF	PLIF	34	33	Adverse events: 29 (19 Neurological, 10 bone formation outside the disc space with leg pain increase)	35 (1 cardiovascular, 20 neurological, 2 graft side related, 12 bone formation outside the disc space with leg pain increase)	112	120	Yes, 2 events	No unanticipated device- related adverse events occurred in either treatment group.
				Additional surgeries: 6(3)	6(3)	4(2)	1(0)		

Table 16. Comparison of reported adverse events in published trials versus adverse events in the IPD up to 24 months

Author Surgical Trial Approac	Surgical	Number of Patients h rhBMP-2 Control		Number of Adverse Even Surgery Reported by Pu		Number of A Events and Surgery* Ba	Additional	Was Graft Site Adverse	Author Comments on Comparison of Harms	
Inai	Арргоасп	rhBMP-	2 Control	rhBMP-2	Control	rhBMP-2	Control	Event Reported?	companson of names	
Baskin, 2003 ⁹ INFUSE –	ACDF	18	15	Adverse events: 2 ectopic bone formation, as part of radiographic outcomes	1 ectopic bone formation, as part of radiographic outcomes	45	13	No	There were no unanticipated device- related adverse events in either treatment group.	
Cornerstone ACDF				Additional ourganias:						
Pilot				Additional surgeries: (1)	0	2(1)	0			
Dawson.	PLF	25	21	Adverse events:		2(1)	0		No comment.	
2009 ²⁶				2 (1 durotomy, 1 wound infection)	3 (1 durotomy, 1 wound infection, 1 graft side	70	59	No		
INFUSE -					related)					
Mastergraft Pilot				Additional surgeries: (2)	(2)	3(3)	3(2)			
Boden, 2002 ²⁸	PLF	11 + 11	5	Adverse events: 4 (1 leg pain, 1 back pain, 2 hematoma), all led to		44	5		There were no complications attributable to the rhBMP-2/BCP or	
INFUSE – 2/BCP				second surgery				No	TSRH internal fixation.	
US pilot				Additional surgeries: (4)	0	5(5)	0			
Dimar, 2009 ²⁹ INFUSE – 2/BCP	PLF	239	224	Adverse events: 209 of 239 has at least one AE, complete reporting of AE in a table	198 of 224 has at least one AE, complete reporting of AE in a table	758 events occurred in 208 patients	673 events occurred in 195 patients	Yes, 17	No significant differences between the study groups for all event categories, except for graft site related	
2/BCP Amplify Pivotal				Additional surgeries: (20)	(36)	34(20)	43(31)	events	events. No adverse event specifically attributed to use of rhBMP-2 matrix in the study group identified.	

ACDF = anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; BCP = biphasic calcium phosphate; IPD =Individual patient data; PLF = posterolateral lumbar fusion; PLIF = posterior lumbar interbody fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2

*For additional surgery, the numbers in parenthesis are the number of subjects with at least one revision, removal, supplemental fixation. The numbers not in parenthesis are the number of subjects with at least one revision, elective and non-elective removal, supplemental fixation and reoperation.

†The specific adverse events can be found in Appendix L \$Six cases of retrograde ejaculation were reported, but not by intervention groups

[§] The comparison group is artificial disc, not ICBG

| This number is different from the published study because Medtronic sent an updated dataset.

¶ Fifteen subjects had revision, removal and supplemental fixation, and 22 patients had reoperations; there could be overlap between the two groups.

				IPD	
Study Number	Study	Approach	Number Enrolled rhBMP-2 vs. Control	Numbers rhBMP-2 vs. Control	Published Numbers rhBMP-2 vs. Control
1	INFUSE/LT-CAGE Pilot RCT	ALIF	11 vs. 3 (4 BMP lap patients not analyzed)		Not Reported
2	INFUSE/LT-CAGE Open Pivotal RCT	ALIF	143 vs. 136	1.1 (.61, 2.1)	Not Reported
3	INFUSE/LT-CAGE Lap Pivotal 1-Arm	ALIF	134	19 events in 17 patients	Not Reported
4	INFUSE Bone Dowel Pilot RCT	ALIF	24 vs. 22	0.31 (.01, 7.2)	Not Reported
5	INFUSE Bone Dowel Pivotal RCT	ALIF	55 vs. 30	0.91 (.23, 3.5)	Not Reported
6	INFUSE INTER FIX RCT	PLIF	34 vs. 33	1.4 (.48, 3.9)	Not Reported
7	INFUSE/CONRNERSTONE Pilot RCT	ACDF	18 vs. 15	4 vs. 0	Not Reported
8	INFUSE MASTER GRAFT Pilot RCT	PLF	25 vs. 21	0.84 (.24, 3.0)	Not Reported
9	INFUSE INTERFIX Pilot RCT	ALIF	25 vs. 20	2.4 (.10, 56)	Not Published
10	MAVERICK Disc Pivotal RCT	ALIF	172 vs. 405	1.2 (.60, 2.3)	12 vs. 24 patients
11	INFUSE/TELAMON Instrument 1-Arm	PLIF/ Circumferential	30		Not Published
12	rhBMP-2/BCP US Pilot RCT	PLF	22 vs. 5 (11 rhBMP-2 only patients not analyzed)		Not Reported
13	rhBMP-2/BCP Canada Pivotal RCT	PLF	98 vs. 99	1.5 (.82, 2.6)	Not Published
14	AMPLIFY rhBMP-2/CRM Pivotal RCT	PLF	239 vs. 224	0.81 (.55, 1.2)	39 vs. 45 patients
15	rhBMP-2/CRM 2-Level Pilot 1- Arm	PLF	29		Not Published
16	rhBMP-2/BMP Mexico Pilot	PLF	15		Not Published
17	INFUSE/CORNERSTONE Pivotal RCT	ACDF	2 vs. 1	Excluded	Not published

Table 17. Infection at 24 months

ACDF = Anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; CRM = compression resistant matrix; PLF = posterior lumbar fusion; PLIF = posterior lumbar interbody fusion; RCT = randomized controlled trial; rhBMP-2 = recombinant human bone morphogenetic protein-2

Study Number	Study	Approach	Number Enrolled rhBMP-2 vs. Control	IPD Numbers for Device-related AE rhBMP-2 vs. Control	IPD Numbers for Device-related Serious AE rhBMP-2 vs. Control
1	INFUSE/LT-CAGE Pilot RCT	ALIF	11 vs. 3 (4 rhBMP-2 lap patients not analyzed)	1 vs. 2	0 vs. 1
2	INFUSE/LT-CAGE Open Pivotal RCT	ALIF	143 vs. 136	11 vs. 5	5 vs. 0
4	INFUSE Bone Dowel Pilot RCT	ALIF	24 vs. 22	1 vs. 0	0 vs. 0
5	INFUSE Bone Dowel Pivotal RCT	ALIF	55 vs. 30	2 vs. 1	2 vs. 0
6	INFUSE INTER FIX RCT	PLIF	34 vs. 33	3 vs. 0	2 vs. 0
7	INFUSE/CONRNERSTONE Pilot RCT	ACDF	18 vs. 15	0 vs. 0	0 vs. 0
8	INFUSE MASTER GRAFT Pilot RCT	PLF	25 vs. 21	2 vs. 0	2 vs. 0
9	INFUSE INTERFIX Pilot RCT	ALIF	25 vs. 20	2 vs. 1	1 vs. 1
10	MAVERICK Disc Pivotal RCT	ALIF	172 vs. 405	16 vs. 18	
12	rhBMP-2/BCP US Pilot RCT	PLF	22 vs. 5 (11 rhBMP-2 only patients not analyzed)	0 vs. 0	0 vs. 0
13	rhBMP-2/BCP Canada Pivotal RCT	PLF	98 vs. 99	8 vs. 2	3 vs. 1
14	AMPLIFY rhBMP-2/CRM Pivotal RCT	PLF	239 vs. 224	13 vs. 14	11 vs. 10

 Table 18. Individual patient data on device-related adverse events and device-related serious adverse events as defined by Medtronic

ACDF = Anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; PLF = posterior lumbar fusion; PLIF = posterior lumbar interbody fusion; RCT = randomized controlled trial; rhBMP-2 = recombinant human bone morphogenetic protein-2

DISCUSSION

Summary of Results

Effectiveness

Most evidence about the effectiveness and safety of rhBMP-2 came from premarketing randomized trials sponsored by Medtronic. These trials were designed to obtain marketing approval from the FDA for the use of rhBMP-2 in spinal fusion. The studies generally sought to determine whether rhBMP-2 is as good as ICBG in achieving overall success and solid fusion, and in reducing pain and disability associated with spinal disease, though the published articles analyzed most data as if they were superiority trials. These trials also conducted the assessments of safety required for FDA approval as a new device. Intervention series sponsored by Medtronic were conducted according to protocols that were similar to those of the RCTs. Most of these intervention series sought to demonstrate that rates of fusion and adverse events were similar to those observed in the rhBMP-2 arm of the trials.

Additional evidence about fusion and safety came from cohort studies. The majority sought to identify specific adverse events associated with spinal fusion surgery and to compare the frequency of these adverse events between patients fused with rhBMP-2 and patients fused with autograft and/or allograft. In addition, a few intervention series, conducted independently of Medtronic, reported rates of fusion success and adverse events associated with rhBMP-2 use in actual practice. About a quarter of intervention series specifically sought to determine the rate of adverse events.

Our analysis of IPD found that, for ALIF and PLF, overall success rates were generally similar between rhBMP-2 and ICBG groups. Although 7 of the 10 published manufacturersponsored trials^{5, 7, 8, 25, 26, 28, 29} reported higher fusion rates in the rhBMP-2 group at 24 months, sometimes without statistical significance, we did not find consistently significantly increased fusion rate in our meta-analysis. Rather, the use of rhBMP-2 generally resulted in similar fusion rates compared with the use of ICBG in lumbar spinal fusion, regardless of surgical approach, through 24 months of follow-up, except for an increase in fusion rate associated with rhBMP-2 at 6 months for ALIF and for PLF. Results from cohort studies for fusion usually were consistent with the IPD results. Similarly, despite greater improvements in ODI score and pain often reported in the published trials, ^{5, 7, 8, 25, 26, 28, 29} we found that for most other outcomes for benefits (ODI score, pain, and neurological success) patients generally had similar results in the two treatment groups through 24 months. The exceptions were that rhBMP-2 patients undergoing ALIF showed consistently better SF-36 PCS scores from 3 months through 24 months, and rhBMP-2 was associated with better back pain scores and ODI score at 24 months in ALIF. However, the magnitude of differences was small, at about a 2- to 3-point increase for SF-36 PCS on a 0-100 scale, a seven-point increase for ODI on a 0-50 scale, and about a half- to threequarter point change in pain on a 0-10 scale. None of these differences meet typical criteria for a clinically meaningful difference.¹⁶⁷ In addition, we did multiple tests at multiple time points for multiple outcomes without adjusting for multiple comparison. Some of the differences we saw at selected time points may be due to chance. This applies to outcomes related to both benefits and harms, including cancer. We emphasized results with a consistent pattern for effectiveness outcomes and pointed out all significant results at the primary 24-month time point.

Only three RCTs (one ALIF–Study 4 and two PLF–Studies 13 and 14) provided comparative evidence for follow-up longer than 24 months. The ALIF study is small and did not show a difference in fusion rates between rhBMP-2 and ICBG groups. For PLF, at 48 months, patients in the rhBMP-2 group showed a significant 15% relative increase in fusion rates.

Cancer

We found a significantly increased risk of cancer associated with the use of rhBMP-2 compared with ICBG through 24 months (NNH 53, 95% CI 31 to 200). Fewer studies provided data at 48 months. While the rhBMP-2 group still showed a higher risk, the association was attenuated and no longer statistically significant. Excluding non-SEER cancers resulted in similar estimates to those including non-SEER cancers through 24 and 48 months. However, the cancers in the meta-analysis included many different types of malignancies. The strength of this evidence is low because sample size and event rates were low (the total number of subjects with cancer is 23 at 24 months, and 27 at 48 months) and, cancer events were underreported since, according to Medtronic, they "were captured only by voluntary reporting via the non-descript AE text field".¹⁶⁸ Animal studies do not suggest that rhBMP-2 is carcinogenic, ¹⁵⁵ but BMPs are expressed by and promote the growth of some cancers.¹⁶⁹⁻¹⁷¹ The development of cancer within 2 to 4 years also argues for a pro-oncogenic mechanism.

We had insufficient data to examine particular cancers in detail, and other evidence about rhBMP-2 and cancer is sparse. We only found two additional cohort studies.^{124, 147} One cohort study ¹²⁴ found a non-significantly increased cancer risk with rhBMP-2, which was consistent with the trials; the other specifically assessed pancreatic cancers and did not find increase risk, though the mean length of follow-up of the BMP group was only one year.

Other Adverse Events

For anterior cervical spinal fusion, there was only one small RCT with 33 patients and it did not provide robust evidence for any specific adverse event. Our finding that use of rhBMP-2 was associated with increased adverse events, in particular, wound complications and dysphagia or dysphonia compared with ICBG was based on observational studies that were conducted independent of Medtronic.¹¹ These same studies formed the basis of a 2008 FDA Public Health Notification regarding risks of rhBMP-2 in cervical fusion.¹⁹ Another large cohort study confirmed that BMP fusions were associated with more overall complications (5.8% versus 2.4%; P < 0.001) and more wound infections (2.1% versus 0.4%; P < 0.001) than were fusions without rhBMP-2.¹⁷² However, this cohort study was not included in our review, because it was not clear how many patients received rhBMP-2 and how many patients received rhBMP-7.

In lumbar spine fusion, based on Medtronic data, the overall risk of adverse events recorded in the RCTs were similar in rhBMP-2 use compared with the use of ICBG. However, the premarketing studies we used in our meta-analysis were not an adequate means of determining whether rhBMP-2 was associated with an increased risk of serious adverse events. Our analysis underscores the need for more definitive evidence about harms before rhBMP-2 became widely used.

Estimates of risk ratios in the IPD meta-analysis for implant problems, subsidence, urogenital events, and retrograde ejaculation suggested increased risk with rhBMP-2 compared with ICBG, but the confidence intervals for risk ratios were wide, and differences were not statistically significant. Cohort studies and intervention series of serious adverse events from lumbar fusion

were small and methodologically weaker relative to the large-scale cohort studies of the risks of anterior cervical fusion.

Radiculitis was not defined in any trial and adverse events consistent with possible radiculitis were variously classified within the same trial as back and leg, neurological, or spine adverse events. We reclassified events that appeared consistent with radiculitis and found no difference in risk based on multiple definitions, however, we only had limited information based on the brief adverse event history in the Medtronic internal documents.

In summary, there were safety signals in the Medtronic studies. Nevertheless, there has been a lack of well-designed, adequately-powered studies that specifically aimed to systematically assess harms using adequate ascertainment methods. The Medtronic studies provided insufficient evidence that rhBMP-2 was as safe as ICBG.

Quality of Studies

All but two industry-sponsored small randomized trials were rated fair quality. Most of the Medtronic trials were satisfactorily randomized with adequate concealment of allocation. The poor quality trials revealed the randomized assignment to patients prior to obtaining informed consent or exhibited baseline differences. However, there was no evidence to indicate that outcome assessment was blinded other than fusion by radiologists, and this potentially leads to biases for the more subjective outcomes such as neurological success (which includes testing a patient's motor and sensory functions and reflexes).

Effectiveness outcomes such as the SF-36 for physical and mental health and the ODI for functional capabilities were assessed using validated instruments. Ascertainment of adverse events is less rigorous. Study protocols did not describe how adverse events were identified. A typical adverse event form listed a few general adverse events, such "urogenital," with examples given in parenthesis, such as retrograde ejaculation and urinary retention without using specific symptom questionnaires or objective tests. It is not clear whether patients were asked about specific adverse events; whether patients were asked only general, open-ended questions about adverse events; or if adverse events were noted only if the patient spontaneously reported them. If patients were asked about these conditions, it is not clear what specific questions were asked and whether these questions were standardized across outcome assessors. There was no evidence to indicate that adverse events were adequately ascertained, and potentially, adverse events may not have been fully reported by patients. However, the recorded adverse events were generally consistent with the patient adverse event histories in the final report. And, while first evaluations of rhBMP-2 could not be expected to fully anticipate what adverse events to expect, better data collection forms could have been designed over time for later trials.

Handling of missing data is another concern regarding the internal validity of industrysponsored trials. In general the protocols did not specify how missing data would be handled. Only observed data appeared to be analyzed in the published trials. We conducted several sensitivity analyses with different assumptions about missing data and found that the published results occasionally showed greater benefits in the rhBMP-2 group compared with results from IPD meta-analysis.

An additional measurement issue concerns the ascertainment and reporting of pain and morbidity associated with iliac crest bone graft harvesting. Based on our meta-analysis and review of the literature, we found little difference in effectiveness outcomes (e.g., fusion, disability, pain, mental health) between fusions with rhBMP-2 versus ICBG. Therefore, the primary argument for use of rhBMP-2 lies in reduction in pain and morbidity associated with

harvesting bone from the iliac crest. Since the industry-sponsored trials only assessed pain in the bone graft harvest site in the control group and only on the side of graft harvest, preventing comparative evaluation with the rhBMP-2 group, none of the trials provided sufficient evidence to effectively argue for the use rhBMP-2 in spinal fusion. The reduced morbidity associated with no iliac crest bone harvesting may be beneficial to older adults, but this has not been proven.¹⁷³

Carragee et.al.¹⁴ raised the concern about study design bias against the control groups. In particular, for the PLF approach, there were three major deviations from the usual recommended practices: no facet preparation, discarding local bone graft, and no bone graft augmentation with low autogenous bone graft volumes. Dimar et al.¹⁷⁴ responded to the concerns that discarding local bone graft was for a cleaner study design; mean volume of bone graft used was not low and the one patient with low volume of bone graft had successful fusion at 12 and 24 months. In our analysis of PLF trials, one trial exhibited a low control fusion rate of 43% at 6 months (Study 13) compared with other PLF trials with a control rate of over 60%. However, we do not have relevant information, such as surgical protocols, to evaluate these potential design biases. Further, the success of fusion surgery depends on many factors such as skill and experience of the individual surgeon; patient expectations and comorbidities; the amount of bone, bone graft extenders, and bone graft substitutes used; postoperative instructions provided to the patient and their compliance with instructions; and other unmeasurable factors. The above issues may be only some of the factors that contribute to the success of fusion.

Significance of IPD and Reporting Bias

Meta-analysis of IPD has been considered the gold standard of meta-analysis.¹⁷⁵ For both onlabel and off-label indications, journal publications selected analyses and results that favored rhBMP-2 over ICBG. Compared with other reviews,^{13, 176} the availability of IPD from the manufacturer sponsored trials allowed a more thorough evaluation of both benefits and harms that is not possible only with published papers, and reduced the problem of publication and reporting biases. Disregarding the trial terminated early with only three subjects (Study 17), IPD provided additional data on two RCTs (Study 9 and Study 13) and three interventional series (Studies 11, 15 and 16), data unavailable in the published literature.

Moreover, while the published studies were more likely to provide information on statistically significant results only at selected time points, with IPD, we were able to examine all outcomes from all time points for the manufacturer-sponsored trials. For example, the outcome "overall success" was defined in 15 of 17 Medtronic studies with IPD, and specified as primary outcomes in 9 studies, but reported in only 2 of 10 published studies.^{26,27} The availability of IPD allowed us to calculate this outcome for 15 studies at all follow-up time points where it was defined.

The availability of IPD enabled us to identify several other biases in reporting on the effectiveness of rhBMP-2. Major publications aimed to give the reader the impression that rhBMP-2 was more effective than ICBG by emphasizing results that were incomplete or not statistically significant and publicizing *post hoc* analyses that had serious flaws and misrepresented the results of the trials. Journal practices regarding sponsored supplements, trial registration, and conflict of interest disclosure may have contributed to publication of an incomplete and sometimes misleading evidence base.^{40, 177, 178}

Even though the ascertainment of specific serious adverse events remained a problem and the availability of IPD cannot compensate for flawed data collection or sparse data, the availability of IPD helped with assessing the comparative harms of rhBMP-2 versus ICBG and

provided a more complete picture on the profile of benefits versus harms. In their review, Carragee et al. demonstrated underreporting of adverse events in publications of five studies (three on-label and two off-label) for which the FDA had made summary results public.¹⁴ Our study demonstrates that there was also underreporting of adverse events for more on- and off-label uses with results not previously available to the public. Such underreporting and practice could affect the spine surgeons' ability to evaluate the balance between the benefits and harms of using rhBMP-2 and prevent informed consent. However, underreporting appeared much less of an issue for the two most recently published trials,^{27, 29} and all adverse events during operation and at 24 months were reported in the journal articles.

IPD data improved the quality of the meta-analyses in other important ways. First, trials varied in their definitions of outcomes, but with IPD, we were able to recalculate the outcomes based on a consistent definition. Second, for all continuous outcomes, we were able to adjust for potential baseline imbalances. Only the two most recent trials adjusted for potential baseline imbalance while comparing the rhBMP-2 and control groups,^{27, 29} and none reported the adjustment mean differences that could be used in study-level meta-analyses. In other studies, baseline imbalance produced a biased estimate of mean difference and generated false significant results. For example, Baskin et al.⁹ reported superior improvement in neck disability and arm pains scores in the rhBMP-2 group, but this improvement became insignificant after adjusting for baseline difference.

Lastly, IPD allowed us to better handle missing data. For example, overall success and fusion are based on multiple criteria and yet trial protocols did not define how to handle cases where patients were missing criteria data. With IPD, we could make assumptions about partial missing data to calculate more than one version of the variables and using sensitivity analyses check the impact of "missingness" on the robustness of results. On the other hand, IPD analysis requires substantially more time and resources than a regular meta-analysis based on study level data, especially, as in this case, where all derived variables were required to be recalculated from raw data.

Usefulness of Other Manufacturer-provided Documents

Along with IPD, we also received trial protocols and internal reports, many of which the manufacturer had submitted to the FDA. In addition to providing definitions of outcome variables, the protocols were very helpful for assessing the quality of the trials. Incomplete or inadequate reporting of methods may result in downgrading of study quality even though a study was conducted properly. Trial protocols provide more complete information to evaluate the adequacy of randomization and allocation concealment, specification of primary versus secondary outcomes, and reporting bias. In fact, the trial protocols and the internal reports provided all the necessary information for assessing the quality of the Medtronic studies. The internal reports also provided brief case histories for adverse events that were helpful in two ways: 1) they helped us to cross check the adverse event data in the derived dataset; and 2) they allowed us to parse out more specific adverse events that were aggregated into categories with other adverse events in the IPD supplied by Medtronic (e.g., urinary retention was aggregated into urogenital) and evaluate adverse events that were not predefined in the studies (e.g., possible lumbar radiculitis).

The protocols and internal reports were essential to assess whether journal publications were consistent with what Medtronic reported to the FDA. As described earlier, some of the analyses reported in publications were not included in reports to the FDA. With respect to effectiveness

data, information that was crucial for assessing the validity of analyses was reported to the FDA but was omitted in journal publications. We also found that adverse events identified in the trials had been thoroughly reported in the Medtronic internal documents to the FDA, even though they were underreported in journal articles.

MedWatch reports were helpful in cases where the manufacturer responded to the published literatures' reports of death or other AEs in the MedWatch reports. For example, in an article by Yaremchuck, eight individuals having cervical spine fusion required tracheotomy.¹²⁸ We initially excluded this study because we could not determine if this was rhBMP-2 or rhBMP-7. The manufacturer response in the MedWatch reports allowed us to confirm the use of rhBMP-2 and include this paper. However, in general, MedWatch reports were not very useful in assessing the harms of rhBMP-2. Based on data from the Nationwide Inpatient Sample database,¹¹ a 20% sample of US community hospitals, 17,495 spine fusions were performed using BMP in 2006 alone, while over the past 10 years, only 1,229 MedWatch reports were filed, representing a very small sample compared with the potential cases of rhBMP-2 use. Importantly, it is not possible to determine the representativeness of the adverse events experienced with rhBMP-2 in general use. MedWatch reports can be useful for identifying rare adverse events not described in cohort studies and RCTs. However, in our MedWatch analysis, we did not find new rare or alarming adverse events.

Limitations

Study Sponsorship

We planned to assess the association between estimates of effectiveness and harm and study sponsorship, but we did not find adequate data to assess such associations in this review. Industry sponsorship is a potential source of bias in study outcomes^{179, 180} and industry-sponsored studies often have more favorable outcomes than do studies not sponsored by industry.^{181, 182} However, because nearly all evidence from RCTs in this review came from manufacturer-sponsored RCTs, we were unable to compare this evidence with evidence from non-industry-sponsored studies. Only one RCT (*n*=102) was not manufacturer sponsored,³⁴ but its authors were actively involved in other manufacturer-sponsored trials. Unfortunately, there were no RCTs with a funding source truly independent of the manufacturer that could provide comparison to the results of manufacturer sponsored RCTs. If we look at the results from RCTs compared with cohort studies, while there is no fundamental difference between the two sets of results, the assessment was completely confounded by study design.

Sparse Data

Even with IPD on 1,879 patients, from 12 trials, the evidence base is small within each surgical approach. Only two pivotal trials each were available for meta-analyses of ALIF and PLF, and one ALIF pivotal trial terminated early before all planned subjects were recruited. For both ALIF and PLF, the results suggested that rhBMP-2 may be associated with higher fusion rates, but it is only statistically significant at the interim 6 months. Similarly for harms, the results suggested that rhBMP-2 may be associated with higher implant displacement, subsidence, urogenital events, and retrograde ejaculation, but we were unable to draw definite answers for these outcomes either. The problem may be more serious for adverse events given the poorer ascertainment. Additionally, there has been no prospective, well-designed, adequately-powered study specifically aimed to assess important harms using adequate ascertainment methods. On a

related note, while limited evidence on comparative effectiveness and harms of rhBMP-2 were available from less than 2,000 patients of RCTs, tens of thousands of spine fusions were performed using rhBMP-2. For example, for anterior cervical spine fusion, the only RCT included 33 patients in two treatment groups, which was too small to detect any specific adverse event. However, in 2006 alone, 2,299 anterior cervical fusions with BMP were performed, based on a national sample of 20% of U.S. community hospitals.¹¹

A few large cohort studies assessed complication rates associated with BMP use in routine care.^{11, 147, 172} However, the use of rhBMP-2 and rhBMP-7 was not separated due to the setup of billing codes in a manner to allow us to evaluate the association with rhBMP-2 only. We could only include the results from two cohort studies^{11, 147} as they were U.S. studies and few, if any, cases of rhBMP-7 use are likely. rhBMP-7 was a Humanitarian Use Device (HUD) indicated for revision posterolateral lumbar spinal fusion in the U.S.,¹⁸³ and there was a HUD-imposed restriction allowing treatment of fewer than 4,000 individuals per year.¹⁸⁴

Assessment of Dosage Effect

There was also insufficient information to adequately evaluate the effects of dose on risk of harms. Eleven Medtronic studies (Studies 1-11) used rhBMP-2 at a concentration of 1.5mg/mL, with total doses ranging from 0.6-16.8 mg. Higher and unapproved concentrations of rhBMP-2 (2.0-3.0 mg/mL) were used in five of the six PLF studies, with total doses ranging from 15.0-63.0 mg. We did separate analyses for ALIF trials and PLF trials so the trials using low dosage rhBMP-2 were evaluated separately from trials using higher dosage, however, determining the effects of rhBMP-2 dosage was not possible due to differences in surgical approach, rhBMP-2 carrier, and fusion hardware.

Materials to Assess Reporting Bias

Although we had unusual access to protocols and documents submitted by the manufacturer to the FDA, other information, such as operative notes and internal correspondence, might have helped assess the extent of design and reporting bias. Internal correspondence is essential to evaluate selective analysis reporting, ghostwriting, time lag bias, and misrepresentation of facts.²³ Finally, we did not receive case report forms and, therefore, were not able to evaluate the integrity of adverse event adjudication. We do know that protocols called for an independent Data Safety Monitoring Board, which included two physicians who were not study investigators, and either a biostatistician or an epidemiologist.

Future Research and Conclusions

We found substantial evidence of reporting bias, no evidence that rhBMP-2 is more effective than ICBG in spinal fusion, and some evidence of an association with important harms. Despite data collection limitations for effectiveness outcomes, mainly lack of blinding, rhBMP-2 appeared to be at least as effective as ICBG. The quality of harms data was much worse due to both poor ascertainment and lack of blinding, preventing any strong conclusion. Journal articles should require complete adverse events reporting in order to present a balanced picture of benefits and harms. Based on the currently available evidence, it is difficult to identify clear indications for rhBMP-2 in spinal fusion.

Future research is needed to provide reliable estimates on risk of cancer and other specific adverse events such as retrograde ejaculation, osteolysis, subsidence, heterotopic bone formation, and radiculitis. It will be important to determine the best effective dose of rhBMP-2 to balance

benefits with potential harms, and to identify patient populations in which use of rhBMP-2 may be beneficial, such as cases where use of bone graft alone is associated with a high risk of pseudoarthrosis or in children with certain congenital and acquired spinal defects. Metaregression using the IPD could help to clarify how the benefits and harms differ by patient characteristics and comorbidities.

Results from the large database would be more helpful if patients using rhBMP-2 could be distinguished from patients using rhBMP-7. Use of large prospective cohort or open label trials, where patients are given true informed consent with rigorous and completed ascertainment of pre-defined outcomes, along with statistical techniques to reduce bias and confounding (such as propensity score) could provide better results for the comparative harms of rhBMP-2.

REFERENCES

- Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery - the case for restraint. New Engl J Med. 2004 Feb 12;350(7):722-6. PMID: 14960750.
- Facts and Figures 2009. Healthcare Cost and Utilization Project (HCUP). Rockville, MD: Agency for Healthcare Research and Quality; February 8, 2012. www.hcup-us.ahrq.gov/reports/ factsandfigures/2009/exhibit3 1.jsp.
- Sandhu HS, Khan SN. Recombinant human bone morphogenetic protein-2: use in spinal fusion applications. J Bone Joint Surg Am. 2003;85-A Suppl 3:89-95. PMID: 12925615.
- Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine. 2000 Feb 1;25(3):376-81. PMID: 10703113.
- Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002 Oct;15(5):337-49. PMID: 12394656.
- U. S. Food and Drug Administration. Device Approvals and Clearances; December 2003 PMA Approvals. 2003. http://www.fda.gov/medicaldevices/productsandmedic alprocedures/deviceapprovalsandclearances/pmaappro vals/ucm111338.htm. Accessed on March 20, 2013.
- Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine. 2002 Nov 1;27(21):2396-408. PMID: 12438990.
- Burkus JK, Sandhu HS, Gornet MF, et al. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am. 2005 Jun;87(6):1205-12. PMID: 15930528.
- Baskin DS, Ryan P, Sonntag V, et al. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine. 2003 Jun 15;28(12):1219-24; discussion 25. PMID: 12811263.
- Slosar PJ, Josey R, Reynolds J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J. 2007 May-Jun;7(3):301-7. PMID: 17482113.
- 11. Cahill KS, Chi JH, Day A, et al. Prevalence, complications, and hospital charges associated with

use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009 Jul 1;302(1):58-66. PMID: 19567440.

- Ong KL, Villarraga ML, Lau E, et al. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine. 2010 Sep 1;35(19):1794-800. PMID: 20700081.
- Ratko TA, Belinson SE, Samson DJ, et al. Bone Morphogenetic Protein: The State of the Evidence of On-label and Off-label Use. Technology Assessment Report. Prepared by the Blue Cross Blue Shield Association Evidence-based Practice Center under a subcontract to the Duke EPC (Contract No. HHSA 290 2007 10066 I). Rockville, MD: Agency for Healthcare Research and Quality; 2010. http://www.cms.gov/Medicare/Coverage/Determinatio nProcess/downloads/id75ta.pdf. Accessed on March 20, 2013.
- Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011 Jun;11(6):471-91. PMID: 21729796.
- Smucker JD, Rhee JM, Singh K, et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine. 2006 Nov 15;31(24):2813-9. PMID: 17108835.
- Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J. 2008 May-Jun;8(3):426-35. PMID: 17977799.
- Vaidya R, Carp J, Sethi A, et al. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J. 2007 Aug;16(8):1257-65. PMID: 17387522.
- Wong DA, Kumar A, Jatana S, et al. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J. 2008 Nov-Dec;8(6):1011-8. PMID: 18037352.
- U. S. Food and Drug Administration. FDA Public Health Notification: Life-threatening Complications Associated with Recombinant Human Bone Morphogenetic Protein in Cervical Spine Fusion. Silver Spring, MD: U.S. Food and Drug Administration; Center for Devices and Radiological Health; Issued 1 July 2008. http://www.fda.gov/MedicalDevices/Safety/Alertsand

Notices/PublicHealthNotifications/ucm062000.htm. Accessed April 10, 2013.

- Schultz D. Re: Infuse® Bone Graft; Filed: December 20, 2000; Amended: February 15, March 29, April 18, and December 4, 2001, July 10, August 15, October 7, November 4 and 29, and December 26, 2002, and February 7, March 5, and April 14, August 13 and 14, September 9 and 22 and October 7, 2003, February 24, March 8, 12 and 23, and April 14 and 16, 2004; Procode MPW. Rockville, MD: U.S. Food and Drug Administration; 2004. http://www.accessdata.fda.gov/cdrh_docs/pdf/p00005 4a.pdf. Access on June 6, 2013.
- Tillman D. Re: P050053 InFuse® Bone Graft; Filed: February 24, 2006, Amended: March 13, May 2, June 29, September 22, October 6, 13, and 31, 2006; Procode: NPZ [Letter to E. S. Chin, Medtronic]. Rockville, MD: U.S. Food and Drug Administration; 2007. http://www.sepagedeta.fda.gov/addh_docs/rdf5/r0500

http://www.accessdata.fda.gov/cdrh_docs/pdf5/p0500 53a.pdf. Accessed on May 13, 2013.

- Vedula SS, Bero L, Scherer RW, et al. Outcome reporting in industry-sponsored trials of gabapentin for off-label use. N Engl J Med. 2009 Nov 12;361(20):1963-71. PMID: 19907043.
- Dickersin K. Reporting and other biases in studies of Neurontin for migraine, psychiatric/bipolar disorders, nociceptive pain, and neuropathic pain. 2008. Accessed at http://dida.library.ucsf.edu/tid/oxx18r10 on 18 March 2013. http://dida.library.ucsf.edu/pdf/oxx18r10. Accessed on October 31, 2012.
- 24. Burkus JK, Heim SE, Gornet MF, et al. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech. 2003 Apr;16(2):113-22. PMID: 12679664.
- 25. Haid RW, Jr., Branch CL, Jr., Alexander JT, et al. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 2004 Sep-Oct;4(5):527-38; discussion 38-9. PMID: 15363423.
- Dawson E, Bae HW, Burkus JK, et al. Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am. 2009 Jul;91(7):1604-13. PMID: 19571082.
- 27. Gornet MF, Burkus JK, Dryer RF, et al. Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine. 2011 Dec 1;36(25):E1600-11. PMID: 21415812.
- 28. Boden SD, Kang J, Sandhu H, et al. Use of recombinant human bone morphogenetic protein-2 to

achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002 Dec 1;27(23):2662-73. PMID: 12461392.

- Dimar JR, 2nd, Glassman SD, Burkus JK, et al. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009 Jun;91(6):1377-86. PMID: 19487515.
- Furlan AD, Pennick V, Bombardier C, et al. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009;34(18):1929-41. PMID: 19680101.
- Harris RP, Helfand M, Woolf SH, et al. Current methods of the U.S. Preventive Services Task Force: A review of the process. Am J Prev Med. 2001 Apr;20(3 Suppl):21-35. PMID: 11306229.
- 32. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(12)-EHC063-EF Rockville, MD: Agency for Healthcare Research and Quality; April 2012. Chapters available at: www.effectivehealthcare.ahrq.gov.
- 33. Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC Health Services Research. 2004 Dec 22;4(1):38. PMID: 15615589.
- 34. Glassman SD, Carreon LY, Djurasovic M, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine. 2008 Dec 15;33(26):2843-9. PMID: 19092613.
- 35. Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion. A systematic review and meta-analysis. Ann Intern Med. Forthcoming 2013.
- 36. Fitzmaurice G, Laird N, JH W. Applied Longitudinal Analysis. New Jersey: Wiley; 2004. p. 94-6.
- Higgins JP, Whitehead A, Turner RM, et al. Metaanalysis of continuous outcome data from individual patients. Stat Med. 2001 Aug 15;20(15):2219-41. PMID: 11468761.
- Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions--agency for healthcare research and quality and the effective health-care program. J Clin Epidemiol. 2010 May;63(5):513-23. PMID: 19595577.
- Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol. 2011 Dec;64(12):1283-93. PMID: 21839614.

- 40. Rochon PA, Gurwitz JH, Cheung CM, et al. Evaluating the quality of articles published in journal supplements compared with the quality of those published in the parent journal. JAMA. 1994 Jul 13;272(2):108-13. PMID: 8015117.
- Abraham E, Alexander D, Bailey S, et al. A long-term radiographic and clinical evaluation of a new rhBMP-2 formulation in a prospective randomized lumbar posterolateral spine fusion study. Can J Surg. 2008;51(3 Suppl):S6-S7. PMID: CN-00726858.
- Abraham EP, Hurlbert J, Alexander D, et al. Evaluation of an rhBMP-2 formulation in 2-level posterolateral lumbar spine arthrodesis. Spine J. 2010;10(9):105S.
- 43. Assiri I, du Plessis S, Hurlbert J, et al. A prospective randomized clinical study comparing instrumented lumbar fusion rates of Recombinant Human Bone Morphogenic Protein-2 (rhBMP-2) with autogenous iliac crest bone graft in patients with symptomatic degenerative disc disease. Can J Surg. 2004;47(Suppl 4):7-8. PMID: CN-00524395.
- 44. Alexander D, Oxner W, Soroceanu A, et al. A prospective randomized clinical trial of posterolateral lumbosacral spinal fusion with BMP-2 and titanium pedicle screw instrumentation versus BMP-2 alone: preliminary 6-month results. Can J Surg. 2009;52(3 Suppl):S21. PMID: CN-00726900.
- 45. Sekhon L, Tomlinson A, Allen B, et al. Immediate postoperative complications and radiological features of interbody fusion between Infuse BMP and Actifuse: A randomized prospective trial. Paper 7 [abstract]. Cervical Spine Research Society Meeting, December 3, 2009. Paper 7.
- 46. McConnell J. A comparison of b-tcpdbmaversus rhBMP-2 in anterior lumbar interbody fusion: A prospective, randomized trial with two-year clinical and radiographic outcomes. Spine J. 2011;11(10):64S-5S.
- 47. Pimenta L, Marchi L, Oliveira L, et al. A prospective, randomized, controlled clinical and radiological study to evaluate and compare the use of silicated calcium phosphate and rh-BMP2 in interbody lumbar spine fusion: 36 month follow-up. Spine J. 2011;11(10):130S.
- Medtronic Spinal Biologics. INFUSE® Bone Graft/ PEEK Interbody Spacer/ Anterior Cervical Plate Pivotal Clinical Trial. 2012:NCT00485173.
- Bent S, Padula A, Avins AL. Brief communication: Better ways to question patients about adverse medical events: a randomized, controlled trial. Annals of Internal Medicine. 2006 Feb 21;144(4):257-61. PMID: 16490911.
- Sethi A, Craig J, Bartol S, et al. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2-assisted spinal interbody fusion. AJR Am J

Roentgenol. 2011 Jul;197(1):W128-33. PMID: 21700973.

- Lindley EM, McBeth ZL, Henry SE, et al. Retrograde ejaculation following anterior lumbar spine surgery. Spine. 2012;37(20):1785-9. PMID: 22472808.
- Knox JB, Dai JM, 3rd, Orchowski J. Osteolysis in transforaminal lumbar interbody fusion with bone morphogenetic protein-2. Spine. 2011 Apr 15;36(8):672-6. PMID: 21217443.
- McClellan JW, Mulconrey DS, Forbes RJ, et al. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J Spinal Disord Tech. 2006 Oct;19(7):483-6. PMID: 17021411.
- Owens K, Glassman SD, Howard JM, et al. Perioperative complications with rhBMP-2 in transforaminal lumbar interbody fusion. Eur Spine J. 2011 Apr;20(4):612-7. PMID: 20582554.
- Jagannathan J, Sansur CA, Oskouian RJ, et al. Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. Neurosurgery. 2009;64(5):955-63. PMID: 19404155.
- 56. Chamoun RB, Relyea KM, Johnson KK, et al. Use of axial and subaxial translaminar screw fixation in the management of upper cervical spinal instability in a series of 7 children. Neurosurgery. 2009;64(4):734-9. PMID: 19349831.
- Haque A, Price AV, Sklar FH, et al. Screw fixation of the upper cervical spine in the pediatric population: Clinical article. J Neurosurg Pediatr. 2009;3(6):529-33. PMID: 19485741.
- Lindley TE, Dahdaleh NS, Menezes AH, et al. Complications associated with recombinant human bone morphogenetic protein use in pediatric craniocervical arthrodesis. J Neurosurg Pediatr. 2011 May;7(5):468-74. PMID: 21529186.
- Lu DC, Sun PP. Bone morphogenetic protein for salvage fusion in an infant with Down syndrome and craniovertebral instability. Case report. J Neurosurg. 2007 Jun;106(6 Suppl):480-3. PMID: 17566406.
- Oluigbo CO, Solanki GA. Use of recombinant human bone morphogenetic protein-2 to enhance posterior cervical spine fusion at 2 years of age: technical note. Pediatr Neurosurg. 2008;44(5):393-6. PMID: 18703886.
- Vaidya R, Weir R, Sethi A, et al. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br. 2007 Mar;89(3):342-5. PMID: 17356146.
- 62. Pradhan BB, Bae HW, Dawson EG, et al. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine. 2006 May 1;31(10):E277-84. PMID: 16648733.

- Carragee EJ, Mitsunaga KA, Hurwitz EL, et al. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J. 2011 Jun;11(6):511-6. PMID: 21612985.
- Subach BR, Copay AG, Martin MM, et al. Anterior lumbar interbody implants: importance of the interdevice distance. Adv Orthop. 2011;2011:176497. PMID: 21994890.
- Luhmann SJ, Bridwell KH, Cheng I, et al. Use of bone morphogenetic protein-2 for adult spinal deformity. Spine. 2005 Sep 1;30(17 Suppl):S110-7. PMID: 16138058.
- Medtronic Individual Patient Data. INFUSE®/INTER FIX[™] ALIF Pilot RCT - Individual Patient Data. Study #9. 2003:NCT01491451.
- Burkus JK, Heim SE, Gornet MF, et al. The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics. 2004 Jul;27(7):723-8. PMID: 15315042.
- Burkus JK. Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new technologies. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004 Oct;1(3):254-60. PMID: 15478362.
- What Is a Safety Signal? New York: Pfizer, Inc.; October, 2011. http://www.pfizer.com/files/health/medicine_safety/2-4_What_is_a_Safety_Signal.pdf. Accessed on June 6, 2013.
- Committee on the Assessment of the US Drug Safety System, Baciu A, Stratton K, et al., eds. The Future of Drug Safety: Promoting and Protecting the Health of the Public. Washington, DC: The National Academies Press; 2007. http://www.nap.edu/catalog.php?record_id=11750. Accessed on June 6, 2013.
- 71. Katayama Y, Matsuyama Y, Yoshihara H, et al. Clinical and radiographic outcomes of posterolateral lumbar spine fusion in humans using recombinant human bone morphogenetic protein-2: an average five-year follow-up study. Int Orthop. 2009 Aug;33(4):1061-7. PMID: 18581064.
- 72. Lee KB, Johnson JS, Song KJ, et al. Use of autogenous bone graft compared with RhBMP in high-risk patients: a comparison of fusion rates and time to fusion. J Spinal Disord Tech. 2012 Mar 15. [Epub ahead of print] PMID: 22214928.
- Lee K-B, Taghavi CE, Hsu MS, et al. The efficacy of rhBMP-2 versus autograft for posterolateral lumbar spine fusion in elderly patients. Eur Spine J. 2010 Jun;19(6):924-30. PMID: 20041271.
- Glassman SD, Dimar JR, 3rd, Burkus K, et al. The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. Spine. 2007 Jul 1;32(15):1693-8. PMID: 17621221.

- 75. Singh K, Smucker JD, Gill S, et al. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years.[Erratum appears in J Spinal Disord Tech. J Spinal Disord Tech. 2006 Aug;19(6):416-23. PMID: 16891977.
- 76. Taghavi CE, Lee K-B, Keorochana G, et al. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine. 2010 May 15;35(11):1144-50. PMID: 20139805.
- Rogozinski A, Rogozinski C, Cloud G. Accelerating autograft maturation in instrumented posterolateral lumbar spinal fusions without donor site morbidity. Orthopedics. 2009 Nov;32(11):809. PMID: 19902899.
- Rowan FE, O'Malley N, Poynton A. RhBMP-2 use in lumbar fusion surgery is associated with transient immediate post-operative leg pain. Eur Spine J. 2012;21(7):1331-7. PMID: 22167451.
- Glassman SD, Carreon L, Djurasovic M, et al. Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J. 2007 Jan-Feb;7(1):44-9. PMID: 17197332.
- Stambough JL, Clouse EK, Stambough JB. Instrumented one and two level posterolateral fusions with recombinant human bone morphogenetic protein-2 and allograft: a computed tomography study. Spine. 2010 Jan 1;35(1):124-9. PMID: 20042965.
- Glassman SD, Howard J, Dimar J, et al. Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. Spine. 2011 Oct 15;36(22):1849-54. PMID: 20838369.
- Hamilton DK, Jones-Quaidoo SM, Sansur C, et al. Outcomes of bone morphogenetic protein-2 in mature adults: posterolateral non-instrument-assisted lumbar decompression and fusion. Surg Neurol. 2008 May;69(5):457-61; discussion 61-2. PMID: 18207557.
- Mulconrey DS, Bridwell KH, Flynn J, et al. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine. 2008 Sep 15;33(20):2153-9. PMID: 18725869.
- Glassman SD, Gum JL, Crawford CH, 3rd, et al. Complications with recombinant human bone morphogenetic protein-2 in posterolateral spine fusion associated with a dural tear. Spine J. 2011 Jun;11(6):522-6. PMID: 20598649.
- Mindea SA, Shih P, Song JK. Recombinant human bone morphogenetic protein-2-induced radiculitis in elective minimally invasive transforaminal lumbar interbody fusions: a series review. Spine. 2009 Jun 15;34(14):1480-4; discussion 5. PMID: 19525840.

- 86. Mummaneni PV, Pan J, Haid RW, et al. Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004 Jul;1(1):19-23. PMID: 15291015.
- Rihn JA, Patel R, Makda J, et al. Complications associated with single-level transforaminal lumbar interbody fusion. Spine J. 2009 Aug;9(8):623-9. PMID: 19482519.
- Anand N, Hamilton JF, Perri B, et al. Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: longterm clinical, radiographic, and functional outcome. Spine. 2006 Sep 15;31(20):E748-53. PMID: 16985443.
- Geibel PT, Boyd DL, Slabisak V. The use of recombinant human bone morphogenic protein in posterior interbody fusions of the lumbar spine: a clinical series. J Spinal Disord Tech. 2009 Jul;22(5):315-20. PMID: 19525785.
- 90. Helgeson MD, Lehman RA, Jr., Patzkowski JC, et al. Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. Spine J. 2011 Jun;11(6):507-10. PMID: 21729801.
- Kuklo TR, Rosner MK, Polly DW, Jr. Computerized tomography evaluation of a resorbable implant after transforaminal lumbar interbody fusion. Neurosurg Focus. 2004 Mar 15;16(3):E10. PMID: 15198498.
- Lanman TH, Hopkins TJ. Lumbar interbody fusion after treatment with recombinant human bone morphogenetic protein-2 added to poly(L-lactide-co-D,L-lactide) bioresorbable implants. Neurosurg Focus. 2004 Mar 15;16(3):E9. PMID: 15198497.
- Mannion RJ, Nowitzke AM, Wood MJ. Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2--but what is the cost? Spine J. 2011 Jun;11(6):527-33. PMID: 20739225.
- Meisel HJ, Schnoring M, Hohaus C, et al. Posterior lumbar interbody fusion using rhBMP-2. Eur Spine J. 2008 Dec;17(12):1735-44. PMID: 18839225.
- 95. Rihn JA, Makda J, Hong J, et al. The use of RhBMP-2 in single-level transforaminal lumbar interbody fusion: a clinical and radiographic analysis. Eur Spine J. 2009 Nov;18(11):1629-36. PMID: 19475434.
- 96. Scheufler K-M, Cyron D, Dohmen H, et al. Less invasive surgical correction of adult degenerative scoliosis, part I: technique and radiographic results. Neurosurgery. 2010 Sep;67(3):696-710. PMID: 20651631.
- 97. Villavicencio AT, Burneikiene S, Nelson EL, et al. Safety of transforaminal lumbar interbody fusion and

intervertebral recombinant human bone morphogenetic protein-2. J Neurosurg Spine. 2005 Dec;3(6):436-43. PMID: 16381205.

- 98. Anderson CL, Whitaker MC. Heterotopic ossification associated with recombinant human bone morphogenetic protein-2 (infuse) in posterolateral lumbar spine fusion: a case report. Spine. 2012 Apr 15;37(8):E502-6. PMID: 22020605.
- Balseiro S, Nottmeier EW. Vertebral osteolysis originating from subchondral cyst end plate defects in transforaminal lumbar interbody fusion using rhBMP-2. Report of two cases. Spine J. 2010 Jul;10(7):e6-e10. PMID: 20488766.
- 100. Chen N-F, Smith ZA, Stiner E, et al. Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2010 Jan;12(1):40-6. PMID: 20043763.
- 101. David KS, Agarwala AO, Rampersaud YR. Charcot arthropathy of the lumbar spine treated using onestaged posterior three-column shortening and fusion. Spine. 2010 Jun 15;35(14):E657-62. PMID: 20505559.
- 102. Lehman RA, Jr. Vertebral body osteolysis after minimal-access transforaminal interbody fusion. Spine J. 2011 Jun;11(6):581-2. PMID: 21729806.
- 103. Moshel YA, Hernandez EI, Kong L, et al. Acute renal insufficiency, supraventricular tachycardia, and confusion after recombinant human bone morphogenetic protein-2 implantation for lumbosacral spine fusion. J Neurosurg Spine. 2008 Jun;8(6):589-93. PMID: 18518683.
- 104. Muchow RD, Hsu WK, Anderson PA. Histopathologic inflammatory response induced by recombinant bone morphogenetic protein-2 causing radiculopathy after transforaminal lumbar interbody fusion. Spine J. 2010 Sep;10(9):e1-6. PMID: 20797648.
- 105. Whang PG, O'Hara BJ, Ratliff J, et al. Pseudarthrosis following lumbar interbody fusion using bone morphogenetic protein-2: intraoperative and histopathologic findings. Orthopedics. 2008;31(10)PMID: 19226004.
- 106. Lewandrowski K-U, Nanson C, Calderon R. Vertebral osteolysis after posterior interbody lumbar fusion with recombinant human bone morphogenetic protein 2: a report of five cases. Spine J. 2007 Sep-Oct;7(5):609-14. PMID: 17526434.
- 107. Garrett MP, Kakarla UK, Porter RW, et al. Formation of painful seroma and edema after the use of recombinant human bone morphogenetic protein-2 in posterolateral lumbar spine fusions. Neurosurgery. 2010 Jun;66(6):1044-9; discussion 9. PMID: 20495420.
- 108. Brower RS, Vickroy NM. A case of psoas ossification from the use of BMP-2 for posterolateral fusion at L4-

L5. Spine. 2008 Aug 15;33(18):E653-5. PMID: 18708918.

- 109. Saigal G, Quencer R, Guest JD, et al. Vertebral body osteolysis following the use of bone morphogenetic protein in spinal surgery: A mimicker of infection. J Neuroradiol. 2012 Dec;39(5):354-9. PMID: 22633046.
- 110. Choudhry OJ, Christiano LD, Singh R, et al. Bone morphogenetic protein-induced inflammatory cyst formation after lumbar fusion causing nerve root compression. J Neurosurg Spine. 2012 Mar;16(3):296-301. PMID: 22176433.
- 111. Neuman BJ, Radcliff K, Rihn J. Cauda Equina Syndrome After a TLIF Resulting From Postoperative Expansion of a Hydrogel Dural Sealant. Clin Orthop Rel Res. 2012 Jun;470(6):1640-5. PMID: 21952743.
- 112. Crawford CH, 3rd, Bridwell KH, Cho W, et al. Extension of prior idiopathic scoliosis fusions to the sacrum: a matched cohort analysis of sixty patients with minimum two-year follow-up. Spine. 2010 Sep 15;35(20):1843-8. PMID: 20802391.
- 113. Maeda T, Buchowski JM, Kim YJ, et al. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine. 2009 Sep 15;34(20):2205-12. PMID: 19752707.
- 114. Acosta FL, Cloyd JM, Aryan HE, et al. Patient satisfaction and radiographic outcomes after lumbar spinal fusion without iliac crest bone graft or transverse process fusion. J Clin Neurosci. 2009 Sep;16(9):1184-7. PMID: 19500992.
- 115. Anderson DG, Sayadipour A, Shelby K, et al. Anterior interbody arthrodesis with percutaneous posterior pedicle fixation for degenerative conditions of the lumbar spine. Eur Spine J. 2011 Aug;20(8):1323-30. PMID: 21484538.
- 116. Wang JC, Haid Jr RW, Miller JS, et al. Comparison of CD HORIZON SPIRE spinous process plate stabilization and pedicle screw fixation after anterior lumbar interbody fusion: Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2005. J Neurosurg Spine. 2006;4(2):132-6. PMID: 16506480.
- 117. Deutsch H. High-dose bone morphogenetic proteininduced ectopic abdomen bone growth. Spine J. 2010 Feb;10(2):e1-4. PMID: 20006558.
- 118. Shah RK, Moncayo VM, Smitson RD, et al. Recombinant human bone morphogenetic protein 2induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion. Skeletal Radio. 2010 May;39(5):501-4. PMID: 20162273.
- 119. Hansen SM, Sasso RC. Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. J Spinal Disord Tech. 2006 Apr;19(2):130-4. PMID: 16760788.

- 120. Gerszten PC, Tobler WD, Nasca RJ. Retrospective analysis of L5-S1 axial lumbar interbody fusion (AxiaLIF): a comparison with and without the use of recombinant human bone morphogenetic protein-2. Spine J. 2011 Nov;11(11):1027-32. PMID: 22122835.
- 121. Anand N, Baron EM, Thaiyananthan G, et al. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. J Spinal Disord Tech. 2008 Oct;21(7):459-67. PMID: 18836355.
- 122. Cahill KS, Chi JH, Groff MW, et al. Outcomes for single-level lumbar fusion: the role of bone morphogenetic protein. Spine. 2011 Dec 15;36(26):2354-62. PMID: 21311404.
- 123. Hoffmann MF, Jones CB, Sietsema DL. Adjuncts in posterior lumbar spine fusion: comparison of complications and efficacy. Archives of Orthopaedic and Trauma Surgery. 2012;132(8):1105-10. PMID: 22562366.
- 124. Latzman JM, Kong L, Liu C, et al. Administration of human recombinant bone morphogenetic protein-2 for spine fusion may be associated with transient postoperative renal insufficiency. Spine. 2010 Apr 1;35(7):E231-7. PMID: 20228696.
- 125. Abd-El-Barr MM, Cox JB, Antonucci MU, et al. Recombinant human bone morphogenetic protein-2 as an adjunct for spine fusion in a pediatric population. Pediatr Neurosurg. 2011;47(4):266-71. PMID: 22310349.
- 126. O'Shaughnessy BA, Bridwell KH, Lenke LG, et al. Does a long-fusion "t3-sacrum" portend a worse outcome than a short-fusion "t10-sacrum" in primary surgery for adult scoliosis? Spine. 2012 May 1;37(10):884-90. PMID: 21971131.
- 127. Tumialan LM, Ponton RP, Riccio AI, et al. Rate of return to military active duty after single level lumbar interbody fusion: a 5-year retrospective review. Neurosurgery. 2012;71(2):317-24. PMID: 22811082.
- 128. Yaremchuk KL, Toma MS, Somers ML, et al. Acute airway obstruction in cervical spinal procedures with bone morphogenetic proteins. Laryngoscope. 2010 Oct;120(10):1954-7. PMID: 20824786.
- 129. Klimo P, Jr., Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J. 2009 Dec;9(12):959-66. PMID: 19574105.
- 130. Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly(L-lactide-co-D,L-lactide) bioabsorbable implants. Neurosurg Focus. 2004 Mar 15;16(3):E6. PMID: 15198494.
- 131. Shen HX, Buchowski JM, Yeom JS, et al. Pseudarthrosis in multilevel anterior cervical fusion with rhBMP-2 and allograft: analysis of one hundred twenty-seven cases with minimum two-year follow-

up. Spine. 2010 Apr 1;35(7):747-53. PMID: 20228711.

- 132. Shields LBE, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006 Mar 1;31(5):542-7. PMID: 16508549.
- 133. Stachniak JB, Diebner JD, Brunk ES, et al. Analysis of prevertebral soft-tissue swelling and dysphagia in multilevel anterior cervical discectomy and fusion with recombinant human bone morphogenetic protein-2 in patients at risk for pseudarthrosis. J Neurosurg Spine. 2011 Feb;14(2):244-9. PMID: 21184639.
- 134. Tumialan LM, Pan J, Rodts GE, et al. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. J Neurosurg Spine. 2008 Jun;8(6):529-35. PMID: 18518673.
- 135. Boakye M, Mummaneni PV, Garrett M, et al. Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine. 2005 May;2(5):521-5. PMID: 15945426.
- 136. Crawford CH, 3rd, Carreon LY, McGinnis MD, et al. Perioperative complications of recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge versus iliac crest bone graft for posterior cervical arthrodesis. Spine. 2009 Jun 1;34(13):1390-4. PMID: 19440166.
- 137. Hiremath GK, Steinmetz MP, Krishnaney AA. Is it safe to use recombinant human bone morphogenetic protein in posterior cervical fusion? Spine. 2009 Apr 20;34(9):885-9. PMID: 19531997.
- 138. Xu R, Bydon M, Sciubba DM, et al. Safety and efficacy of rhBMP2 in posterior cervical spinal fusion for subaxial degenerative spine disease: Analysis of outcomes in 204 patients. Surg Neurol Int. 2011;2:109. PMID: 21886882.
- 139. Hamilton DK, Smith JS, Reames DL, et al. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. Neurosurgery. 2011 Jul;69(1):103-11; discussion 11. PMID: 21368688.
- 140. Hodges SD, Eck JC, Newton D. Retrospective Study of Posterior Cervical Fusions With rhBMP-2. Orthopedics. 2012;35(6):e895-8. PMID: 22691663.
- 141. Anderson DW, Burton DC, Jackson RS. Postoperative cervical myelopathy and cord compression associated with the use of recombinant bone morphogenetic protein-2 in posterior cervical decompression, instrumentation, and arthrodesis: a report of two cases. Spine. 2011 May 1;36(10):E682-6. PMID: 21242869.
- 142. Robin BN, Chaput CD, Zeitouni S, et al. Cytokinemediated inflammatory reaction following posterior

cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: a case study. Spine. 2010 Nov 1;35(23):E1350-4. PMID: 20938385.

- 143. Shahlaie K, Kim KD. Occipitocervical fusion using recombinant human bone morphogenetic protein-2: adverse effects due to tissue swelling and seroma. Spine. 2008 Oct 1;33(21):2361-6. PMID: 18827703.
- 144. Kepler CK, Huang RC, Meredith D, et al. Delayed pleural effusion after anterior thoracic spinal fusion using bone morphogenetic protein-2. Spine. 2011 Mar 1;36(5):E365-9. PMID: 21270708.
- 145. Cho SK, Stoker GE, Bridwell KH. Spinal reconstruction with pedicle screw-based instrumentation and rhBMP-2 in patients with neurofibromatosis and severe dural ectasia and spinal deformity: report of two cases and a review of the literature. J Bone Joint Surg Am. 2011 Aug 3;93(15):e86. PMID: 21915529.
- 146. Cho G, Bhat SS, Gao J, et al. Evidence that SIZN1 is a candidate X-linked mental retardation gene. Am J Med Genet A. 2008 Oct 15;146A(20):2644-50. PMID: 18798319.
- 147. Mines D, Gu Y, Kou TD, et al. Recombinant human bone morphogenetic protein-2 and pancreatic cancer: a retrospective cohort study. Pharmacoepidemiol Drug Saf. 2011 Feb;20(2):111-8. PMID: 21254281.
- 148. Gornet MF, Dryer RF, Peloza JH, et al. Lumbar disc arthroplasty vs. Anterior lumbar interbody fusion: Five-year outcomes for patients in the MAVERICK(degrees) disc IDE study. Spine J. 2010;10(9):64S.
- 149. Burkus JK, Gornet MF, Schuler TC, et al. Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am. 2009 May;91(5):1181-9. PMID: 19411467.
- 150. McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine. 2002 Aug 15;27(16 Suppl 1):S66-85. PMID: 12205423.
- 151. U.S. Food and Drug Administration. InFUSE[™] Bone Graft/LT-CAGE[™] Lumbar Tapered Fusion Devices -P000058: Summary of Safety and Effectiveness Data. 2002. http://www.accessdata.fda.gov/cdrh_docs/pdf/P00005 8b.pdf. Accessed August 27, 2012.
- 152. U.S. Food and Drug Administration. INFUSE/MASTERGRAFTTM Posterolateral Revision Device - HDE H040004: Summary of Safety and Probable Benefit. 2008. http://www.accessdata.fda.gov/cdrh_docs/pdf4/H0400 04b.pdf. Accessed August 27, 2012.
- 153. U.S. Food and Drug Administration. Executive Summary for P050036 Medtronic's AMPLIFYTM rhBMP-2 Matrix. Orthopaedic and Rehabilitation

Devices Advisory Panel. FDA; 2010.

http://www.fda.gov/downloads/advisorycommittees/co mmitteesmeetingmaterials/medicaldevices/medicaldev icesadvisorycommittee/orthopaedicandrehabilitationde vicespanel/ucm220079.pdf Accessed August 27, 012.

- 154. Khan SN, Sandhu HS, Lane JM, et al. Bone morphogenetic proteins: relevance in spine surgery. Orthop Clin N Am. 2002 Apr;33(2):447-63. PMID: 12389291.
- 155. Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine. 2002 Aug 15;27(16 Suppl 1):S40-8. PMID: 12205419.
- 156. Sandhu HS. Bone morphogenetic proteins and spinal surgery. Spine. 2003 Aug 1;28(15 Suppl):S64-73. PMID: 12897477.
- 157. Burkus JK. Surgical treatment of the painful motion segment: Matching technology with indications. Spine. 2005;30(16 SUPPL.):S7-S15.
- 158. Kleeman TJ, Ahn UM, Talbot-Kleeman A. Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine. 2001 Dec 15;26(24):2751-6. PMID: 11740368.
- 159. Medtronic. II B: Report of pivotal clinical trial results (G960065) laparoscopic use of InFUSE bone graft/LT-CAGE lumbar tapered fusion device. Medtronic internal document. p. 2072-423.
- 160. Burkus JK, Sandhu HS, Gornet MF. Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine. 2006 Apr 1;31(7):775-81. PMID: 16582851.
- 161. Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine. 2003 Feb 15;28(4):372-7. PMID: 12590213.
- 162. Medtronic. II A: Report of pivotal clinical trial results (G960065) open use of InFUSE Bone Graft/LT-CAGE device. Medtronic internal document. p. 1-297.
- 163. U. S. Food and Drug Administration. Guidance for industry integrated summary of effectiveness. 2008. http://www.fda.gov/downloads/Drugs/GuidanceCompl ianceRegulatoryInformation/Guidances/ucm079803.p df. Accessed on August 10, 2012.
- 164. Medtronic. Summary Information on Medtronic Clinical Trials [Medtronic internal document]. 2011.
- 165. Sandhu HS, Anderson DG, Andersson GBJ, et al. Summary statement: Safety of bone morphogenetic proteins for spine fusion. Spine. 2002;27(16 SUPPL.):S39.
- 166. Kahanovitz N. Commentary [on the article by Haid et al]. Spine J. 2004;4(5):538-9.

- 167. Copay AG, Glassman SD, Subach BR, et al. Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J. 2008 Nov-Dec;8(6):968-74. PMID: 18201937.
- 168. Medtronic. Comments on draft report. Medtronic internal document. 2012.
- 169. Rothhammer T, Poser I, Soncin F, et al. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 2005 Jan 15;65(2):448-56. PMID: 15695386.
- 170. Kokorina NA, Lewis JS, Jr., Zakharkin SO, et al. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. Laryngoscope. 2012 Jan;122(1):95-102. PMID: 21997819.
- 171. Bokobza SM, Ye L, Jiang WG. When Bmp signalling goes wrong: The intracellular and molecular mechanisms of BMP signalling in cancer. Current Signal Transduction Therapy. 2009;4(3):174-95.
- 172. Williams BJ, Smith JS, Fu K-MG, et al. Does bone morphogenetic protein increase the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fusion with and without bone morphogenetic protein. Spine. 2011 Sep 15;36(20):1685-91. PMID: 21897187.
- 173. Deyo RA, Ching A, Matsen L, et al. Use of Bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: Trends, complications, repeat surgery, and charges. Spine. 2012;37(3):222-30.
- 174. Dimar JR, 2nd, Glassman SD, Burkus JK, et al. Reply to "A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned". Spine J. 2011 Nov;11(11):1082-3. PMID: 22078853.
- 175. Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet. 1993 Feb 13;341(8842):418-22. PMID: 8094183.
- 176. Hashimoto R, Raich A, Yoder E, et al. On- and offlabel uses of rhBMP-2 or rhBMP-7 for spinal fusion. Olympia, WA: Washington State Health Care Authority; 2012.
- 177. Cho MK, Bero LA. The quality of drug studies published in symposium proceedings. Ann Intern Med. 1996 Mar 1;124(5):485-9. PMID: 8602706.
- 178. Smith R. Medical journals and pharmaceutical companies: uneasy bedfellows. BMJ. 2003 May 31;326(7400):1202-5. PMID: 12775625.
- 179. Gelberman RH, Samson D, Mirza SK, et al. Orthopaedic surgeons and the medical device industry: the threat to scientific integrity and the public trust. J

Bone Joint Surg Am. 2010 Mar;92(3):765-77. PMID: 20194337.

- 180. Khan SN, Mermer MJ, Myers E, et al. The roles of funding source, clinical trial outcome, and quality of reporting in orthopedic surgery literature. Am J Orthop. 2008 Dec;37(12):E205-12; discussion E12. PMID: 19212579.
- 181. Als-Nielsen B, Chen W, Gluud C, et al. Association of funding and conclusions in randomized drug trials: a reflection of treatment effect or adverse events? JAMA. 2003 Aug 20;290(7):921-8. PMID: 12928469.
- 182. Bekelman JE, Li Y, Gross CP, et al. Scope and impact of financial conflicts of interest in biomedical

research: a systematic review. JAMA. 2003 Jan 22-29;289(4):454-65. PMID: 12533125.

- 183. Stryker. Frequently asked questions for OP-1 implant. http://www.stryker.com/cn/products/Orthobiologicals/ Osteoinductive/OP-1/OP-1Implant/020210. Accessed on August 13, 2012.
- 184. U. S. Food and Drug Administration. Humanitarian Device Exemption. Silver Spring, MD; 2010. http://www.fda.gov/MedicalDevices/DeviceRegulatio nandGuidance/HowtoMarketYourDevice/ PremarketSubmissions/HumanitarianDeviceExemptio n/default.htm. Accessed on 08/13/12.

ABBREVIATIONS AND ACRONYMS

ACDF	anterior cervical discectomy and fusion
ACS	absorbable collagen sponge
ALIF	anterior lumbar interbody fusion
ASIA	American Spinal Injury Association
BCP	biphasic calcium phosphate
CI	confidence interval
CRF	case report form
CRM	compression resistant matrix
FDA	U.S. Food and Drug Administration
HUD	Humanitarian Use Device
ICBG	iliac crest bone graft
IDE	investigational device exemption
IPD	individual patient data
IS	intervention series
NDI	Neck Disability Index
ODI	Oswestry Disability Index
NNH	number needed to harm
PEEK	polyetheretherketone
PLIF	posterior lumbar interbody fusion
PLF	posterolateral lumbar fusion
RCT	randomized controlled trial
rhBMP-2	recombinant human bone morphogenetic protein-2
RR	risk ratio
SD	standard deviation
SEER	Surveillance Epidemiology and End Results Program, National Cancer Institute
TLIF	transforaminal lumbar interbody fusion
TSRH	Texas Scottish Rite Hospital
VAS	visual analog score
WMD	weighted mean difference
YODA	Yale Open Access Data Project

GLOSSARY

This glossary defines terms as they are used in reports produced by the Oregon Evidence-based Practice Center, Drug Effectiveness Review Project, at Oregon Health & Science University. Additional definitions specific to this report have been defined using available medical dictionaries and other resources. Definitions may vary slightly from other published definitions.

ACDF (anterior cervical discectomy and fusion): A surgical procedure performed to remove a herniated or degenerative disc in the cervical (neck) spine and then fuse together the vertebrae above and below the disc space. The surgical approach for this type of procedure is from the front, through the throat area.

ACS (*absorbable collage sponge*): surgical sponge made of collagen; used to fill surgical space and as a carrier for *rhBMP-2*.

Adverse event: A harmful or undesirable outcome that occurs during or after the use of a drug or intervention but is not necessarily caused by it.

ALIF (anterior lumbar interbody fusion): A surgical procedure wherein a disc space within the lower back is fused by inserting a bone graft and/or spinal implant (e.g. cage) directly into the disc space. Termed *anterior* because the spine is approached through the abdomen (the front).

Allocation concealment: The process by which the person determining randomization is blinded to a study participant's group allocation.

Allograft: A graft in which transplanted cells, tissues, or organs are sourced from a genetically non-identical member of the same species (as opposed to *autograft*, below).

ANCOVA (analysis of covariance): A statistical test that compares one variable in 2 or more groups taking into account (or to correct for) variability of other variables, called covariates.

Applicability: see External validity

Arthrodesis: The artificial induction of joint ossification between two bones via surgery, which is done to relieve intractable pain in a joint which cannot be managed by other treatments.

ASIA(American Spinal Injury Association)Score: The overall score is based on a motor and a sensory score. The motor score is based on the examination of 10 key-muscles on each side. For each movement, force is measured and assigned a coefficient from 0 (absence of muscle contraction) to 5. The sensory score is established after studying tact and prick sensitivity on a key point in each of 28 dermatomes on each side. Absence of sensitivity is quoted: 0, the hypo or the hyperesthesia: 1 and normal sensitivity: 2.

ATLANTIS Anterior Cervical Plate System: A ratcheting plate featuring segments that translate under compression, but maintain their position under tension. This system is intended for use in temporary stabilization of the anterior cervical spine (C2-T1) during the development of spinal fusions.

Autograft: A tissue graft transferred from one part of the patient's body to another part (as opposed to *allograft*, above).

Bias: A systematic error or deviation in results or inferences from the truth. Several types of bias can appear in published trials, including selection bias, performance bias, detection bias, and reporting bias.

Blinding: A way of making sure that the people involved in a research study — participants, clinicians, or researchers —do not know which participants are assigned to each study group. Blinding usually is used in research studies that compare two or more types of treatment for an illness. Blinding is used to make sure that knowing the type of treatment does not affect a participant's response to the treatment, a health care provider's behavior, or assessment of the treatment effects.

BMP (Bone Morphogenetic Protein): Belongs to the TGF- β superfamily of proteins and plays an important role in the development of bone and cartilage.

Bone Dowel: An interbody device used for fusing or reconstructing bones.

Boxed warning: A type of warning that appears on the package insert for prescription drugs that may cause serious adverse effects. It is so named for the black border that usually surrounds the text of the warning. A black box warning means that medical studies indicate that the drug carries a significant risk of serious or even life-threatening adverse effects. The US Food and Drug Administration (FDA) can require a pharmaceutical company to place a black box warning that the FDA requires.

Bridging trabeculae: Any of the fine spicules forming a network in cancellous bone crossing a fracture site.

C1-C7 (*cervical vertebrae*): The seven vertebrae, numbered top (C1) to bottom (C7), immediately inferior to skull and that allow for neck and head movement.

Case series: A study reporting observations on a series of patients receiving the same intervention with no control group.

Case report: A study reporting observations on a single patient.

CD Horizon Legacy Spinal System: Consists of rods, hooks, and screws for implantation in the spine to correct the abnormal curvature and is made out of titanium or stainless steel implantable grade metal.

Cervical: Relating to the top part of the spine that is composed of the seven vertebrae of the neck and the discs that separate them.

Clinically significant: A result that is large enough to affect a patient's disease state in a manner that is noticeable to the patient and/or a caregiver.

Cohort study: An observational study in which a defined group of people (the cohort) is followed over time and compared with a group of people who were exposed or not exposed to a particular intervention or other factor of interest. A prospective cohort study assembles participants and follows them into the future. A retrospective cohort study uses data from records to evaluate exposures and outcomes that occurred in the past.

CI (confidence interval): The range of values calculated from the data such that there is a level of confidence, or certainty, that it contains the true value. The 95% confidence interval is generally used . If the report were hypothetically repeated on a collection of 100 random samples of studies, the resulting 95% confidence intervals would include the true population value 95% of the time.

Confounder: A factor that is associated with both an intervention and an outcome of interest.

Controlled clinical trial: A clinical trial that includes a control group but no or inadequate methods of randomization.

Control group: In a research study, the group of people who do not receive the treatment being tested. The control group might receive a placebo, a different treatment for the disease, or no treatment at all.

CT Scan (computerized axial tomography): A radiographic technique that produces an image of a detailed cross section of tissue.

DDD (*degenerative disc disease*): Degeneration of the intervertebral disc that often leads chronic low back pain that sometimes radiates to the hips, pain in the buttocks or thighs while walking, and/or sporadic tingling or weakness through the knees.

Demineralized bone matrix: Allograft bone that has had the inorganic mineral removed, leaving behind the organic collagen matrix.

Dose-response relationship: The relationship between the quantity of treatment given and its effect on outcome. In meta-analysis, dose-response relationships can be investigated using meta-regression.

Dysphagia: Medical term for the symptom of difficulty swallowing.

Dysphonia: Difficulty in speaking, usually evidenced by hoarseness.

Ectopic bone: Bone which develops in abnormal or out of place sites.

Effectiveness: The extent to which a specific intervention *used under ordinary circumstances* does what it is intended to do.

Effectiveness outcomes: Outcomes generally important to patients and caregivers, such as quality of life, responder rates, number and length of hospitalizations, and ability to work. Data on effectiveness outcomes usually comes from longer-term studies of a "real-world" population.

Efficacy: The extent to which an intervention produces a beneficial result *under ideal conditions* in a selected and controlled population.

Exclusion criteria: The criteria, or standards, set out before a study or review. Exclusion criteria are used to determine whether a person should participate in a research study or whether an individual study should be excluded in a systematic review. Exclusion criteria may include age, previous treatments, and other medical conditions. Criteria help identify suitable participants.

External validity: The extent to which results provide a correct basis for generalizations to other circumstances. For instance, a meta-analysis of trials of elderly patients may not be generalizable to children. (Also called generalizability or applicability.)

Facet : A (synovial) joint between the superior articular process of one vertebra and the inferior articular process of the vertebra directly above it.

Femoral ring allograft: A manufactured, uniform, wedge–shaped, allograft. Generally used in ALIF approach procedures.

Fixed-effect model: A model that calculates a pooled estimate using the assumption that all observed variation between studies is due to by chance. Studies are assumed to be measuring the same overall effect. An alternative model is the random-effects model.

Forest plot: A graphical representation of the individual results of each study included in a metaanalysis and the combined result of the meta-analysis. The plot allows viewers to see the heterogeneity among the results of the studies. The results of individual studies are shown as squares centered on each study's point estimate. A horizontal line runs through each square to show each study's confidence interval—usually, but not always, a 95% confidence interval. The overall estimate from the meta-analysis and its confidence interval are represented as a diamond. The center of the diamond is at the pooled point estimate, and its horizontal tips show the confidence interval.

Harms: See Adverse event

Heterogeneity: The variation in, or diversity of, participants, interventions, and measurement of outcomes across a set of studies.

Heterotopic ossification: A nonmalignant overgrowth of bone outside of the skeleton.

Hydroxyapatite crystal: A calcium phosphate complex that is the primary mineral component of bone.

 I^2 : A measure of statistical heterogeneity of the estimates of effect from studies. Values range from 0% to 100%. Large values of I^2 suggest heterogeneity. I^2 is the proportion of total variability across studies that is due to heterogeneity and not chance. It is calculated as (Q-(n-1))/Q, where n is the number of studies.

Incidence: The number of new occurrences of something in a population over a particular period of time, e.g. the number of cases of a disease in a country over one year.

ICBG (Iliac Crest Bone Graft): A surgical procedure that replaces missing bone with material from the patient's iliac crest.

Indication: A term describing a valid reason to use a certain test, medication, procedure, or surgery. In the United States, indications for medications are strictly regulated by the Food and Drug Administration, which includes them in the package insert under the phrase "Indications and Usage".

INFUSE: Name under which rhBMP-2 is marketed in the U.S by Medtronic. INFUSE comes in kits of varying sizes that include rhBMP-2 and absorbable collagen sponges.

InductOs: Name under which rhBMP-2 is marketed in Eurpope. InductoOs comes in kits of varying sizes that include the active substance, rhBMP-2 (dibotermin alfa in the U.K.), a solvent, and collagen sponges.

Inter Fix threaded fusion device: Consists of a hollow, perforates, metallic cylinder and endcap and is available in a variety of diameters. Use is indicated for spinal fusion procedures at one level from L2-S1. To be used with autogenous bone graft and implanted via an open anterior approach.

Internal validity: The extent to which the design and conduct of a study are likely to have prevented bias. Generally, the higher the interval validity, the better the quality of the study publication.

Intervertebral foramina: Apertures within every pair of vertebrae that allow for the passage of the spinal nerve root, dorsal root ganglion, the spinal artery of the segmental artery, and communicating veins to body.

Instrumentation: Utilizes surgical procedures to implant titanium, titanium-alloy, stainless steel, or non-metallic devices into the spine. Instrumentation provides a permanent solution to spinal instability. Medical implants are specially designed and come in many shapes and sizes. Typically these include rods, hooks, braided cable, plates, screws, and interbody cages. Cages are simply structures that support bones (either between bones or in place of them) while new bone growth occurs through and around them.

IPD (individual patient data): The raw data for each study participant included in a trial, as opposed to aggregate data.

L1-L5 (Lumbar Vertebrae): The five vertebrae, numbered top (L1) to bottom (L5), between thoracic and sacral vertebrae that allow for flexion and extension, moderate lateral flexion (sidebending), and a small degree of rotation.

Lamina: two broad plates, extending dorsally and medially from the pedicles, fusing to complete the roof of the vertebral arch.

Laminectomy: A spine operation to remove the portion of the vertebral bone called the lamina and also, commonly, the spinous process, overlying ligaments and muscles, and connective tissue.

Logistic regression: A form of regression analysis that models an individual's odds of disease or some other outcome as a function of a risk factor or intervention.

LT Cage lumbar tapered fusion device: A small, hollow, threaded, tapered cylinder that is intended to restore the degenerated disc space to its original height. For use specifically with *INFUSE*.

Lumbar: Pertaining to the lower back area between T12 vertebra and the sacrum.

MAVERICK: An artificial invertebral disc manufactured by Medtronic.

Mean difference: A method used to combine measures on continuous scales (such as weight) where the mean, standard deviation, and sample size are known for each group.

Meta-analysis: The use of statistical techniques in a systematic review to integrate the results of included studies. Although the terms are sometimes used interchangeably, meta-analysis is not synonymous with systematic review. However, systematic reviews often include meta-analyses.

Meta-regression: A technique used to explore the relationship between study characteristics (for example, baseline risk, concealment of allocation, timing of the intervention) and study results (the magnitude of effect observed in each study) in a systematic review.

Nurick Scale: A six-grade system (0-5) based on the "difficulty in walking".

Observational study: A type of nonrandomized study in which the investigators do not seek to intervene, instead simply observing the course of events.

Oswestry Disability Index: One of the principal condition-specific outcome measures used in the management of spinal disorders, commonly used in patients with low back pain. There are 10 questions that are designed in a way that to realize how the back or leg pain is affecting the patient's ability to manage in everyday life.

Off-label use: When a drug or device is prescribed outside its specific FDA-approved indication, to treat a condition or disease for which it is not specifically licensed.

Ossification: Formation of or conversion into bone or a bony substance.

Osteoblasts: A cell from which bone develops; a bone-forming cell.

Osteoclast: A large multinucleate cell found in growing bone that "chews" bone and that resorbs bony tissue, as in the formation of canals and cavities

Osteolysis: The degeneration and dissolution of bone caused by disease, infection, or ischemia

Osteomyelitis: Refers to a bone infection, almost always caused by a bacteria. Over time, the result can be destruction of the bone itself.

Outcome: The result of care, treatment and/or rehabilitation. In other words, the change in health, functional ability, symptoms or situation of a person that can be used to measure the effectiveness of care/treatment/rehabilitation. Researchers should decide what outcomes to measure before a study begins; outcomes are then assessed at the end of the study.

Pedicle screws: A form of spinal fusion instrumentation. Pedicle screws are used as anchor points placed on consecutive spinal segments to connect a rod in order to fixate a segment of spine."

PEEK (polyetheretherketone) Cage: An interbody cage made of a semicrystalline thermoplastic with excellent mechanical and chemical resistance properties that are retained to high temperatures. Can be packed with bone graft material.

PLIF (posterior lumbar interbody fusion): A surgical procedure wherein a disc space within the lower back is fused by inserting a bone graft and/or spinal implant (e.g. cage) directly into the disc space. Termed *posterior* because the spine is approached from the back.

PLF (posterior lumbar fusion): A surgical procedure wherein a disc space within the lower back is fused by approaching the spine through from the back. Differentiated from *PLIF* because there is no *interbody* implant directly into the disc space.

Pooling: The practice of combing data from several studies to draw conclusions about treatment effects.

Precision: The likelihood of random errors in the results of a study, meta-analysis, or measurement. The greater the precision, the less the random error. Confidence intervals around the estimate of effect are one way of expressing precision, with a narrower confidence interval meaning more precision.

Prospective study: A study in which participants are identified according to current risk status or exposure and followed forward through time to observe outcome.

Pseudoarthrosis: A pathological entity characterized by a nonosseous union of bone fragments of a fractured bone due to inadequate immobilization leading to existence of the 'false joint' that gives the condition its name.

Publication bias: A bias caused by only a subset of the relevant data being available. The publication of research can depend on the nature and direction of the study results. Studies in which an intervention is not found to be effective are sometimes not published. Because of this, systematic reviews that fail to include unpublished studies may overestimate the true effect of an intervention. In addition, a published report might present a biased set of results (for example, only outcomes or subgroups for which a statistically significant difference was found).

P value: The probability (ranging from zero to one) that the results observed in a study could have occurred by chance if the null hypothesis was true. A *P* value of ≤ 0.05 is often used as a threshold to indicate statistical significance.

Radiculitis: Inflammation of a spinal nerve root, especially of the portion of the root that lies between the spinal cord and the spinal canal, which results in pain and hyperesthesia.

Radiographic fusion: Appearance of a continuous bond between adjacent vertebral segments (see also *radiolucency*).

Radiolucency: The ability of materials of relatively low atomic number to allow most x-rays to pass through them, producing dark images on x-ray film.

Random-effects model: A statistical model in which both within-study sampling error (variance) and between-studies variation are included in the assessment of the uncertainty (confidence interval) of the results of a meta-analysis. When there is heterogeneity among the results of the included studies beyond chance, random-effects models will give wider confidence intervals than fixed-effect models.

Randomization: The process by which study participants are allocated to treatment groups in a trial. Adequate (that is, unbiased) methods of randomization include computer generated schedules and random-numbers tables.

Randomized controlled trial: A trial in which two or more interventions are compared through random allocation of participants.

Regression analysis: A statistical modeling technique used to estimate or predict the influence of one or more independent variables on a dependent variable, for example, the effect of age, sex, or confounding disease on the effectiveness of an intervention.

Relative risk: The ratio of risks in two groups; same as a risk ratio.

Resorption: The loss of substance or bone by physiologic or pathologic means, such as the reduction of the volume and size of the residual ridge of the mandible or maxillae.

Retrograde ejaculation: Ejaculation in which the discharged seminal fluid travels up toward the bladder instead of outside the body through the urethra.

Retroperitoneal: A surgical exposure created by going behind the abdominal cavity. In this approach, the peritoneal sac of the abdomen is mobilized (made free from other tissue) and retracted laterally (to the side). The peritoneum is dissected away from the great vessels and the anterior spine is exposed without entering the abdominal cavity.

Retrospective study: A study in which the outcomes have occurred prior to study entry.

rhBMP-2: Plays an important role in the development of bone and cartilage and is an osteogenic *BMP* (as is rhBMP-7) that has been demonstrated to induce osteoblast differentiation in a variety of cell types.

Risk: A way of expressing the chance that something will happen. It is a measure of the association between exposure to something and what happens (the outcome). Risk is the same as probability, but it usually is used to describe the probability of an adverse event. It is the rate of events (such as breast cancer) in the total population of people who could have the event (such as women of a certain age).

Risk difference: The difference in size of risk between two groups.

Risk ratio: The ratio of risks in two groups. In intervention studies, it is the ratio of the risk in the intervention group to the risk in the control group. A risk ratio of 1 indicates no difference between comparison groups. For undesirable outcomes, a risk ratio that is <1 indicates that the intervention was effective in reducing the risk of that outcome.

S1-S5 (sacral vertebrae): Five vertebrae, numbered top (S1) to bottom (S5), that are fused together by mid 20s to form the large triangular bone at the base of the spine know as the *sacrum*.

Safety: Substantive evidence of an absence of harm. This term (or the term "safe") should not be used when evidence on harms is simply absent or is insufficient.

Safety signal: Information arising from one or multiple sources, including observations and experiments, which suggests a new potentially causal association, or a new aspect of a known association, between an intervention and an event or set of related events, either adverse or beneficial, that is judged to be of sufficient likelihood to justify verificatory action.²

Sample size: The number of people included in a study. In research reports, sample size is usually expressed as "n." In general, studies with larger sample sizes have a broader range of participants. This increases the chance that the study's findings apply to the general population. Larger sample sizes also increase the chance that rare events (such as adverse effects of drugs) will be detected.

Scoliosis, idiopathic: An abnormal condition characterized by a lateral curvature of the spine. It is the most common type of scoliosis.

Sensitivity analysis: An analysis used to determine how sensitive the results of a study or systematic review are to changes in how it was done. Sensitivity analyses are used to assess how robust the results are in relationship to uncertain decisions or assumptions about the data and the methods that were used.

SF-36 Health Survey: A 36 question general health survey that provides a summary assessment physical and mental health. Also PCS (Physical Component Summary), MCS (Mental Component Summary).

² Guideline on Good Pharmacovigilance Practices (GVP). Annex I – Definitions. London: European Medicines Agency; February 20, 2012.

 $http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/02/WC500123202.pdf$

SPIRE stabilization system, CD Horizon: It is a fixation device, or plate, that may be attached to the spinous processes, providing the potential for spinal stability through a less-invasive surgical approach. It is utilized in addition to pedicle screws.

Spondylolisthesis: The partial forward dislocation of one vertebra over the one below it, most commonly the fifth lumbar vertebra over the first sacral vertebra.

Standard deviation (SD): A measure of the spread or dispersion of a set of observations, calculated as the average difference from the mean value in the sample.

Statistically significant: A result that is unlikely to have happened by chance.

Study: A research process in which information is recorded for a group of people. The information is known as data. The data are used to answer questions about a health care problem.

Study population: The group of people participating in a clinical research study. The study population often includes people with a particular problem or disease. It may also include people who have no known diseases.

Subgroup analysis: An analysis in which an intervention is evaluated in a defined subset of the participants in a trial, such as all females or adults older than 65 years.

Systematic review: A review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant research and to collect and analyze data from the studies that are included in the review.

Subsidence: Sinking or settling in a bone.

T1-T12 (thoracic vertebrae): The 12 vertebrae, numbered top (T1) to bottom (T12), between lumbar and cervical vertebrae and which have surfaces that articulate with the ribs.

Titanium mesh cage: Cage made of titanium, created as a substitute for bone graft. Can be filled with bone graft.

TLIF (transforaminal lumbar interbody fusion): A surgical procedure in which a disc space within the lower back is fused by inserting a bone graft and/or spinal implant (e.g. cage) directly into the disc space to limit movement between the bones and reduce pain.

TSRH Spinal system: Consists of a variety of shapes and sizes of rods, hooks, screws, cross connectors, staples, plates, and connecting components, as well as implant components from other Medtronic spinal systems, which can be rigidly locked into a variety of configurations, with each construct being tailor-made for the individual case.

Urinary Retention: The inability or difficulty to completely void the urinary bladder.

Validity: The degree to which a result (of a measurement or study) is likely to be true and free of bias (systematic errors).

Variable: A measurable attribute that varies over time or between individuals. Variables can be

- *Discrete*: taking values from a finite set of possible values (e.g. race or ethnicity)
- *Ordinal*: taking values from a finite set of possible values where the values indicate rank (e.g., 5-point Likert scale)
- *Continuous:* taking values on a continuum (e.g., hemoglobin A1c values).

VAS (visual analog scale) scores: Helps assess the impact that your shoulder pain has had on your daily life in the past four weeks.

Vertebral column (spine): The column usually consisting of 24 articulating vertebrae (cervical, thoracic, and lumbar) and 9 fused vertebrae in the sacrum and the coccyx that houses and protects the spinal cord in its spinal canal.

Washout period: [In a cross-over trial] The stage after the first treatment is withdrawn, but before the second treatment is started. The washout period aims to allow time for any active effects of the first treatment to wear off before the new one gets started.

 X^2 : Chi square statistic. It is used to investigate whether distributions of categorical variables differ from one another.

Appendix A. Boxed Warnings¹⁻³

Product	Boxed Warnings
INFUSE® Bone Graft	Women of childbearing potential should be advised that antibody formation to rhBMP-2 or its influence on fetal development have not been assessed. In the clinical trial supporting the safety and effectiveness of INFUSE Bone Graft in tibial fracture, 9/149 (6.0%) patients treated with INFUSE Bone Graft and 1/150 (0.7%) patients treated without exposure to rhBMP-2 developed antibodies to rhBMP-2. The effect of maternal antibodies to rhBMP-2, as might be present for several months following device implantation, on the unborn fetus is unknown. Additionally, it is unknown whether fetal expression of BMP-2 could re-expose mothers who were previously antibody positive, thereby eliciting a more powerful immune response to BMP-2 with adverse consequences for the fetus. Studies in genetically altered mice indicate that BMP-2 is critical to fetal development and that lack of BMP-2 activity, as might be induced by antibody formation, may cause neonatal death or birth defects. The safety and effectiveness of INFUSE Bone Graft in nursing mothers has not been established. It is not known if BMP-2 is excreted in human milk. Women of childbearing potential should be advised not to become pregnant
InFUSE [™] Bone Graft/LT- CAGE [™] Lumbar Tapered Fusion Device	for one year following treatment with INFUSE Bone Graft. Women of childbearing potential should be advised that antibody formation to rhBMP-2 or its influence on fetal development have not been assessed. In the clinical trial supporting the safety and effectiveness of InFUSE [™] Bone Graft/LT-CAGE [™] Lumbar Tapered Fusion Device, 2/277 (0.7%) patients treated with INFUSE Bone Graft component and 1/127 (0.8%) patients treated with autograft bone developed antibodies to rhBMP-2. The effect of maternal antibodies to rhBMP-2, as might be present for several months following device implantation, on the unborn fetus is unknown. Additionally, it is unknown whether fetal expression of BMP-2 could re-expose mothers who were previously antibody positive, thereby eliciting a more powerful immune response to BMP-2 with adverse consequences for the fetus. Studies in genetically altered mice indicate that BMP-2 is critical to fetal development and that lack of BMP-2 activity, as might be induced by antibody formation, may cause neonatal death or birth defects. The safety and effectiveness of InFUSE [™] Bone Graft/LT-CAGE [™] Lumbar Tapered Fusion Device in nursing mothers has not been established. It is not known if BMP-2 is excreted in human milk. Women of childbearing potential should be advised not to become pregnant for one year following treatment with InFUSE [™] Bone Graft/LT-CAGE [™]

1.

Medtronic Sofamor Danek. Boxed Warning for INFUSE® Bone Graft. 2004. Medtronic Sofamor Danek. InFUSE(TM) Bone Graft/LT-CAGE TM Lumbar Tapered Fusion 2. Device. 2002.

Medtronic Sofamor Danek. INFUSE® Bone Graft for Certain Oral Maxillofacial and Dental 3. Regenerative Uses. 2007.

Appendix B. Reconciled Aims

Rigorous systematic review and evidence synthesis to determine the safety and effectiveness of rhBMP-2. The project should address the following aims:

- 1. Identify all relevant studies, across all uses and sponsor (i.e., Medtronic sponsored and others).
- 2. Determine the questions that were addressed by these studies.
- 3. Evaluate the quality of the studies. Assess the risk of bias associated with the design, conduct, and reporting of each clinical study, including those identified via the systematic review and those provided by Medtronic, and, if present, how bias may have affected assessment of effectiveness and harms.
 - a. Assessment of study design and conduct should include evaluation of internal validity, methods used to ascertain outcomes and other policies and procedures for data collection, as well as, the integrity of case report form (CRF) adjudication.
 - b. Assessment of study reporting should include selective publication and selective reporting.
 - c. Summary of these findings should include
 - i. what conclusions can be drawn by assessing the full body of data and what gaps in knowledge remain, taking into account results from the evaluation of quality and risk of bias, and
 - ii. an assessment of applicability of these studies.
- 4. Conduct meta-analyses from studies identified via the systematic review, if appropriate and using patient-level data, if possible. If not appropriate there should be another approach to summarizing the data. The analysis should consider the following:
 - a. For effectiveness, meta-analysis should consider patient-centered outcomes (i.e., quality of life and functional status), as well as surrogate outcomes (i.e., fusion as determined by radiography).
 - b. For safety, meta-analysis should include all harms described in the Request for Proposal.

Medtronic Trial (Study number)	Study Protocol	Radiographic Review	Statistical Plan	Final Report	Final Antibody Report	Major Protocol Deviation List	Other Documents
INFUSE®/LT-CAGE® Pilot RCT (1)	•			• Volumes 1, 2	•		
INFUSE®/LT-CAGE® Pivotal RCT (2)	•	•	•	● Volume 1†	● in Final Report		PMA CSR
INFUSE®/LT-CAGE® Lap Pivotal IS (3)	•	•	•	• Volume 2†	in Final Report		PMA CSR
INFUSE®/Bone Dowel Pilot RCT (4)	•			•	•		
INFUSE®/Bone Dowel Pivotal RCT (5)	•	•	•	•	•		
INFUSE®/Interfix® PLIF RCT (6)	•	•	•	•	● in Final Report		
INFUSE®/Cornerstone® ACDF Pilot RCT (7)	•	•		•	● in Final Report		
INFUSE®/Mastergraft® Pilot RCT (8)	•	•		•	in Final Report		
INFUSE®/Interfix® ALIF Pilot RCT (9)	•	•		•	in Final Report		
Maverick_Disc_Pivotal (10)	•	•	•	● Volumes 1-4	•		
INFUSE®/Telamon® IS (11)	•	•		•	● in Final Report		Explanted Device Analysis
BMP/BCP_US RCT (12)	٠	۲		٠	● in Final Report		
BMP/BCP_Canada RCT (13)	•	•	•	•	in Final Report		Explanted Device Analysis
Amplify® Pivotal RCT (14)	•	●	•	● Parts A, B	•	in PMA CSR	PMA CSR, Appeal Presentation, Explanted Device Analysis
BMP/CRM 2-Level IS (15)	•	•		•	● in Final Report		

Appendix C. List of Study Documents Provided by Medtronic*

BCP Mexico IS (16)	•	•		•		
INFUSE®/Cornerstone® ACDF Pivotal RCT (7)	٠	٠	•	•	● in Final Report	

PMA = premarket approval; CSR = clinical study report

*Additional documents provided by Medtronic:

Cancer Report

Cancer Table

3rd Party Review Plan and Appendices 1-2, 29 August 2011

3rd Party Review Plan and Appendices 1-3, 09 August 2011

Use of Second Surgery Failure and Serious Adverse Events (SAE), 30 August 2011

Documentation for Adverse Event (AE) Case History Narrative

File Folder Structure LT-Cage Pilot

Medical Device Report Data Description

Medtronic rhBMP-2 I De-identification Determination, 12 September 2011

Adverse Event Reports for MAVERICK IDE Study, Note to File-MAV AE Explanation

Adverse Event Tables for INFUSE/LT CAGE IDE Study, 09 September 2011, Note to File—LY CAGE AE Table Explanation

Summary Document, 25 August 2011 – Summary Information on Medtronic Clinical Trials

Summary Medtronic rhBMP-2 I Statistical De-Identification Determination, 08 December 2011

Summary Medtronic rhBMP-2 I Statistical De-Identification Determination, 12 September 2011

Medical Device Reports, 100+ individual documents

Various Document Indexes for each study and the cancer report

†Medtronic combined reports for study 2 and study 3 to the Food and Drug Administration; the final report for study 2 is volume 1 and the final report for study 3 is volume

2.

Appendix D. Search Strategies

	Database: Ovid MEDLINE(R) and Ovid OLDMEDLINE(R) <1946 to December Week 4,				
2011>, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations January 09, 2012					
1	Bone Morphogenetic Protein 2/	3737			
2	Bone Morphogenetic Proteins/	9745			
3	bone morphogen\$ protein-2.ti,ab.	2737			
4	bone morphogen\$ protein-ii.ti,ab.	5			
5	bone morphogen\$ protein2.ti,ab.	3			
6	human recombinant BMP-2.ti,ab.	8			
7	human recombinant BMP2.ti,ab.	2			
8	recombinant human BMP-2.ti,ab.	146			
9	recombinant human BMP2.ti,ab.	15			
10	recombinant human bone morphogen\$ protein-2.ti,ab.	793			
11	recombinant human bone morphogenetic protein-2.rn.	749			
12	BMP.ti,ab.	10098			
13	BMPs.ti,ab.	2953			
14	BMP-2.ti,ab.	3108			
15	BMP-ii.ti,ab.	6			
16	BMP2.ti,ab.	1373			
17	rhBMP-2.ti,ab.	1106			
18	rhBMP2.ti,ab.	62			
19	rhBMP.ti,ab.	1230			
20	rhBMPs.ti,ab.	34			
21	rh-BMP.ti,ab.	62			
22	hrBMP-2.ti,ab.	2			
23	hr-BMP.ti,ab.	3			
24	24 (infuse adj10 bone\$).ti,ab. 36				

Searches were repeated in June and August 2012 to identify additional citations.

25 I	nductOS.ti,ab.	3
26 I	Dibotermin alfa.ti,ab.	2
27	or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26	or 15 or 16 15572
28 2	27 and humans/	6856
29 2	27 not (humans/ or animals/)	1010
30 2	28 or 29	7866
31 li	imit 30 to yr="1996 -Current"	7484
	base: Elsevier Embase <january 09,="" 2012=""> Ch Strategy</january>	
1	'bone morphogenetic protein 2'/de	5,457
2	'bone morphogenetic protein'/de	8,773
3	'recombinant bone morphogenetic protein 2'/de	1,498
4	'bone morphogenetic protein 2':ab,ti	2,763
5	'bone morphogenic protein 2':ab,ti	211
6	'bone morphogenetic protein ii':ab,ti	4
7	'bone morphogenetic protein2':ab,ti	6
8	'human recombinant bmp-2':ab,ti	12
9	'human recombinant bmp2':ab,ti	3
10	'recombinant human bmp-2':ab,ti	164
11	'recombinant human bmp2':ab,ti	13
12	'recombinant human bone morphogenetic protein-2':ab,ti	857
13	'recombinant human bone morphogenic protein-2':ab,ti	28
14	bmp:ab,ti	10,979
15	'bmps':ab,ti	3,131
16	'bmp-2':ab,ti	3,357
17	'bmp-ii':ab,ti	7
18	'bmp2':ab,ti	1,540
19	'rhbmp-2':ab,ti	1,266
20	'rhbmp2':ab,ti	71
21	'rhbmp':ab,ti	1,412
22	'rhbmps':ab,ti	40
23	'rh-bmp':ab,ti	77
24	'hrbmp-2':ab,ti	4
25	'hr-bmp':ab,ti	3
26	infuse NEAR/10 bone	99
27	inductos:ab,ti	7
28	inductos:tn	33
29	'dibotermin alfa':ab,ti	4

30	'dibotermin alfa':tn	3
31	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or	
	15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or	18,712
	27 or 28 or 29 or 30	
32	#31 and (1996:py or 1997:py or 1998:py or 1999:py or 2000:py or	
	2001:py or 2002:py or 2003:py or 2004:py or 2005:py or 2006:py or	15 170
	2007:py or 2008:py or 2009:py or 2010:py or 2011:py or 2012:py) and	15,170
	[embase]/lim	
33	#31 and (1996:py or 1997:py or 1998:py or 1999:py or 2000:py or	
	2001:py or 2002:py or 2003:py or 2004:py or 2005:py or 2006:py or	6,480
	2007:py or 2008:py or 2009:py or 2010:py or 2011:py or 2012:py) and	0,400
	'human'/de and [embase]/lim	
34	#31 and (1996:py or 1997:py or 1998:py or 1999:py or 2000:py or	
	2001:py or 2002:py or 2003:py or 2004:py or 2005:py or 2006:py or	
	2007:py or 2008:py or 2009:py or 2010:py or 2011:py or 2012:py) and	1,602
	[embase]/lim not ('nonhuman'/de or 'animal model'/de or 'animal	
	cell'/de or 'animal tissue'/de or 'human'/de)	

Database: Ovid EBM Reviews - Cochrane Central Register of Controlled Trials <4th Quarter 2011>, Cochrane Database of Systematic Reviews <2005 to December 2011>, Database of Abstracts of Reviews of Effects <4th Quarter 2011>, Health Technology Assessment <4th Quarter 2011>

Search Strategy:

1	bone morphogen\$ protein-2.ti,ab.	37
2	recombinant human BMP-2.ti,ab.	1
3	recombinant human bone morphogen\$ protein-2.ti,ab.	36
4	BMP.ti,ab.	67
5	BMPs.ti,ab.	9
6	BMP-2.ti,ab.	12
7	BMP2.ti,ab.	3
8	rhBMP-2.ti,ab.	49
9	rhBMP.ti,ab.	60
10	(infuse adj10 bone\$).ti,ab.	9
11	Dibotermin alfa.ti,ab.	1
12	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11	127
13	limit 12 to yr="1996 -Current" [Limit not valid in DARE; records were retained]	123
Databa	se: Sciverse Scopus <01/11/2012>	

Search Strategy:

(TITLE-ABS-KEY({bone morphogen* protein*} or bmp or bmp-2 or {BMP 2} or bmp-ii or {BMP ii} or bmpii or rhbmp or rhbmp-2 or rhbmp2 or {rhBMP 2} or rhbmp-ii or rhbmpii or {rhBMP ii} or rh-bmp or rh-bmp-2 or rh-bmp2 or {rh-BMP 2} or rh-bmp-ii or rh-bmpii or {rh-BMP ii} or hrbmp or hrbmp2 or hrbmp-2 or {hrBMP 2} or hrbmp-ii or hrbmpii or {hrBMP ii} or hr-bmp or {hr-BMP 2} or hr-bmp2 or hr-bmp2 or hr-bmp-ii or hrbmpii or {hrBMP ii} or infuse W/10 bone or inductos or {dibotermin alfa})) and SUBJAREA(medi) and PUBYEAR > 1995 (3,948)

Database: clinicaltrials.gov <01/11/2012> Search Strategy:

"bone morphogenetic protein*" or BMP* or rh-BMP* or "Infuse Bone" or "Dibotermin alfa" or InductOS | Closed Studies | received from 01/01/1996 to 01/11/2012 (63)

Database: World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), http://apps.who.int/trialsearch/AdvSearch.aspx <01/11/2012> (38) Search Strategy:

bone morphogenetic protein or bone morphogenic protein or BMP or rhBMP or rhBMP-2 or rhBMP2 or rhBMP-ii or rhBMPii or rh-BMP or rh-BMP-2 or rh-BMP2 or rh-BMP-ii or rh-BMPii or rh-BMP or hr-BMP or hr-BMP2 or hr-BMP2 or hr-BMP-ii or hr-BMPii or INFUSE Bone or Infuse Bone or InductOS or INDUCTOS or dibotermin alfa or Dibotermin Alfa AND date = 01/01/1996-11/01/2012

Database: Current Controlled Clinical Trials (ISRCTN Register), http://www.controlled-trials.com/isrctn/ <01/11/2012> (10) Search Strategy:

bone morphogenetic protein or bone morphogenetic proteins or bone morphogenic protein or bone morphogenic proteins or BMP or BMPs or rhBMP or rhBMPs or rhBMP-2 or rhBMP2 or rhBMP 2 or rhBMP-ii or rhBMPii or rh-BMP or rh-BMPs or rh-BMP-2 or rh-BMP2 or rh-BMP-ii or rh-BMPii or hrBMP or hrBMPs or hrBMP-2 or hrBMP2 or hrBMP-ii or hr-BMP or hr-BMPs or hr-BMP-2 or hr-BMP2 or hr-BMP-ii or hr-BMPii or Infuse Bone or InductOS or dibotermin alfa

Appendix E. List of SAS Data Sets Provided by Medtronic^{*}

SAS Data Set	Variable Information	Time Points
PREOP1	Patient enrollment demographics, patient qualification for study, pre-operative medical data	Enrollment
PREOP2	Neurological/ functional status (reflexes, sensory, motor, straight leg raise), Oswestry questionnaire (10 questions)	Pre-operative
PREOP3	SF-36 (36 questions)	Pre-operative
SURGERY	Surgery data	Time of surgery
POSTOP6W	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	6 weeks
POSTOP3M	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	3 months
POSTOP6M	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	6 months
POSTOP12M	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	12 months
POSTOP24M	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	24 months
POSTOP36M	Postoperative date (medical, work), neurological/functional status (reflexes, sensory, motor, straight leg raise, pain), Oswestry questionnaire (10 questions), SF-36 (36 questions)	36 months
RADREV	Radiographic review- pre-operative radiographs (type of x-ray, other imaging, measurements, disc space)	Pre-operative
RADREV6W	Radiologic review – CT (bone formation, comments)	6 week
RADREV3M	Radiologic review – CT (bone formation, comments)	3 months
RADREV6M	Radiologic review – CT (bone formation, comments)	6 months
RADREV12	Radiologic review – CT (bone formation, comments)	12 months
RADREV24	Radiologic review – CT (bone formation, comments)	24 months
RADREVOT	Radiologic review – CT (bone formation, comments)	Other

Table E-1a. Study 1: INFUSE®/LT-CAGE® Pilot—Raw Data

^{*} Medtronic also provided additional data on dates of collecting blood specimens for antibody and dates of collecting radiographic data, which did not provide actual data on patient outcomes and were not separately accounted for here.

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12 and 24months when events occurred
D_SURG2	All additional surgeries	3, 12 and 24 months when events occurred
D_TRT	Patient and treatment dataset	NA

Table E-1b. Study 1: INFUSE®/LT-CAGE® Pilot—Derived Data

Table E-2a. Study 2: INFUSE®/LT-CAGE® Pivotal—Raw Data

SAS Data Set	Variable Information	Time Points
DISCHARGE	Hospital discharge data	Discharge
ENROLL	Patient demographic characteristics at enrollment	Enrollment
NEURO	Neurological status (sensory, motor, reflexes, straight leg raise)	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
OWESTRY	Oswestry disability score (10 questions)	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
PAIN	Back and leg pain, Hip pain at donor site	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
POSTDATA	Postoperative data (comorbidities, return to work, etc)	1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only
PREOP	Pre-operative data (health characteristics)	Pre-operative
QUALIF	Patient qualifications for study	Enrollment
RADREVCT	Radiologic data - CT	6 and 12 months
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
SURGERY	Surgery data	Time of surgery

SAS Data Set	Variable Information	Time Points
SURVEY	Patient survey (medical characteristics, work status, satisfaction)	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
TRADREV	Radiologic review (disc measurements, implant characteristics, radiolucent lines, evidence of bridging bone)	Pre-operative , 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only– data were very sparse at 36 months.

Table E-2b. Study 2: INFUSE®/LT-CAGE® Pivotal—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12, 24 for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only when events occurred
D_ALLSUC	Overall success variable and its components	1.5, 3, 6, 12, 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
D_FUSION	Fusion success (overall success, failure, second surgery failure)	6, 12, 24 months postop for rhBMP-2 and ICBG group, and 48 and 72 months postop for rhBMP-2 only.
D_IVDH	Disc height success status	Pre-operative, postoperative, 1.5, 3, 6, 12, 24 months postop for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
D_NEURO	Neurological success variable and its components	Pre-operative, 1.5, 3, 6, 12, 24 for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24 for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
D_PAIN	Back, leg, and hip pain; change from pre-op; success	Pre-operative, 1.5, 3, 6, 12, 24 for rhBMP-2 and ICBG group, and 36, 48 and 72 months postop for rhBMP-2 only.
D_SF-36	SF-36 health survey scores and success variables	Pre-operative, 1.5, 3, 6, 12, 24 for rhBMP-2 and ICBG group,

SAS Data Set	Variable Information	Time Points
		and 36, 48 and 72 months postop for rhBMP-2 only.
FAILURE	Second surgery failures	1.5, 6, 12, 24 for rhBMP-2 and ICBG group, and 48 and 72 months postop for rhBMP-2 only when events occurred.
SAE	Serious device or device/surgery related adverse events	1.5, 6, 12, 24 for rhBMP-2 and ICBG group, and 36 and 48 months postop for rhBMP-2 only when events occurred.
D_SURG2	All additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, for rhBMP-2 and ICBG group, and 48 and 72 months postop for rhBMP-2 only when events occurred.
D_TRT	Patient and treatment dataset	

Table E-3a. Study 3: rhBMP-2/ACS/LT-Lap IS—Raw Data

SAS Data Set	Variable Information	Time Points
DISCHARGE	Hospital discharge data	Discharge
ENROLL	Patient demographic characteristics at enrollment	Enrollment
NEURO	Neurological status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, 48 and 72 months postoperative
OWESTRY	Oswestry disability score (10 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, 48 and 72 months postoperative
PAIN	Back and leg pain, Hip pain at donor site	Pre-operative, 1.5, 3, 6, 12 and 24, 48 and 72 months postoperative
POSTDATA	Postoperative data (comorbidities, return to work, etc)	1.5, 3, 6, 12 and 24, 48 and 72 months postoperative
PREOP	Pre-operative data (health characteristics)	Pre-operative
QUALIF	Patient qualifications for study	Enrollment
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, 48 and 72 months postoperative
SURGERY	Surgery data	Time of surgery

SAS Data Set	Variable Information	Time Points
SURVEY	Patient survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12 and 24 months postop for rhBMP-2 and ICBG group, and 48 and 72 months postoperative for rhBMP-2 only.
TRADREV	Radiologic review (disc measurements, stability, implant characteristics, radiolucent lines, evidence of bridging bone)	Pre-operative, surgery/discharge, 1.5, 3, 6, 12 and 24, other, 48 and 72 months postoperative

Table E-3b. Study 3: rhBMP-2/ACS/LT-Lap IS—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12, 24, 48, and 72 months
D_ALLSUC	Overall success variable (Oswestry success, neurological success, fusion success, failure and failure due to serious adverse event, overall success)	1.5, 3, 6, 12, 24, , 48, 72 months
D_FUSION	Fusion success (overall success, failure, second surgery failure)	6, 12, 24, , 48, 72 months
D_IVDH	Disc height success status	Pre-operative, discharge, 1.5, 3, 6, 12, 24, other, 48, 72 months
D_NEURO	Neurological success variable and its components	Pre-operative, 1.5, 3, 6, 12, 24, 48, 72 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 48, 72 months
D_PAIN	Back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, 48, 72 months
D_SF-36	SF-36 health survey scores and success variables	Pre-operative, 1.5, 3, 6, 12, 24, 48, 72 months
FAILURE	Second surgery failures and time period	1.5, 3, 6, 12 and 24months when events occurred
SAE	Serious device or device/surgery related adverse events and time period	1.5, 3, 6, and 24months when events occurred
D_SURG2	All additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, 48, and 72 months when events occurred
D_TRT	Study patient and treatment	NA

SAS Data Set	Variable Information	Time Points
DISCHARGE	Hospital discharge data	Discharge
ENROLL	Patient demographic characteristics at enrollment	Enrollment
NEURO	Neurological status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, and 48 months postoperative
OWESTRY	Oswestry disability score (10 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and 48 months postoperative
PAIN	Back and leg pain, hip pain at donor site	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12 and 24, and 48 months postoperative
POSTDATA	Postoperative data (comorbidities, return to work, etc)	1.5, 3, 6, 12 and 24, and 48 months postoperative
PREOP	Pre-operative data (health characteristics)	Pre-operative
QUALIF	Patient qualifications for study	Enrollment
RRPOST	Radiographic review (disc space, bridging bone characteristics, stability, radiolucent lines)	Surgery/ discharge, 1.5, 3, 6, 12, 24, and 48 months
RRPRE	Radiographic review – pre-operative radiographs (type of x-rays, measurements, disc space)	Pre-operative
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and 48 months postoperative
SURGERY	Surgery data	Time of surgery
SURVEY	Patient survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12 and 24, and 48 months postoperative

Table E-4a. Study 4: rhBMP-2/ACS/Allograft Bone Dowel Pilot RCT—Raw Data

Table E-4b. Study 4: rhBMP-2/ACS/Allograft Bone Dowel Pilot RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Pre-operative, surgery/discharge, 1.5, 3, 6, 12, 24, 48 months when events occurred
D_ALLSUC	Overall success variable (Oswestry success, neurological success, fusion success, failure, overall success)	1.5, 3, 6, 12, 24, 48 months
D_FUSION	Fusion success (overall success, failure, second surgery failure)	6, 12, 24, 48 months

SAS Data Set	Variable Information	Time Points
D_IVDH	Disc height success status	Pre-operative, surgery/discharge, 1.5, 3, 6, 12, 24, 48 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative,1.5, 3, 6, 12, 24, 48 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 48 months
D_PAIN	Back and leg pain, hip pain, change from pre-op, success	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 48 months
D_SF-36	SF-36 health survey scores, success variables, and change from pre-operative	Pre-operative, 1.5, 3, 6, 12, 24, other, 36, 48, 72 months
FAILURE	Second surgery failures and time period	12, 24, 48 months when events occurred
SAE	Serious device or device/surgery related adverse events and time period	12, 24, 48 months when events occurred
D_SURG2	All additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, 48 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-5a. Study 5: rhBMP-2/ACS/Allograft Bone Dowel Pivotal RCT—Raw Data

SAS Data Set	Variable Information	Time Points
ACCOUNT	Patient accountability (reasons for missed follow-up, lost to follow-up status)	1.5, 3, 6, 12 and 24 months postoperative
BLPAIN	Back and Leg Pain Questionnaire (two back pain and two leg pain questions with scales)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/ discharge, 1.5, 3, 6, 12 and 24, and other months postoperative
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative

SAS Data Set	Variable Information	Time Points
OSWESTRY	Oswestry questionnaire (10 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
PORADREV	Radiologic Review (measurements, implant related AEs, fusion fracture, stability, appearance of radiolucent lines, radiographs, CT)	Surgery/ discharge, 1.5, 3, 6, 12 and 24, and other months postoperative
POSTDATA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24, and other months postoperative
PREOPDATA	Pre-operative data (health characteristics)	Pre-operative
PRRADREV	Radiologic Review Pre-operative Radiographs (x-ray type, measurements)	Pre-operative
QUALIFIC	Patient Qualification (qualifications and eligibility for study)	Pre-operative
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
SURGERY	Surgery Data	Surgery
SURVEY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative

Table E-5b. Study 5: rhBMP-2/ACS/Allograft Bone Dowel Pivotal RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, surgery/ discharge, 1.5, 3, 6, 12, 24, and other months when events occurred
D_ALLSUC	Overall success variable (Oswestry success, neurological success, fusion success, failure, overall success)	Pre-operative, , 1.5, 3, 6, 12, 24, and other months
D_FUSION	Fusion success (overall success, failure, second surgery failure)	,,6, 12, 24, months
D_DISC	Disc height success	1.5, 3, 6, 12, 24 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, and other months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, and other months
D_PAIN	Back and leg pain, hip pain, change from pre-op, success	Pre-operative, surgery/discharge, 1.5, 3, 6, 12, 24, and other months

SAS Data Set	Variable Information	Time Points
D_SF-36	SF-36 health survey scores, success variables, and change from pre-operative	Pre-operative1.5, 6, 12, 24, and other months
FAILURE	Second surgery failures	12, 24 months when events occurred
SAE	Data set for serious device or device/surgery related adverse events	12, 24 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	3, 6, 12, 24 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-6a. Study 6: rhBMP-2/ACS/LC-Posterior IDE Study RCT—Raw Data

SAS Data Set	Variable Information	Time Points
BLPAIN	Back and Leg Pain Questionnaire (two back pain and two leg pain questions with scales)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/ discharge, 1.5, 3, 6, 12 and 24, and other months postoperative
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postop
POSTOPDA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24, and other months postoperative
POSTOS	Postoperative Oswestry Questionnaire (10 questions)	1.5, 3, 6, 12 and 24, and other months postoperative
POSTRADR	Radiologic Review (type of x-rays and imaging, measurements, radiographs and CT scans done)	Surgery/ discharge, 1.5, 3, 6, 12 and 24, and other months postoperative
POSTSURV	Postoperative Patient Survey (medication use and satisfaction)	1.5, 3, 6, 12 and 24, and other months postoperative
PREOPDAT	Pre-operative data (health characteristics)	Pre-operative
PREOS	Pre-operative Oswestry Score (10 questions)	Pre-operative
PRERADRE	Radiologic Review Pre-operative Radiographs (type of x-rays and imaging, measurements, disc space)	Pre-operative

SAS Data Set	Variable Information	Time Points
PRESURV	Pre-operative Patient Survey (medication use and work status)	Pre-operative
QUALIFIC	Patient Qualification (qualifications and eligibility for study)	Pre-operative
SF-36	Health Status Questionnaire (SF 36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postop
SURGERY	Surgery Data	Surgery

Table E-6b. Study 6: rhBMP-2/ACS/LC-Posterior IDE Study RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset of AE: (period of occurrence, category, severity, device relatedness of all adverse events)	Operative/Postoperative, 1.5, 3, 6, 12, 24, and other months when events occurred
D_ALLSUC1	Derive primary "overall success" variable (Oswestry success, neurological success, fusion success, failure, <i>serious, permanent AE</i> , overall success)	6, 12, 24 months
D_ALLSUC2	Derive primary "overall success" variable (Oswestry success, neurological success, fusion success, failure, <i>serious device related or device/surgical associated AE</i> , overall success)	6, 12, 24 months
D_FUSION	Fusion success (overall success)	6, 12, 24 months
D_IVDH	Disc height success	Pre-operative, 1.5, 3, 6, 12, 24 months
D_NEURO	Neurological success components dataset (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, and other months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, and other months
D_PAIN	Dataset of back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, and other months
D_SF-36	Dataset for SF-36 health survey scores and success variables (change from pre-operative)	Pre-operative, 1.5, 3, 6, 12, 24, and other months
FAILURE	Dataset second surgery failures	12, 24 months when events occurred
SAE1	Dataset for serious permanent adverse events	6months when events occurred
SAE2	Dataset for serious device or device/surgery related adverse events	12 and 24 months when events occurred

SAS Data Set	Variable Information	Time Points
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, and other months when events occurred
D_TRT	Study patient and treatment	NA

Table E-7a. Study 7: rhBMP-2/ACS/SR/Bone Plate IDE Study—Raw Data

SAS Data Set	Variable Information	Time Points
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/ discharge, 1.5, 3, 6, 12 and 24 postoperative
NAPAIN	Neck & Arm Pain Questionnaire (two neck pain and two arm pain scales)	Pre-operative, 1.5, 3, 6, 12 and 24 postoperative
NEURO	Neurological Status (reflexes, motor, sensory)	Pre-operative, 1.5, 3, 6, 12 and 24 postoperative
POSTOPDA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24 months postoperative
POSTOS	Postoperative Neck Disability Index (13 sections)	1.5, 3, 6, 12 and 24 months postoperative
POSTSURV	Postoperative Patient Survey (medication use and satisfaction)	1.5, 3, 6, 12 and 24 months postoperative
PREOPDAT	Pre-operative data (health characteristics)	Pre-operative
PREOS	Pre-operative Neck Disability Index (13 sections)	Pre-operative
PRESURVE	Pre-operative Patient Survey (medication use and work status)	Pre-operative
QUALIFIC	Patient Qualification (qualifications and eligibility for study)	Pre-operative
RADREV	Review of Radiographs (measurements, evidence of bridging bone, fusion status, evidence of graft and/or hardware problems)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12 and 24 months postop
SF-36	Health Status Questionnaire (SF 36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24 months postop
SURGERY	Surgery Data	Surgery
USAGE	Implant Usage	Surgery

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset of AE: (period of occurrence, category, severity, device relatedness of all adverse events)	Surgery/ discharge, 1.5, 3, 6, 12, 24, and other months when events occurred
D_ALLSUC	Derive primary "overall success" variable (NDI neurological, fusion, and overall success)	6, 12, 24 months
D_FUSION	Fusion success (overall success)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, and other months
D_NEURO	Neurological success components dataset (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24 months
D_NDI	NDI score, change from pre-operative variable for score and success	Pre-operative, 1.5, 3, 6, 12, 24 months
D_SF-36	Dataset for SF-36 health survey scores and success variables (change from pre-operative)	Pre-operative, 1.5, 3, 6, 12, 24 months
D_PAIN	Dataset of back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24 months
D_SURG2	A SAS dataset of all additional surgeries	Surgery/ discharge, 6, 12, 24, and other months when events occurred
D_TRT	Study patient and treatment	NA

Table E-7b. Study 7: rhBMP-2/ACS/SR/Bone Plate IDE Study—Derived Data

Table E-8a. Study 8: INFUSE™/ MasterGraft™/CD HORIZON® Spinal System-Pilot Study RCT— Raw Data

SAS Data Set	Variable Information	Time Points
ACCOUNT	Patient accountability (reasons for missed follow-up)	Variable: 1.5, 3, 6, 12 and 24, 36 postoperative
BLPQ	Back and Leg Pain Questionnaire (two back pain and two leg pain questions)	Pre-operative, 1.5, 3, 6, 12, 24 and 36months postoperative
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPQ	Hip (donor site) Pain Questionnaire (2 questions)	Surgery/ discharge, 1.5, 3, 6, 12 and 24, 36 months postoperative

SAS Data Set	Variable Information	Time Points
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, 36months postop
OSW	Oswestry Questionnaire (10 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, 36months postoperative
PSTD	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24, 36months postoperative
PRED	Pre-operative data (health characteristics)	Pre-operative
QUAL	Patient Qualification (inclusion/exclusion criteria)	Pre-operative
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, 36months postoperative
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12 and 24, 36months postop
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12 and 24, 36months postop

Table E-8b. Study 8: INFUSE™/ MasterGraft™/CD HORIZON® Spinal System-Pilot Study RCT— Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, surgery/ discharge, 1.5, 3, 6, 12, 24, and 36 months when events occurred
D_ALLSUC	Overall success variable (Oswestry success, neurological success, fusion success, failure, overall success)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
D_FUSION	Fusion success (overall success, failure, second surgery failure)	6, 12, 24 and 36 months
D_HIP		Surgery/discharge, 1.5, 3, 6, 12, 24 and 36 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from preop for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
D_PAIN	Back and leg pain, hip pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
D_SF-36	SF-36 health survey scores, success variables, and change from pre-operative	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months

SAS Data Set	Variable Information	Time Points
FAILURE	Second surgery failures	Variable: 1.5, 12, 24 and 36 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Variable: Operative, postoperative, 1.5, 3, 6, 12, 24 and 36 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-9a. Study 9: rhBMP-2/ACS/LC IDE Study RCT—Raw Data

SAS Data Set	Variable Information	Time Points
BLPAIN	Back and Leg Pain Questionnaire (two back pain and two leg pain questions with scales)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postop
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/ discharge, 1.5, 3, 6, 12 and 24 months postoperative
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
POSTOPDA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24, and other months postoperative
POSTOS	Postoperative Oswestry Questionnaire (10 questions)	1.5, 3, 6, 12 and 24, and other months postop
POSTSURV	Postoperative Patient Survey (medication use and satisfaction)	1.5, 3, 6, 12 and 24, and other months postoperative
PREOPDAT	Pre-operative data (health characteristics)	Pre-operative
PREOS	Pre-operative Oswestry Score (10 questions)	Pre-operative
PRESURVE	Pre-operative Patient Survey (medication use and work status)	Pre-operative
PRERADREV	Radiologic Review Pre-operative Radiographs (measurements, disc space)	Pre-operative
QUALIFIC	Patient Qualification (inclusion/ exclusion criteria)	Pre-operative
RADREV	Radiologic Review (measurements, stability, implant problems, radiolucent lines, CT results)	Surgery/ discharge, 1.5, 3, 6, 12 and 24 months postoperative

SAS Data Set	Variable Information	Time Points
SF-36	Health Status Questionnaire (SF 36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24, and other months postoperative
SURGERY	Surgery Data	Surgery

Table E-9b. Study 9: rhBMP-2/ACS/LC IDE Study RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset of AE: (period of occurrence, severity, device relatedness)	Variable: Operative, Postoperative, 1.5, 3, 6, 12, 24, and other months when events occurred
D_ALLSUC	Derive primary "overall success" variable (Oswestry success, neurological success, fusion success, failure, serious permanent AE, overall success, serious device or device/surgical related AE)	6, 12 and 24 months
D_FUSION	Fusion success dataset (overall success)	6, 12 and 24 months
D_IVDH	Disc height success dataset	Surgery/discharge, 1.5, 3, 6, 12 and 24months
D_NEURO	Neurological success components dataset (motor, sensory, reflexes, and straight leg scores, change from preop for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24 and othermonths
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24 and other months
D_PAIN	Dataset of back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24 and other months
D_SF-36	Dataset for SF-36 health survey scores and success variables (change from pre-operative)	Pre-operative, 1.5, 3, 6, 12, 24 and other months
FAILURE	Dataset second surgery failures	1.5, 12, 24 and other months when events occurred
SAE1	Dataset for serious permanent adverse events	1.5,24 and other months when events occurred
SAE2	Dataset for serious device or device/surgery related adverse events	1.5 and 24 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 24, and other months when events occurred
D_TRT	Study patient and treatment	NA

SAS Data Set	Variable Information	Time Points
ACCT	Patient accountability (reasons for missed follow-up)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
BLPQ	Back and Leg Pain Questionnaire (two back pain and two leg pain questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
DSCH	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENRL	Patient Enrollment (patient demographics)	Enrollment
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
OSW	Oswestry Questionnaire (10 questions)	Pre-operative`, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
PRED	Pre-operative data (health characteristics)	Pre-operative
PSTD	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
QUAL	Patient Qualification (inclusion/exclusion criteria)	Pre-operative
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months and unscheduled
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months

Table E-10a. Study 10: MAVERICK[™] Total Disc Replacement-Pivotal Study RCT—Raw Data

Table E-10b. Study 10: MAVERICK™ Total Disc Replacement-Pivotal Study RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months when events occurred
D_ALLSUC	Derive primary overall success variable (Oswestry, neurological, disc height success, failure, serious AE, overall success)	3, 6, 12, 24, 36, 48, 60, 84 months
D_FUSION	Fusion success (overall success and other indicators)	6, 12, 24, 36, 48, 60, 84 months

SAS Data Set	Variable Information	Time Points
D_IVDH	Disc Height success dataset	3, 6, 12, 24, 36, 48, 60, 84 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from preop for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
D_PAIN	Back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
D_SF-36	SF-36 health survey scores, success variables, and change from preop	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 84 months
FAILURE	Second surgery failures	3, 6, 12, 24, 36, 60, 84 months when events occurred
D_SAE	Dataset for serious device or device/surgery associated AE	3, 6, 12, 24, 36, months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72, 84 and other months when events occurred
D_TRT	Study patient and treatment	NA

Table E-11a. Study 11: TELAMON P™ Implant/INFUSE™ Bone Graft/CD HORIZON® Spinal System-Pilot Study IS—Raw Data

SAS Data Set	Variable Information	Time Points
ACCT	Patient accountability (reasons for missed follow-up)	3, 6, 12, 24, 36, and 48 months
BLPQ	Back and Leg Pain Questionnaire (two back pain and two leg pain questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
DSCH	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENRL	Patient Enrollment (patient demographics)	Enrollment
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 36, and 48 months
OSW	Oswestry Questionnaire (10 questions)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 36, and 48 months
PRED	Pre-operative data (health characteristics)	Pre-operative
PSTD	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12, 24, 36, and 48 months

SAS Data Set	Variable Information	Time Points
QUAL	Patient Qualification (inclusion/exclusion criteria)	Pre-operative
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 36, and 48 months
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months

Table E-11b. Study 11: TELAMON P™ Implant/INFUSE™ Bone Graft/CD HORIZON® Spinal System-Pilot Study IS—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12, 24, 36, and 48 months when events occurred
D_ALLSUC	Derive primary overall success variable (Oswestry, neurological, disc height success, failure, serious AE, overall success)	3, 6, 12, 24, 36, and 48 months
D_FUSION	Fusion success (overall success and other indicators)	6, 12, 24, 36, and 48 months
D_IVDH	Disc Height success dataset	3, 6, 12, 24, 36, and 48 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from preop for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
D_PAIN	Back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
D_SF-36	SF-36 health survey scores, success variables, and change from preop	Pre-operative, 1.5, 3, 6, 12, 24, 36, and 48 months
FAILURE	Second surgery failures	36 months when events occurred
D_SAE	Dataset for serious device or device/surgery associated AE	24 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	3, 6, 12, 24 and 36 months when events occurred
D_TRT	Study patient and treatment	NA

SAS Data Set	Variable Information	Time Points
BLPAIN	Back and Leg Pain Questionnaire (two back pain and two leg pain questions with scales)	Pre-operative, 1.5, 3, 6, 12 and 24 months postoperative
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/ discharge, 1.5, 3, 6, 12 and 24 months postoperative
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12and 24 months postoperative
POSTDATA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12 and 24 months postoperative
POSTOS	Postoperative Oswestry Questionnaire (10 questions)	1.5, 3, 6, 12and 24 months postoperative
POSTSURV	Postoperative Patient Survey (medication use and satisfaction)	1.5, 3, 6, 12 and 24 months postoperative
PREOPDAT	Pre-operative data (health characteristics)	Pre-operative
PREOS	Pre-operative Oswestry Score (10 questions)	Pre-operative
PRESURVE	Pre-operative Patient Survey (medication use and work status)	Pre-operative
QUALIFIC	Patient Qualification (inclusion/ exclusion criteria)	Pre-operative
RADREV	Radiologic Review (measurements, stability, implant problems, radiolucent lines, CT results)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24 and other months postoperative
SF-36	Health Status Questionnaire (SF 36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12and 24 months postoperative
SURGERY	Surgery Data	Surgery
USAGE	Device Usage	Surgery

Table E-12a. Study 12: rhBMP-2/BCP/TSRH Spinal System IDE Study RCT—Raw Data

Table E-12b. Study 12: rhBMP-2/BCP/TSRH Spinal System IDE Study RCT—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset of AE: (period of occurrence, severity, device relatedness)	Variable: operative, postoperative, 1.5, 3, 6, 12 and 24 months when events occurred
D_ALLSUC	Derive primary "overall success" variable (Oswestry,	6, 12 and 24 months

SAS Data Set	Variable Information	Time Points
	neurological, fusion success, failure, overall success)	
D_FUSION	Fusion success dataset (overall success)	6, 12 and 24 months
D_NEURO	Neurological success components dataset (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12 and 24 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12 and 24 months
D_PAIN	Dataset of back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12 and 24 months
D_SF-36	Dataset for SF-36 health survey scores and success variables (change from preop)	Pre-operative, 1.5, 3, 6, 12 and 24 months
FAILURE	Dataset second surgery failures	12and 24 when events occurred.
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 6, 12, and 24 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-13a. Study 13: rhBMP-2/BCP/TSRH Spinal System-Canada—Raw Data

SAS Data Set	Variable Information	Time Points
BLPAIN	Back and Leg Pain Questionnaire (two back pain and two leg pain questions with scales)	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 postoperative
DISCHARG	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENROLL	Patient Enrollment (patient demographics)	Enrollment
HPAIN	Hip Pain (pain severity and occurrence)	Surgery/Discharge, 1.5, 3, 6, 12, 24, other months, 48, 72 months postop
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
POSTDATA	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
POSTOS	Postoperative Oswestry Questionnaire (10 questions)	1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
POSTSURV	Postoperative Patient Survey (medication use and satisfaction)	1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative

SAS Data Set	Variable Information	Time Points
PREOPDAT	Pre-operative data (health characteristics)	Pre-operative
PREOS	Pre-operative Oswestry Score (10 questions)	Pre-operative
PRESURVE	Pre-operative Patient Survey (medication use and work status)	Pre-operative
QUALRMB	Patient Qualification – Arm B (include/ exclude criteria)	Pre-operative
QUALIFIC	Patient Qualification (inclusion/ exclusion criteria)	Pre-operative
RADREV	Radiologic Review (measurements, bridging bone, implant problems, radiolucent lines)	Surgery/Discharge, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
SF-36	Health Status Questionnaire (SF 36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
SURGERY	Surgery Data	Surgery
USAGARMB	Device Usage (Arm B)	Surgery
USAGE	Device Usage	Surgery

Table E-13b. Study 13: rhBMP-2/BCP/TSRH Spinal System-Canada—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset of AE: (period of occurrence, severity, device relatedness)	Operative, postoperative, 1.5, 3, 6, 12, 24, 48, 72 months postoperative when events occurred
D_ALLSUC	Derive primary "overall success" variable (Oswestry and fusion success, failure, trial indicator, overall success)	Pre-operative, 1.5, 3, 6, 12, 24, 48, 72 months postoperative
D_FUSION	Fusion success dataset (overall success, trial indicator)	6, 12, 24, 48 and 72 months postoperative
D_NEURO	Neurological success components dataset (motor, sensory, reflexes, and straight leg scores, change from preop for all, success status all, trial indicator)	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
D_OSW	Oswestry score, change from pre-op, and success, trial indicator	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
D_PAIN	Dataset of back and leg pain, change from pre-op, success, trial indicator	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative
D_SF-36	Dataset for SF-36 health survey scores and success variables (change from preop)	Pre-operative, 1.5, 3, 6, 12, 24, other months, 48, 72 months postoperative

SAS Data Set	Variable Information	Time Points
FAILURE	Dataset second surgery failures	12, 24 and 48 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Operative, Postoperative, 1.5, 3, 6, 12, 24, 48 and 72 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-14a. Study 14: rhBMP-2/CRM/CD HORIZON® Spinal System-Pivotal Study—Raw Data

SAS Data Set	Variable Information	Time Points
ACCT	Patient accountability (reasons for missed follow-up)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
BLPQ	Back and Leg Pain Questionnaire (two back pain and two leg pain questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
DSCH	Hospital Discharge (orthosis, discharge date, patient classification, AE between surgery and discharge)	Discharge
ENRL	Patient Enrollment (patient demographics)	Enrollment
HPQ	Hip (Donor) Site Pain Questionnaire	Surgery/ discharge, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
NEURO	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
OSW	Oswestry Questionnaire (10 questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
PRED	Pre-operative data (health characteristics)	Pre-operative
PSTD	Postoperative Data (health characteristics, work status)	1.5, 3, 6, 12, 24, 36, 48 and 60 months
QUAL	Patient Qualification (inclusion/exclusion criteria)	Pre-operative
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Operative, postoperative, 1.5, 3, 6, 12, 24, 36, 48 and 60 months when events occurred
D_ALLSUC	Derive primary overall success variable (Oswestry, neurological, fusion success, failure, serious AE, overall success)	Pre-operative, 6, 12, 24, 36, 48, 60, 72 months
D_FUSION	Fusion success (overall success and other indicators)	Pre-operative, 6, 12, 24, 36, 48, 60, 72 months
D_HIP	Disc Height success dataset	Surgery/discharge, 1.5, 3, 6, 12, 24, 36, 48, 60 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72 months
D_PAIN	Back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72 months
D_SF-36	SF-36 health survey scores, success variables, and change from pre-operative	Pre-operative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72 months
FAILURE	Second surgery failures	1.5, 3, 6, 12, 24, 36, 48, 60months when events occurred
D_SAE	Dataset for serious device or device/surgery associated AE	Surgery/discharge, 1.5, 3, 6, 12, 24, 36, 60 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 1.5, 3, 6, 12, 24, 36, 48, 60, 72 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-14b. Study 14: rhBMP-2/CRM/CD HORIZON® Spinal System-Pivotal Study—Derived Data

Table E-15a. Study 15: rhBMP-2/CRM/CD HORIZON® Spinal System-2-Level Pilot—Raw Data

SAS Data Set	Variable Information	Time Points
BLPQ	Back and Leg Pain Questionnaire (two back pain and two leg pain questions)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
CONT	Patient Contact (reason for missed follow-up)	6, 12, 24 and 36 months
DISP	Patient Disposition (Withdrawls and terminations)	24 months

SAS Data Set	Variable Information	Time Points
DSCH	Hospital Discharge	Discharge
ENRL	Patient Enrollment (patient demographics)	Pre-operative
NEUR	Neurological Status (motor, sensory, reflexes, straight leg raise)	Pre-operative, , 1.5, 3, 6, 12, 24 and 36 months
OSW	Oswestry Questionnaire (10 questions)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
PRED	Pre-operative data (health characteristics)	Pre-operative
QUAL	Patient Qualification (inclusion/ exclusion)	Pre-operative
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12, 24and 36 months
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12, 24 and 36 months

Table E-15b. Study 15: rhBMP-2/CRM/CD HORIZON® Spinal System-2-Level Pilot—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	Period of occurrence, category, severity, device relatedness of all adverse events	Pre-operative, Postoperative, 1.5, 3, 6, 12, 24, 36 months when events occurred when events occurred
D_ALLSUC	Derive primary overall success variable (Oswestry, neurological, fusion success, failure, serious AE, overall success)	6, 12, 24, 36 months
D_FUSION	Fusion success (overall success and other indicators)	6, 12, 24, 36 months
D_NEURO	Neurological success (motor, sensory, reflexes, and straight leg scores, change from pre-operative for all, success status all)	Pre-operative, 1.5, 3, 6, 12, 24, 36 months
D_OSW	Oswestry score, change from pre-op, and success	Pre-operative, 1.5, 3, 6, 12, 24, 36 months
D_PAIN	Back and leg pain, change from pre-op, success	Pre-operative, 1.5, 3, 6, 12, 24, 36 months
D_SF-36	SF-36 health survey scores, success variables, and change from pre-operative	Pre-operative, 1.5, 3, 6, 12, 24, 36 months

SAS Data Set	Variable Information	Time Points
FAILURE	Second surgery failures	6 and 24 months when events occurred
D_SAE	Dataset for serious device or device/surgery associated AE	6 and 24 months when events occurred
D_SURG2	A SAS dataset of all additional surgeries	Postoperative, 1,5, 3, 12, 24 and 36 months when events occurred
D_TRT	Study patient and treatment	NA

Table E-16a. Study 16: rhBMP-2/BCP database - Bmp BCR (Mexico)—Raw Data

SAS Data Set	Variable Information	Time Points	
PREOP1	Patient Enrollment (demographic information), Patient Qualification (inclusion/exclusion) and Pre-operative Data (medical data)	Pre-operative	
PREOP2	Neurological Status (reflexes, sensory, motor, straight leg), Neuro/Functional Status, Oswestry Questionnaire (10 questions)	Pre-operative	
PREOP3	SF 36 (36 Questions)	Pre-operative	
SURGERY	Surgery Data	Surgery	
HOSPITAL	Hospital Discharge (orthosis, complications)	Discharge	
POSTOP6W	Postoperative (medical data), Neurological Status (reflexes, sensory, motor, straight leg), Neuro/Functional Status, Oswestry Questionnaire (10 questions), SF 36 (36 Questions)	1.5 months	
POSTOP3M	Postoperative Data (medical data), Neurological Status (reflexes, sensory, motor, straight leg), Neuro/Functional Status, Oswestry Questionnaire (10 questions), SF 36 (36 Questions)	3 months	
POSTOP6M	Postoperative Data (medical data), Neurological Status (reflexes, sensory, motor, straight leg), Neuro/Functional, SF 36 (36 Questions)Oswestry Questionnaire (10 questions)Status	6 months	
POSTOP12	Postoperative Data (medical data) , Neurological Status (reflexes, sensory, motor, straight leg), Neuro/Functional, SF 36 (36 Questions)Oswestry Questionnaire (10 questions)Status	12 months	
RADREV	Radiographic Review (type of x-rays, measurements, evidence of fusion, evidence of implant problems)	Surgery/ discharge, 1.5, 3, 6, 12 months	

Table E-16b. Study 16: rhBMP-2/BCP database - Bmp BCR (Mexico)—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset for all the adverse events (time point, study cohort)	Operative, postoperative , 1.5, 3, 6, 12 months when events occurred
D_SURG2	A SAS dataset for all the additional surgeries	6 months when events occurred

Table E-17a. Study 17: INFUSE/CORNERSTONE-SR/ATLANTIS ACP-PIVOTAL STUDY—Raw Data

SAS Data Set	Variable Information	Time Points
ABDY	Blood specimens for antibody	Pre-operative, 1.5, 3, 6 and 12 months
ACCT	Patient Accountability (reason for lack of follow up)	6 and 12months
DSCH	Hospital Discharge (orthosis, AE)	Discharge
ENRL	Patient Enrollment (demographics)	Pre-operative
HPQ	Hip (donor site) pain questionnaire	Surgery/ discharge, 1.5, 3, 6, 12 and 24 months
NAPQ	Neck and arm pain questionnaire (2 questions neck, 2 arm)	Pre-operative, 1.5, 3, 6, 12 and 24 months
NDI	Neck Disability Index (10 questions)	Pre-operative, 1.5, 3, 6, 12 and 24 months
NEUR	Neurological Status (motor, sensory)	Pre-operative, 1.5, 3, 6, 12 and 24 months
PRED	Pre-operative Data (medical questions)	Pre-operative
PSTD	Postoperative Data (brace use, return to work)	1.5, 3, 6, 12 and 24 months
QUAL	Patient Qualification (inclusion/ exclusion)	Pre-operative
RDAT	Radiologic Data Pre-operative, surg discharge, 1.5, 3, 6 months	
RREV	Radiologic Review (implant problems, bridging bone, radiolucent lines)	Pre-operative, surgery/ discharge, 1.5, 3, 6, 12 and 24 months
SF-36	Health status questionnaire (SF-36 – 36 questions)	Pre-operative, 1.5, 3, 6, 12 and 24 months
SURG	Surgery Data	Surgery
SUVY	Patient Survey (medical characteristics, work status, satisfaction)	Pre-operative, 1.5, 3, 6, 12 and 24 months

Table E-17b. Study 17: INFUSE/CORNERSTONE-SR/ATLANTIS ACP-PIVOTAL STUDY—Derived Data

SAS Data Set	Variable Information	Time Points
D_AE	A SAS dataset for all the adverse events (time point, device related, severity, treatment group)	Postoperative, 3 and 24 months when events occurred
D_SURG2	A SAS dataset for all the additional surgeries	24 months when events occurred
D_TRT	Study patient and treatment dataset	NA

Appendix F. Outcome Variable Definitions/Criteria from Medtronic Protocols Compared with Those in Published Studies and Individual Patient Data Analysis for Comparative Effectiveness and Harms

Outcome Variable	Surgical Approach (Study Number)	Medtronic Protocol Definition/Criteria	Published Studies* Definition/Criteria	Individual Patient Data Analysis in This Review Definition/criteria
success	ALIF/PLIF /PLF (2, 3, 4, 5, 6, 8, 9, 12, 13, 14; not defined in Study 1)	All of the following criteria need to be satisfied: Fusion Improvement in the ODI for low back pain (ODI success) Maintenance or improvement in neurologic status (neurologic success) No serious adverse event classified as implant- or implant/surgical-associated No additional surgical procedure classified as "failure"	Only reported for Study 8, which used the same definition as the Medtronic protocol.	Same definition as Medtronic protocol except for a minor difference in Study 8: In Study 8, definition of ODI success differed slightly. (See definition for ODI success below.) In primary analysis, patients had to satisfy all criteria; patients with data for some but not all criteria were categorized as failures. In sensitivity analyses, we categorized patients with data for some but not all criteria as missing and excluded them from the analysis.
	Artificial disc (Maverick) (10)	Same as ALIF/PLF (see above), except: Fusion not a criterion Disc height is a criterion that postoperative disc height at each visit after 6 weeks was no more than 2mm shorter than postoperative disc height at 6 weeks	Same definition as Medtronic protocol	
	ACDF (7)	Same as ALIF/PLF (see above), except: Success based on improvement in NDI	Definition not reported	
Fusion	ALIF (1)	Bone growing continuously through the cage and connecting with vertebral bodies above and below through at least one cage,	Presence of continuous trabecular bone growth through both of the cages	Same definition as Medtronic protocols, except: If data from a CT scan were available, they were used first. If data from CT scan were not available but data from radiographs were available, radiographs data were used. In primary analysis, patients had to satisfy all criteria; patients with data for some but not all criteria were categorized as failures. In sensitivity analyses, we categorized patients with data for some but not all criteria as missing and excluded them from the analysis.

Outcome Variable	Surgical Approach (Study Number)	Medtronic Protocol Definition/Criteria	Published Studies* Definition/Criteria	Individual Patient Data Analysis in This Review Definition/criteria
	ALIF/PLIF/ Artificial disc rhBMP- 2 arm (2, 3, 4, 5, 6, 9,10)	All criteria must be met: 1) Evidence of continuous trabecular bone growth connecting the vertebral bodies and/or through either one or both implants; 2) Absence of radiolucency covering >50% of implant 3) Translation of ≤ 3mm and angulation of <5 degrees. Fusion assessed primarily with radiographs. CT scans used as a secondary method.	In addition to criteria used in the Medtronic protocols, patients who underwent a secondary surgery were considered as failed fusion in published studies (Study 2, combined analysis of Studies 2 and 3, Study 4, combined analysis of Studies 4 and 5, Study 6), and evidence of continuous trabecular bone growth was assessed generally using a CT scan. Study 6 used both CT and radiographs.	
	PLF (8, 12, 13, 14)	All criteria must be met: 1) Evidence of continuous trabecular bone growth connecting the transverse processes ; 2) Absence of radiolucent lines through the fusion mass; 3) Translation of \leq 3mm and angulation of <5 degrees. Fusion assessed primarily with radiographs. CT scans used as a secondary method.	Same definition as Medtronic protocols: Study 8 used both CT and radiographs but did not say how they were used for assessing bridging trabecular bone. Study 12 and 14 used radiographs and CT scans as specified in the protocols.	
	ACDF (7)	All criteria must be met: 1) Evidence of bridging bone 2) Absence of radiolucency covering >50% of superior or inferior surface of graft 3) Translation of \leq 3mm and angulation of <4 degrees. Radiographs and CT scans used to assess fusion.	Same definition as Medtronic protocol (The published study also used both CT and radiographs but did not say how they were used for assessing bridging trabecular bone.)	
ODI success	ALIF/PLIF /PLF, artificial disc (2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14)	At least a 15-point improvement in ODI score for back pain at each visit postoperatively compared with pre-operative index score (FDA's recommendation; a 15-point improvement is clinically meaningful based on Copay, 2008¶) Study 8 used a 15% improvement instead of a 15-point increase. Not defined in the protocol of Study 1	Studies 1 and 12: at least 15% improvement Study 10: at least 15-point improvement Other studies reported results with improvement of at least 15% (Studies 2 and 8), or at least 20% (Study 8), or at least 15 points (Studies 4 and 6) without explicitly defining success, or only reported actual scores (combined analysis of Studies 2 and 3, and 4 and 5).	Same definition as Medtronic protocols, except: For Study 8, an increase of at least 15 points in ODI score was used (to be consistent with definitions used in all other studies).
	ACDF (7)	At least a 15-point improvement in NDI score for neck pain at each visit postoperatively compared with pre-operative index score (FDA's recommendation; a 15-point improvement is clinically meaningful based on Copay, 2008¶)	Same definition as Medtronic protocol	Same definition as Medtronic protocol

Outcome Variable				Individual Patient Data Analysis in This Review Definition/criteria	
Neurologic success	ALIF/PLIF /PLF, artificial disc (2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14; not defined in Study 1)	Four neurologic tests evaluated motor function, sensory function, deep tendon reflexes, and sciatic tension signs (straight-leg raise). A score was developed for each test. Studies 2, 3, 5, 6, 9, 12, and 13: the scores of the four tests were totaled and an overall score was expressed as a percentage of the maximum possible score. A neurologic success was defined as a postoperative overall score no more than 10% worse than the pre-operative overall score. Studies 4, 8, 10, 14: neurologic success was defined as having the same or better score in all four tests compared to pre-operative score.	Not defined in Study 1; mean score reported. Studies 2, 4, 6,10: used the same definition as the Medtronic protocols. Combined analysis of Studies 2 and 3, combined analysis of Studies 4 and Studies 5, 8, 14: neurologic success was not reported, neither were the mean scores. Study 12: scores not reported; outcome briefly mentioned.	Used definition from Medtronic protocols for studies 4, 8, 10, 14 for all studies.	
	ACDF (7)	Same as ALIF/PLF for Studies 2, 3, 5, 6, 9, 12, and13 (see above), except: Sensory symptoms and the foraminal compression test were used in the place of sciatic tension signs.	Neurologic status of the patients was determined by evaluating two neurologic tests: motor and sensory function. Neurologic success was based on demonstrated maintenance or improvement in both tests.	Same as above, except: The four neurologic tests were motor function, sensory function, reflexes, and sensory symptoms; plus the foraminal compression test.	
Surgical procedure "failure"	ALIF/PLIF /PLF, artificial disc (2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14)	Surgical procedure classified as a failure when any of the following occurred: Supplemental fixation Device removal‡ Revision §	Combined analysis of Studies 4 and 5, Study 8 and 10: Same definition as Medtronic protocols. For Study 6: a second spinal surgery at the same level All other published studies: Not reported.	Same definition as Medtronic protocols	
SF-36	(All studies)	Standard definition†	Standard definition†	Standard definition†	
Back or leg pain	5		Same definition as Medtronic protocols	Only rating score on intensity of back or leg pain on a scale from 0 to 10 was used.	
	Artificial disc (10)	Multiplication of rating scores (0-10) on intensity and duration of back or leg pain	Same definition as Medtronic protocol	Only rating score on intensity of back or leg pain on a scale from 0 to 10 was used.	
Neck or arm pain	ACDF (7)	Sum of rating scores on intensity and duration of neck or arm pain, both on a scale of 0 to 10	Same definition as Medtronic protocol	Only rating score on intensity of neck or arm pain on a scale from 0 to10 was used.	
Adverse event	(All studies)	No definition in protocols; "adverse event" listed in the data collection forms	Sparsely reported; as defined in Medtronic datasets	As defined in Medtronic datasets	

Outcome Variable	Surgical Approach (Study Number)	Medtronic Protocol Definition/Criteria	Published Studies* Definition/Criteria	Individual Patient Data Analysis in This Review Definition/criteria
Device- related adverse event	(All studies)	Reasonable possibility that the adverse event may have been caused by the implant(s) or by device and surgical procedure, as determined by Study investigators	Only reported in Study 10 and 14; as defined in Medtronic datasets	As defined in Medtronic datasets
Serious adverse event	(All studies)	For events defined in the WHO Recommendations for Grading of Acute and Subacute Toxic Effects, any adverse event with severity 3 or 4. For events not defined by the WHO Toxicity Scale, any adverse event if it limits the patient's ability to perform routine activities despite symptomatic therapy, if it results in the need to remove the implant, or if the patient is at immediate risk of death.	Only reported in Study 10, defined as WHO Grade 3 or 4 adverse event	Serious adverse events categorized as: An adverse event with a severity score of 3 or 4, based on Medtronic categorization of severity in Medtronic datasets.
Relevant additional surgeries	(All studies)	Not specifically defined what is "relevant" but classified additional surgeries as: supplemental fixation, device removal, revision and re-operation	Study 1: not reported. All other studies reported secondary/additional surgeries as classified in Medtronic protocols. Study 14 compared second surgeries including revision, non-elective removal, and revision only. Elective removal and reoperation was excluded.	Relevant additional surgery: Supplemental fixation Device removal Revision Re-operation Based on classification in Medtronic datasets
Possible Iumbar radiculitis	ALIF/PLIF /PLF (1, 2, 4, 5, 6, 8, 9,12, 13, 14)	Not defined as an outcome	Not defined as an outcome	Primary definition: back pain plus any leg or buttock pain or weakness (includes pain described as sciatica, radiculopathy or radicular pain, use of epidural steroids or decompression surgery). Sensitivity analysis looked at other definitions. Definition 2 similar to primary definition except back pain not required. Leg numbness and nerve root injections also included as indicating possible radiculitis. Definition 3 same as definition 2 except that any type of back and leg pain was included (e.g., osteoarthritis). Definition 4 defined possible lumbar radiculitis simply as back and/or leg pain with the use of epidural steroids or decompression surgery.

ACDF = anterior cervical discectomy and fusion; ALIF = anterior lumbar interbody fusion; CT = computed tomography; FDA = U.S. Food & Drug Administration; NDI = Neck Disability Index (Vernon); ODI = Oswestry Disability Index/Oswestry Low Back Pain Disability Questionnaire; PLF = posterolateral lumbar fusion; PLIF = posterior lumbar interbody fusion; WHO = World Health Organization.

* Studies 9 and 13 were not published.

† Standard definition for Medical Outcomes Study 36-Item Short Form Health Survey (SF-36) was used for all studies in all sources. [Ware JE, Kosinski M, Keller SK. SF-36® Physical and Mental Health Summary Scales: A User's Manual. Boston, MA: The Health Institute; 1994.]

¶ Copay AG, Glassman SD, Subach BR, et al. Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J. 2008 Nov-Dec;8(6):968-74. PMID: 18201937

‡ Studies 7, 8 and 14 used non-elective device removal.

⁵ Studies 6, 9, 12, and 13 used revision after two weeks of surgery. For revisions within two weeks of surgery, Medtronic determined whether or not these events were failures on a case-by-case basis, with input from FDA.

Appendix G. Individual Patient Data Raw Data Calculation

Medtronic provided two sets of individual patient data (IPD): raw and derived. The raw data were those transcribed directly from the case report form (CRF) and the derived data were calculated from the raw data. For example, SF-36 comprises 36 questions in CRF. The raw data contained information about answers of the 36 questions and the derived data had information about the calculated scores of mental health and physical health components based on the 36 questions.

In this review, the effectiveness measures included overall success, fusion, neurological success, Oswestry Disability Index (ODI) success, ODI score, back and leg pain for lumbar spine (or neck and arm pain for cervical spine), mental health and physical health components of SF-36 and return to work. Except for return to work, all other effectiveness measures were derived measures in Medtronic protocols. We recalculated or recoded all these derived measures from the raw individual patient data, based on the following:

- 1. The criteria to define overall success, fusion, neurological success and ODI score success, while similar across most trials, were not consistent across all trials. We applied a consistent definition across all trials for each of these outcomes.
- 2. If a patient had an additional surgery that was device or surgery related, it was categorized as a second surgery failure. In the Medtronic derived datasets, all data after second surgery failure were either treated as missing or replaced by using last observation carrying forward.

However, Medtronic datasets provided raw data for these patients after second surgery failure. We calculated all measures based on these observed data, which reflected the actual status for these patients after second surgery failure. Applying the principle of intention to treat, we used these calculated data in our analysis.

3. Derived measures were not provided in two of the Medtronic trials, and needed to be calculated.

The outcome definitions used in our IPD analysis are presented in Appendix F. In our calculation of derived effectiveness measures, we tried to use more stringent criteria. In particular:

1. Fusion was defined by the satisfaction of all three criteria: evidence of bridging trabeculae, no evidence of motion as defined by no more than 3mm difference in translation and less than 5° difference in angular motion between flexion and extension, and no evidence of radiolucency surrounding greater than 50% of either device (ALIF, PLIF and ACDF), or no evidence of a radiolucency line (PLF) based on surgical approach. For evidence of bridging trabeculae, since most patients have CT scans, we used data from CT scans first and only used data from radiographs when CT scans are not available.

The radiographic reviews should be completed by two independent, blinded radiologists. If there is a disagreement, a third radiologist would break the tie. In our calculation, we found that patients may have data on some, but not all three criteria, or may have information from only one radiologist, or that two radiologists did not agree on fusion status but there is no information of review on the third radiologist.

To account for the varying patterns of partial data and missing data, we calculated multiple versions of fusion. In the primary analysis, if a patient had partial missing data, it was classified as a fusion failure. This was a more stringent definition, given that the patient was available for evaluation but the available data were not adequate to show successful fusion. In the sensitivity analysis, we used this measure for primary analysis. The second version we treated patients with partial missing data as missing for the fusion outcome, and therefore they were excluded from the analysis. We also conducted another sensitivity analysis by treating patients with any missing data as fusion failures.

- 2. Neurological success was evaluated based on a comprehensive neurological scale within four domains: motor, sensory, reflexes, and straight leg raise. Postoperative neurological success was defined by improvement or maintenance on all four domains compared to pre-operative score.
- 3. Postoperative ODI score improvement (ODI success) was defined as a 15-point decrease in disability score compared to pre-operative score.
- 4. Overall success was defined by meeting all of the following five conditions: i) fusion; ii) ODI success; iii) neurological success; iv) no serious adverse event classified as device associated or device/surgical procedure associated; v) no additional surgical procedure classified as a "failure."

Again, we found that patients may have data on some, but not all five conditions and we calculated multiple versions of overall success. In the primary analysis, the primary analysis version of fusion was used for the first condition, and if a patient had partial missing data, it was classified as a failure for overall success. In the sensivitity analysis, the sensitivity analysis version of fusion was used for the first condition, and if a patient had partial missing data, it was classified as missing for overall success and excluded from the analysis. Again, we also conducted another sensivity analysis by treating as failures patients for whom any data was missing.

5. For leg and back pain for lumbar spine, or arm or neck pain for cervical spine, a numerical rating scale from 0 to 10 was used to measure both pain intensity and duration. The Medtronic derived variables either added the two scales together, as in most trials, or multiplied the two scales together, to produce a composite score. In our assessments, it was not very interpretable to use a numerical rating scale of 0 to 10 to evaluate pain duration, and it has not been a standard measure to assess pain. Therefore, we only used pain intensity on a 0 to 10 scale as the pain measure.

For harms and second surgeries, only derived data were provided. We checked the accuracy of adverse events in the derived datasets against the brief case history of adverse events in the manufacture final reports for three trials (Studies 2, 8 and 14). We found no inconsistency between the two data sources and relied on the derived datasets for all other trials. We also compared the IPD data on adverse events to those presented in the detailed study reports and found them to be generally consistent. In the manufacture's trial protocol, leg pain and back pain were assessed by measuring pain intensity and duration on a 0-10 scale at each follow-up point. Leg and back pain was also recorded as an adverse event in the derived adverse event datasets. We analyzed both pain intensity (as an effectiveness outcome) and a leg and back pain event (as an adverse event) based on the way the manufacturer measured the two variables.

The dataset for harms listed each adverse event (AE), the period that the AE occurred, the severity of the AE classified by Medtronic based on World Health Organization (WHO) Recommendations for Grading of Acute and Subacute Toxic Effects on a scale from 1 to 4, and whether the AE was device and/or surgical related classified by Medtronic. Based on these derived data, for each trial, we calculated the number of AEs for each patient and the number of patients for each of the following categories: i) having at least one AE; ii) having at least one serious AE (severity \geq 3); iii) having at least one device-related AE; and iv) having at least one major additional surgery (e.g., revision, elective or non-elective removal of one or more components of the original device and supplemental fixation, reoperation at the involved level that does not remove, modify or add any components). These categories were used to assess overall AE. For specific AEs, the number of patients with each specific AE was calculated. In all calculations, non-unions or pending unions, which were included in the derived datasets for harms, were excluded from the harm analysis since fusion was considered as an effectiveness outcome. For all AE assessment, we aggregated the data into two time periods: 4 weeks and 24 months. The former period included data from operative and 0 - 4 weeks postoperative to characterize short term AE and the latter period included data up to 24 months to characterize long term AE.

Appendix H. Two-Step Model and Results

Meta-analysis using two-step approach

For ALIF and PLF trials with IPD, we conducted meta-analysis using a two-step approach.¹ In the first step, for each study, we calculated aggregated study-level estimates for each outcome. In the second step, we combined the estimates from different studies.

Step One: Calculating study-level estimates from individual patient data

For continuous outcomes (ODI score, pain and SF-36), we used the mean difference as the effect measure, and we conducted an analysis of covariance (ANCOVA) to estimate the mean difference between the two treatment groups using postoperative scores while adjusting for the baseline preoperative score for each study (The summary data was provided in Appendix L.) For binary outcomes, the risk ratio (RR) was used as the primary effect measure. When the combined estimate was statistically significant and the control rates were similar across studies, an absolute risk difference was also calculated to aid in clinical interpretation of results. For the number of adverse events, a Poisson regression model was first used to estimate a rate ratio to compare the treatment groups for each study and then this rate ratio was combined in the metaanalysis.

Step Two: Pooling across studies

When feasible, we pooled the study level estimates to obtain summary estimates of effects using standard meta-analysis methods for study-level data. We assessed the presence of statistical heterogeneity among the studies with standard χ^2 tests and the magnitude of heterogeneity with the I^2 statistic.² The trials were combined using a random effects model ³ to account for variation among studies. We used a random effects model except in the case of outcomes with rare events, where a fixed effects model (Mantel-Haenszel method with no continuity correction) was used. A fixed effects model provides better combined estimates even for rare event in the presence of heterogeneity.⁴ Rates and proportions from the rhBMP-2 or control group, when necessary, were also combined using a random effects model.

Within each surgical approach appropriate for meta-analysis, the number of trials was too small to use meta-regression to evaluate the effect of study-level variables.⁵ We performed sensitivity analysis by excluding poor quality studies, studies that utilized a lower rhBMP-2 concentration (posterolateral fusion), and graft site related adverse events in the analysis of harms. In addition, we meta-analyzed the manufacture derived effectiveness outcome variables in IPD datasets as one more sensitivity analysis. Sensitivity analyses produced similar results in general.

Results of Meta-analysis using two-step approach

Results of effectiveness and harms for ALIF and PLF trials through 24 months based on the twostep approach are presented below (Table I-1 and Table I-2), and results from longer follow-up are presented in the main text. Results of effectiveness and harms for ALIF and PLF trials through 24 months in the main text are based on the mixed effects model.

References

 Simmonds MC, Higgins JP, Stewart LA, et al. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clinical Trials. 2005;2(3):209-17. PMID: 16279144.

- 2. Higgins JP, Thompson SG, Higgins JPT, et al. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine. 2002 Jun 15;21(11):1539-58. PMID: 12111919.
- 3. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986 Sep;7(3):177-88. PMID: 3802833.
- Sweeting MJ, Sutton AJ, Lambert PC, et al. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data.[Erratum appears in Stat Med. 2006 Aug 15;25(15):2700]. Stat Med. 2004 May 15;23(9):1351-75. PMID: 15116347.
- 5. Fu R, Gartlehner G, Grant M, et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J Clin Epidemiol. 2011 Nov;64(11):1187-97. PMID: 21477993.

Table H-1.	Effectiveness Endpoints for ALIF and PLF with rhBMP-2 vs. ICBG Based on Two-
	step Approach Through 24 Months*

Outcome Scale	6 weeks	3 months	6 months	12 months	24 months
ALIF†					
		Relative ris	sk (95% CI)		
		ہ Sample Size			
Overall success			1.13 (0.93 to 1.37) 0.0 445 (4)	1.14 (0.89 to 1.45) 26.9 436 (4)	1.28 (0.89 to 1.83) 56.2 418 (4)
Fusion			1.10 (1.02 to 1.19) 0.0 446 (5)	1.09 (0.95 to 1.24) 29.4 439 (5)	1.05 (0.88 to 1.24) 76.0 416 (5)
Neurological success	1.01 (0.94 to 1.08) 0.0 434 (4)	1.00 (0.92 to 1.09) 37.8 442 (4)	0.98 (0.91 to 1.06) 0.0 433 (4)	1.01 (0.94 to 1.09) 0.0 420 (4)	1.04 (0.96 to 1.13) 0.0 400 (4)
ODI success	1.19 (0.79 to 1.78) 49.6 442 (4)	1.02 (0.86 to 1.21) 8.8 455 (5)	1.06 (0.95 to 1.19) 0.0 450 (5)	1.02 (0.83 to 1.26) 48.4 436 (5)	1.08 (0.95 to 1.22) 0.0 417 (5)
Return to work§	1.21 (0.73 to 1.98) 0.0 211 (4)	1.02 (0.70 to 1.47) 48.7 210 (4)	1.01 (0.89 to 1.15) 0.0 207 (4)	1.01 (0.90 to 1.13) 0.0 201 (4)	1.04 (0.93 to 1.16) 0.0 196 (4)
		Weighted Mean D	ifference (95% CI)		
		Sample Size			
ODI (0-50)II	-2.33 (-6.59 to 1.93) 36.6 444 (4)	-5.15 (-10.30, -0.01) 49.5 461 (5)	-3.62 (-8.02 to 0.78) 30.4 456 (5)	-3.24 (-8.30 to 1.81) 38.3 441 (5)	-6.94 (-13.90 to 0.02) 61.1 423 (5)
Back pain (0-10)ll	0.22 (-0.38 to 0.82) 22.3 443 (4)	-0.57 (-1.06 to -0.09) 0.0 446 (4)	-0.31 (-0.82 to 0.20) 0.0 442 (4)	-0.51 (-1.19 to 0.16) 21.8 426 (4)	-0.62 (-1.23 to -0.02) 0.0 409 (4)
Leg pain (0-10)∥	-0.57 (-1.12 to -0.02) 0.0 443 (4)	-0.28 (-0.80 to 0.25) 0.0 446 (4)	-0.20 (-0.72 to 0.31) 0.0 442 (4)	-0.51 (-1.13 to 0.12) 8.9 426 (4)	-0.55 (-1.15 to 0.05) 0.0 409 (4)

SF-36 PCS (0-100)¶	0.55 (-1.02 to 2.11)	2.54 (0.46 to 4.61)	2.81 (0.85 to 4.76)	2.95 (0.86 to 5.04)	3.34 (0.92 to 5.75)
	0.0	5.5	0.0	0.0	5.2
	356 (3)	374 (4)	449 (5)	440 (5)	421 (5)
SF-36 MCS (0-100)¶	-0.36 (-2.45 to 1.72)	0.75 (-1.34 to 2.84)	-0.31 (-2.22 to 1.60)	-0.56 (-2.60 to 1.47)	2.86 (-0.20 to 5.92
	0.0	0.0	0.0	0.0	35.0
	356 (3)	374 (4)	449 (5)	440 (5)	421 (5)
PLF**					
			sk (95% CI)		
		⁻ا Sample Size	% , n (Studies)		
Overall success			1.55 (0.90 to 2.67) 79.6 698 (4)	1.17 (0.84 to 1.63) 60.1 687 (4)	1.04 (0.90 to 1.20) 0.0 648 (4)
Fusion			1.44 (0.95 to 2.19) 89.2 694 (4)	1.29 (0.94 to 1.78) 86.3 686 (4)	1.16 (0.96 to 1.41) 75.8 637 (4)
Neurological success	1.04 (0.99 to 1.10)	1.00 (0.94 to 1.06)	1.02 (0.96 to 1.09)	1.01 (0.95 to 1.07)	1.02 (0.96 to 1.09
	0.0	0.0	0.0	0.0	0.0
	706 (4)	705 (4)	693 (4)	683 (4)	636 (4)
ODI success	1.01 (0.85 to 1.20)	1.04 (0.92 to 1.17)	1.07 (0.98 to 1.17)	1.01 (0.89 to 1.15)	1.02 (0.93 to 1.12
	0.0	0.0	0.0	19.0	0.0
	707 (4)	704 (4)	693 (4)	683 (4)	640 (4)
Return to work§	1.28 (0.73 to 2.25)	1.32 (0.72 to 2.43)	0.96 (0.84 to 1.08)	1.07 (0.89 to 1.29)	1.02 (0.91 to 1.15
	0.0	0.0	0.0	30.0	9.7
	233 (3)	232 (3)	225 (3)	227 (3)	208 (3)
			ifference (95% CI) %		
		-	», n (Studies)		
ODI (0-50)II	0.74 (-1.68 to 3.16)	-1.96 (-4.35 to 0.43)	-2.41 (-4.86 to 0.04)	-2.23 (-4.95, 0.49)	-1.92 (-5.03 to 1.18
	0.0	0.0	0.0	0.0	5.9
	718 (4)	714 (4)	703 (4)	694 (4)	650 (4)
Back pain (0-10)∥	0.10 (-0.27 to 0.48)	-0.26 (-0.62 to 0.11)	-0.45 (-1.07 to 0.17)	-0.41 (-1.34 to 0.52)	-0.31 (-0.76 to 0.15
	0.0	0.0	35.9	64.5	0.0
	716 (4)	713 (4)	702 (4)	693 (4)	649 (4)
Leg pain (0-10)ll	0.23 (-0.21 to 0.66)	-0.43 (-0.85 to -0.02)	-0.27 (-0.71 to 0.17)	-0.29 (-0.74 to 0.17)	-0.35 (-0.82 to 0.13
	0.0	0.0	0.0	0.0	0.0
	715 (4)	712 (4)	701 (4)	692 (4)	648 (4)
SF-36 PCS (0-100)¶	-0.10 (-1.15 to 0.95)	0.65 (-0.67 to 1.96)	1.79 (0.26 to 3.31)	1.89 (0.26 to 3.53)	1.10 (-0.66 to 2.86
	0.0	0.0	0.0	0.0	0.0
	709 (4)	708 (4)	696 (4)	689 (4)	644 (4)

	0.50 (-0.95 to 1.96)	-0.05 (-1.60 to 1.50)	0.06 (-1.47 to 1.60)	-0.48 (-2.21 to 1.25)	0.54 (-2.74 to 3.83)
SF-36 MCS (0-100)¶	0.0	0.0	0.0	5.8	60.6
	709 (4)	708 (4)	696 (4)	696 (4)	644 (4)

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft; MCS = Mental Component Summary; ODI = Oswestry Disability Index; PCS = Physical Component Summary; PLF = posterolateral lumbar fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2; SF-36 = Short Form-36. * For overall success, fusion, neurologic success, ODI success, and return to work, values reported are risk ratios (95% CIs). For ODI score, back pain, leg pain,

and SF-36 PCS and MCS scores, values reported are weighted mean differences (95% CIs). Values in bold are significant (P < 0.05).

† A total of 465 patients were included in the analysis; 4 who had open surgery in study 1 were excluded.

‡ Combined estimates obtained using a 2-step approach.

§ The data include only patients who worked before surgery. For ALIF, 221 patients worked before surgery; for PLF, 241 worked before surgery.

 \parallel High values represent worse outcomes, and a negative difference favors rhBMP-2.

¶ Low values represent worse outcomes, and a positive difference favors rhBMP-2.

** A total of 722 patients were included in the analysis; 11 who were randomly assigned to rhBMP-2 without instrumentation in study 12 were excluded.

Event*	<u>≤ 4</u> V	Veeks After Surgery	≤ 24 Months After Surgery			
ALIF†						
	Patients with BMP vs. ICBG, %	Risk Ratio (95% Cl) I ² % Sample Size, <i>n</i> (Studies)	Patients with BMP vs. ICBG, %	Risk Ratio (95% Cl) I ² % Sample Size, <i>n</i> (Studies)		
Overall adverse events						
Overall adverse event, rate‡	0.48 vs.0.65 [∎]	0.81 (0.63, 1.04)§ 0.0 465 (5)	1.76 vs. 1.73 [∎]	1.01 (0.77,1.34)§ 42.1 465 (5)		
≥ 1 Adverse event, any type	38 vs. 45	0.86 (0.70 to 1.06) 0.0 465 (5)	78 vs. 80	0.98 (0.88 to 1.09) 7.7 465 (5		
≥ 1 Serious adverse event	9 vs. 8	1.12 (0.61 to 2.07) 0.0 455 (4)	34 vs. 35	1.04 (0.61 to 1.75) 55.3 465 (5)		
≥ 1 device-related adverse event			7 vs. 4	1.50 (0.71 to 3.17) 4.1 465 (5)		
Specific adverse events						
Anatomical/technical difficulty	0.9 vs. 3	0.22 (0.05 to 1.08) 0.0 419 (4)	0.9 vs. 3	0.22 (0.05 to 1.08) 0.0 419 (4)		
Back and/or leg pain	4 vs. 3	1.05 (0.41 to 2.73) 0.0 455 (4)	26 vs. 24	1.07 (0.47 to 2.46) 68.7 465 (5)		
Cardiovascular	2 vs. 4	0.54 (0.16 to 1.78) 0.0 409 (3)	6 vs. 7	0.85 (0.43 to 1.71) 0.0 455 (4)		
Gastrointestinal	13 vs. 15	0.84 (0.53 to 1.33) 0.0 465 (5)	17 vs. 19	0.89 (0.60 to 1.30) 0.0 465 (5)		
Implant problems	2 vs. 1	1.12 (0.23 to 5.57) 0.0 380 (4)	3 vs. 0.9	2.42 (0.58 to 10.07) 0.0 465 (5)		
Infection (all types)	6 vs. 5	1.10 (0.49 to 2.50) 0.0 410 (3)	10 vs. 10	1.07 (0.62 to 1.83) 0.0 455 (4)		
Neurological	3 vs. 4	0.80 (0.28 to 2.30) 0.0 409 (3)	16 vs. 14	1.09 (0.69 to 1.72) 0.0 455 (4)		
Possible lumbar radiculitis (primary)¶	3 vs. 3	1.02 (0.34 to 3.10) 0.0 455 (4)	23 vs. 24	0.99 (0.71 to 1.38) 0.0 455 (4)		
Possible lumbar radiculitis (Definition 2)¶	2 vs. 3	0.47 (0.13 to 1.72) 0.0 455 (4)	16 vs. 14	1.11 (0.72 to 1.72) 0.0 455 (4)		
Possible lumbar radiculitis (Definition 3)¶	3 vs. 3	0.84 (0.28 to 2.49) 0.0 455 (4)	26 vs. 22	1.15 (0.83 to 1.60) 0.0 455 (4)		

Table H-2. Overall and Specific Adverse Events for ALIF and PLF with rhBMP-2vs. ICBG Based on Two-step Approach

		0.00 (0.00 to 1.07)		4.07 (0.70 to 0.00)
Possible lumbar radiculitis	0.0	0.33 (0.06 to 1.87)	44	1.27 (0.72 to 2.23)
(Definition 4)¶	0.8 vs. 2	0.0	11 vs. 9	0.0
		455 (4)		455 (4)
		0.57 (0.16 to 2.00)		0.47 (0.16 to 1.36)
Respiratory	2 vs. 3	0.0	3 vs. 5	0.0
		364 (2)		364 (2)
		2.62 (0.28 to 24.56)		4.36 (0.52 to 36.40)
Retrograde ejaculation	4 vs. 1		6 vs. 1	
		144 (1)		146 (1)
		0/167 vs. 3/158		1.13 (0.68 to 1.89)
Spinal event	0 vs. 2	325 (2)	12 vs. 11	0.0
		323 (z)		455 (4)
		1.43 (0.24 to 8.41)		3.20 (0.66 to 15.53)
Subsidence	2 vs. 1		4 vs. 1	0.0
		279 (1)		364 (2)
		1.91 (0.84 to 4.37)		1.62 (0.90 to 2.92)
Urogenital	7 vs. 4	0.0	13 vs. 8	0.0
		420 (4)		420 (4)
		2/168 vs. 0/156		2/168 vs. 0/156
Vertebral fracture	1 vs. 0	324 (2)	1 vs. 0	324 (2)
		524 (2)		
Linony rotantian			6.00	2.33 (0.84 to 6.43)
Urinary retention¶			6 vs. 2	0.0
				378 (3)
				0.73 (0.32 to 1.67)
Wound infection¶			5 vs. 6	0.0
				410 (3)
Wound dehiscence¶			1 vs. 0	3/253 vs. 0/139
			1 43. 0	293 (2)
			11 vs. 13	0.79 (0.40 to 1.54)
Relevant additional surgeries				23.3
				455 (4)
PLF**				
Overall adverse events				
		1.04 (0.86, 1.27)§		1.06 (0.94,1.20)§
Overall adverse event, rate:	0.84	0.0	3.22 vs.	0.0
	vs.0.91 [″]	722 (4)	3.06	722 (4)
> 1 Advorge event and the	E1 vo 10	1.02 (0.83 to 1.27)	00.00	1.01 (0.96 to 1.06)
≥ 1 Adverse event, any type	51 vs. 49	32.0	88 vs. 87	0.0
		722 (4)		722 (4)
		0.90 (0.68 to 1.19)		0.97 (0.84 to 1.12)
≥ 1 Serious adverse event	20 vs. 23	0.0	50 vs. 52	0.0
		722 (4)		722 (4)
≥ 1 device-related adverse				1.37 (0.73 to 2.54)
event			6 vs. 5	41.1
				722 (4)
Specific adverse events				
Anatomical/technical difficulty	1 vs. 0	4/337 vs. 0/323	1 vs. 0	4/337 vs. 0/323
Anatomica/technical unitcully	1 v5. 0	660 (2)	1 vs. 0	660 (2)
		1.84 (1.01 to 3.37)††		1.18 (1.01 to 1.39)††
Back and/or leg pain	8 vs. 4	0.0	49 vs. 42	0.0
<u> </u>		706 (3)		722 (4)
		0.97 (0.68 to 1.39)		0.93 (0.70 to 1.24)
Cardiovascular	14 vs. 14	0.07 (0.00 to 1.03)	19 vs. 21	0.030 (0.70 to 1.24)
		0.0		0.0

		706 (3)		722 (4)
		0.76 (0.43 to 1.32)		0.78 (0.45 to 1.35)
Dural injury	6 vs. 7	0.0	6 vs. 8	0.0
		722 (4)		722 (4)
		0.72 (0.44 to 1.18)		0.81 (0.51 to 1.29)
Gastrointestinal	7 vs. 10	18.9	16 vs. 18	31.6
		722 (4)		722 (4)
		2.86 (0.57 to 14.34)		1.58 (0.57 to 4.33)
Implant problems	2 vs. 0.6	0.0	3 vs. 2	0.0
		706 (3)		706 (3)
		1.04 (0.55 to 1.98)		1.00 (0.66 to 1.50)
Infection (all types)	9 vs. 10	30.9	18 vs. 19	27.4
		706 (3)		706 (3)
		1.53 (0.70 to 3.33)		1.14 (0.88 to 1.47)
Neurological	5 vs. 3	0.0	26 vs. 23	0.0
-		722 (4)		722 (4)
Dessible lumber of disulti-		1.31 (0.51 to 3.36)		0.95 (0.74 to 1.22)
Possible lumbar radiculitis	3 vs. 2	0.0	24 vs. 26	0.0
(Primary)¶		722 (4)		722 (4)
Dessible lumber of district		1.65 (0.61 to 4.47)		0.88 (0.61 to 1.26)
Possible lumbar radiculitis	3 vs. 2	0.0	14 vs. 15	0.0
(Definition 2)¶		722 (4)		722 (4)
De seikle kunsken nedisulitie		1.32 (0.56 to 3.08)		0.91 (0.70 to 1.18)
Possible lumbar radiculitis	3 vs. 3	0.0	24 vs. 26	0.0
(Definition 3)¶		722 (4)		722 (4)
		1.54 (0.45 to 5.29)		0.86 (0.57 to 1.32)
Possible lumbar radiculitis	2 vs. 1	0.0	10 vs. 11	0.0
(Definition 4)¶		455 (4)		455 (4)
		1.37 (0.60 to 3.15)		1.45 (0.80 to 2.61)
Respiratory	4 vs. 3	23.9	7 vs. 5	0.0
		706 (3)		706 (3)
		1.02 (0.25 to 4.10)		0.89 (0.56 to 1.40)
Spinal event	1 vs. 1	0.0	9 vs. 10	0.0
		676(3)		722 (4)
		1.05 (0.62 to 1.79)		1.11 (0.76 to 1.62)
Urogenital	7 vs. 7	0.0	13 vs. 12	0.0
		722 (4)		722 (4)
		1.26 (0.29 to 5.55)		0.95 (0.24 to 3.73)
Vertebral fracture	2 vs. 0.9	0.0	1 vs. 1	0.0
		660 (2)		660 (2)
				0.81 (0.55 to 1.18)
Relevant additional surgeries			12 vs. 14	0.0
Relevant additional surgenes			12 VO. 1-T	722 (4)

ALIF = anterior lumbar interbody fusion; ICBG = iliac crest bone graft; PLF = posterolateral lumbar fusion; rhBMP-2 = recombinant human bone morphogenetic protein-2.

* Categories are based on Medtronic data sets unless otherwise indicated.

†A total of 465 patients were included in the analysis, excluding 4 who had open surgery in study 1.

‡We examined rate of overall adverse events (as opposed to proportion of patents having adverse events). §Rate ratio

Rate (number of adverse events per patient)

Based on individual adverse event case histories in the internal reports provided by Medtronic.

**A total of 722 patients were included in the analysis, excluding 11 randomly assigned to rhBMP-2 without instrumentation in study 12.

††Statistically significant (P < 0.05).

Appendix I (Part 1). Strength of Evidence – Up to 24 Months

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1	,					
5 RCTs <i>n</i> =416 2 Cohorts <i>n</i> =60	Moderate	Low	Direct	Moderate	RR 1.05, 0.88 to 1.24 No difference	Moderate
	Overall Suc	cess				
5 RCTs <i>n=</i> 418	Moderate	Moderate	Direct	Low	RR 1.19, 0.99 to 1.42	Moderate
	. Neurologica	al Success				
4 RCTs <i>n=</i> 400	Moderate	Moderate	Direct	Moderate	RR 1.08, 0.98 to 1.19	Moderate
	. Oswestry Di	isability Index				
5 RCTs <i>n=</i> 423	Moderate	Low	Direct	Low	WMD -6.94, -13.90 to 0.02	Low
	ODI Succes	S				
5 RCTs <i>n=</i> 417	Moderate	High	Direct	Moderate	RR 1.10, 0.97 to 1.24	Moderate
Outcome 6	. Back Pain					
4 RCTs <i>n=</i> 409	Moderate	High	Direct	Low	WMD -0.74, -1.49 to 0.00	Moderate
Outcome 7	. Leg Pain					
5 RCTs <i>n=</i> 409	Moderate	High	Direct	Low	WMD -0.60, -1.28 to 0.08	Moderate
	SF-36 PCS					
5 RCTs <i>n=</i> 421	Moderate	Moderate	Direct	Moderate	WMD 3.68, 0.86 to 6.49	Moderate
	SF-36 MCS					
5 RCTs <i>n=</i> 421	Moderate	Low	Direct	Moderate	WMD 2.90, - 0.29 to 6.08	Low
	0. Return to V	Vork				
4 RCTs <i>n</i> =196	Moderate	Moderate	Direct	High	RR 1.06, 0.94 to 1.19	Moderate
	1. Adverse Ev	vents				
5 RCTs <i>n=</i> 465	Moderate	Moderate	Direct	High	RR 0.96, 0.85 to 1.09	Moderate
	2. Serious Ac	Iverse Events				
5 RCTs <i>n=</i> 465	Moderate	Moderate	Direct	Low	RR 0.94. 0.67 to 1.33	Moderate

Table I-1. Anterior lumbar interbody fusion (ALIF) - rhBMP-2 vs. bone graft - strength of evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1	3. Retrograde	e Ejaculation				
1 RCTs <i>n</i> =146 1 Cohort	High	Moderate	Direct	Low	RR 4.36, 0.52 to 36.40 	Low
n=243	אנ				7.3% vs. 0.6% (p=0.0025)	
Outcome 1	4. Urinary Re	tention				
3 RCTs <i>n=</i> 378	High	Low	Direct	Low	RR 2.55, 0.30 to 21.52	Low
Outcome 1	5. Wound Infe	ection				
3 RCTs <i>n=</i> 410	High	Moderate	Direct	Low	RR 0.73, 0.38 to 1.43	Low
Outcome 1	6. Wound De	hiscence				
2 RCTs <i>n=</i> 293	High	Moderate	Direct	Low	3/253 vs. 0/139	Insufficient
Outcome 1	7. Bone Reso	orption/Subside	nce			
2 RCTs <i>n</i> =364 1 Cohort <i>n</i> =24	Moderate	High	Direct	Low	RR 3.15, 0.66 to 14.99 70% vs. 6% (p=0.0001)	Moderate
Outcome 1	8. Relevant R	eoperations				
4 RCTs <i>n=</i> 455 1 Cohort <i>n=</i> 36	Moderate	Moderate	Direct	Low	RR 0.81, 0.49 to 1.33 33% vs. 26% (p=0.67)	Moderate

*Sample size reflects the total number of patients included in each analysis

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. O	verall Success					
4 RCTs <i>n=</i> 648	Moderate	High	Direct	High	RR 1.05, 0.91 to 1.21	Moderate
Outcome 2. F	usion					
4 RCTs <i>n</i> =637 5 cohorts <i>n</i> =351	Moderate	Moderate	Direct	Moderate	RR 1.16, 0.96 to 1.41 Cohorts: Rates range widely; few significant differences	Moderate
	eurological suc	cess				
4 RCTs <i>n=</i> 636	Moderate	High	Direct	High	RR 1.01, 0.92 to 1.10	Moderate
Outcome 4. O	DI success					
4 RCTs <i>n=</i> 640	Moderate	High	Direct	High	RR1.01, 0.91 to 1.12	Moderate
Outcome 5. R	eturn to work					
3 RCTs <i>n</i> =208	Moderate	High	Direct	High	RR 1.03, 0.94 to 1.14	Moderate
Outcome 6. S	F-36: PCS					
4 RCTs <i>n=</i> 644	Moderate	Moderate	Direct	Moderate	WMD 1.10, -0.65 to 2.86	Moderate
Outcome 7. S	F-36: MCS					
4 RCTs <i>n=</i> 644	Moderate	Low	Direct	Low	WMD 0.54, -3.16 to 4.25	Low
Outcome 8. O	DI					
4 RCTs <i>n=</i> 650	Moderate	Moderate	Direct	Moderate	WMD -1.98, -4.86 to 0.90	Moderate
Outcome 9. L	eg pain (0-10)					
4 RCTs <i>n=</i> 648	Moderate	High	Direct	High	WMD -0.34, -0.82 to 0.13	Moderate
	Back pain (0-10)					
4 RCTs <i>n=</i> 649	Moderate	Moderate	Direct	Moderate	WMD -0.31, -0.76 to 0.15	Moderate
Outcome 11.	Adverse Events					
4 RCTs <i>n</i> =722	Moderate	Moderate	Direct	High	RR 1.02, 0.95 to 1.10	Moderate
Outcome12. S	Serious Adverse	Events				
4 RCTs <i>n=</i> 722	Moderate	Moderate	Direct	High	RR 0.96, 0.83 to 1.11	Moderate

Table I-2. Posterolateral lumbar fusion (PLF) - rhBMP-2 vs. bone graft - strength of evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 13.	Relevant Reope	erations				
4 RCTs <i>n</i> =722	Moderate	Moderate	Direct	Moderate	RR 0.72, 0.38 to 1.34	Moderate
Outcome 14.	Neurological Ac	verse Event				
4 RCTs <i>n</i> =722	Moderate	High	Direct	High	RR 0.97, 0.62 to 1.51	Moderate

*Sample size reflects the total number of patients included in each analysis

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1	. Fusion					
1 RCT <i>n=</i> 61	Moderate	NA	Direct	Moderate	RR 1.15, 0.86 to 1.54	Low
Outcome 2	. Overall Suce	cess				
1 RCT <i>n=</i> 62	Moderate	NA	Direct	Low	RR 1.50, 0.80 to 2.81	Insufficient
Outcome 3	. Neurologica	I Success				
1 RCT <i>n=</i> 60	Moderate	NA	Direct	Low	RR 0.94, 0.72 to 1.23	Insufficient
Outcome 4	. Return to w	ork				
1 RCT <i>n=</i> 22	Moderate	NA	Direct	Low	RR 1.23, 0.80 to 1.87	Insufficient
Outcome 5	. Leg pain (0-	-10 scale)				
1 RCT <i>n=</i> 59	Moderate	NA	Direct	Low	WMD -0.02, -1.78 to 1.74	Insufficient
Outcome 6	. Back pain (0-10 scale)				
1 RCT <i>n=</i> 59	Moderate	NA	Direct	Low	WMD -0.96, -2.52 to 0.60	Insufficient
Outcome 7	. SF-36 PCS (0-100)				
1 RCT <i>n=</i> 56	Moderate	NA	Direct	Low	WMD 1.30, -5.21 to 7.82	Insufficient
	. SF-36 MCS ((0-100)				
1 RCT <i>n=</i> 56	Moderate	NA	Direct	Low	WMD 2.1, -4.59 to 8.77	Insufficient
Outcome 9	. Adverse Eve	ents				
1 RCT <i>n=</i> 67	Moderate	NA	Direct	Low	33/34 vs. 33/33	Low
Outcome 1	0. Serious ad	verse events				
1 RCT <i>n=</i> 67	Moderate	NA	Direct	Low	RR 0.67, 0.37 to 1.22	Low

Table I-3. Posterior lumbar interbody fusion (PLIF) - rhBMP-2 vs. bone graft - strength of evidence (24 months)

*Sample size reflects the total number of patients included in each analysis

Table I-4. Circumferential posterior lumbar interbody fusion (PLIF)/transforaminallumbar interbody fusion (TLIF) - strength of evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. Fu	usion					
2 Cohorts <i>n</i> =159	High	High	Direct	High	RR 1.00, 0.93 to 1.07	Low
Outcome 2. Ov	verall adverse	events				
1 Cohort <i>n</i> =119	High	N/A	Direct	Moderate	RR 0.81, 0.60 to 1.03	Insufficient
Outcome 3. Ra	adiculitis					
2 Cohorts <i>n</i> =162	High	High	Direct	Low	RR 3.74, 0.74 to 18.90	Low

Table I-5. Circumferential anterior lumbar interbody fusion (ALIF) - strength ofevidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. Fu	usion					
3 Cohorts <i>n</i> =190	High	Moderate	Direct	Moderate	89-100% (rhBMP-2) vs. 72-89%	Insufficient
Outcome 2. Ad	dverse Events					
3 Cohorts <i>n</i> =190	High	Low	Direct	Low	21 AEs/104 pts (rhBMP- 2) vs. 18 AEs/86 pts	Insufficient

Table I-6. Circumferential axial lumbar interbody fusion - strength of evidence (24months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. Fu	usion					
1 Cohort <i>n=</i> 99	High	NA	Direct	Moderate	96% (rhBMP-2) vs. 93%	Insufficient
Outcome 2. Ov	verall adverse	events				
1 Cohort <i>n=</i> 99	High	NA	Direct	Low	Few reported	Insufficient

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. Rep	peat Fusion Su	ırgery				
					Cohort 1 <i>n=</i> 4744	
					OR 0.66, 0.47 to 0.94	
2 Cohorts n=6142	Moderate	Moderate	Direct	Moderate	Cohort 2 <i>n</i> =1398	Moderate
					41/947 (rhBMP-2) vs. 40/306 (DBM) and 22/145 (autograft)	

Table I-7. Mixed lumbar fusion - strength of evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1	. Fusion					
1 RCT <i>n</i> =33 3 Cohorts <i>n</i> =135	Moderate	Moderate	Direct	Low	11/12 vs. 12/12 RR 1.04, 0.96 to	Low
<u> </u>					1.12	
Outcome 2	. Overall Succes	ŝs			10/14	
1 RCT <i>n=</i> 24 pts	Moderate	NA	Direct	Low	vs. 10/13	Insufficient
Outcome 3	. Neurological S	Success				
1 RCT <i>n=</i> 27	Moderate	NA	Direct	Low	14/14 vs. 12/13	Insufficient
Outcome 4	. NDI Success					
1 RCT <i>n=</i> 27	Moderate	NA	Direct	Low	13/14 vs. 12/13	Insufficient
Outcome 5	. Return to Wor	k				
1 RCT <i>n</i> =16	Moderate	NA	Direct	Low	8/8 in each group returned to work	Insufficient
Outcome 6	. Neck Disabilit	y Index				
1 RCT <i>n=</i> 33					WMD -4.7, -16.9 to 7.6 Both	
2 Cohorts <i>n</i> =112	Moderate	Moderate	Direct	Low	cohorts reported no treatment effect	Low
Outcome 7	. Neck Pain					
1 RCT <i>n</i> =33					WMD -2.9, -6.3 to 0.4 Both	
2 Cohorts <i>n</i> =112	Moderate	Moderate	Direct	Low	cohorts reported no treatment effect	Low

Table I-8. Anterior cervical spine fusion - rhBMP-2 vs. bone graft - strength of
evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 8	. Arm Pain					
1 RCT					WMD 0.8, -3.5 to 5.1 	
<i>n</i> =33 2 Cohorts <i>n</i> =112	Moderate	Moderate	Direct	Low	Both cohorts reported no treatment effect	Low
Outcome 9	. Adverse Even	ts				
1 RCT <i>n=</i> 33	Moderate	NA	Direct	Moderate	RR 2.88, 1.30 to 6.41	Low
Outcome 1	0. Heterotopic E	Sone Formation				
1 RCT <i>n=</i> 33	Moderate	NA	Direct	Low	2/18 vs. 1/15	Insufficient
Outcome 1	1. Bone Resorp	tion				
1 Cohort <i>n=</i> 23	High	NA	Direct	Low	33% of 18 levels vs 0% of 22 levels	Insufficient
Outcome 1	2. Relevant Reo	perations				
1 RCT <i>n=</i> 33					1/18 vs. 0/15 	
4 Cohorts <i>n=</i> 402	Moderate	Low	Direct	Low	RR 3.84, 0.56 to 26.5	Low

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. Fusion						
1 Cohort <i>n=</i> 204	High	NA	Direct	Moderate	RR 1.13, 1.05 to 1.22	Insufficient
Outcome 2. Nurick	and ASIA sca	ales				
1 Cohort <i>n=</i> 204	High	NA	Direct	Low	no difference between groups	Insufficient
Outcome 3. Neck P	ain					
1 Cohort <i>n=</i> 204	High	NA	Direct	Low	48% vs. 29% p=0.003	Insufficient
Outcome 4. Total A	Adverse Even	its			-	
3 Cohorts <i>n</i> =364	Moderate	Moderate	Direct	Low	 RR 0.80, 0.43 to 1.49	Low
Outcome 5. Wound	Complicatio	ns				
2 Cohorts <i>n=</i> 281	Moderate	Moderate	Direct	Low	 p-values > 0.05	Low
Outcome 6. Reoper	rations					
1 Cohort <i>n</i> =204	High	NA	Direct	Low	RR 0.71, 0.34 to 1.51	Insufficient
Outcome 7. Dyspha	agia/dysphon	ia				
1 Cohort <i>n</i> =204	Moderate	NA	Direct	Low	(p=0.48)	Insufficient

Table I-9. Posterior cervical spine fusion - rhBMP-2 vs. bone graft - Strength of evidence (24 months)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1	: Cancer					
24 month: 5 RCTs <i>n</i> = 1450	Moderate	High	Direct	Low	RR 3.45, 1.98 to 6.00	Low
48 month: 4 RCTs <i>n</i> = 1183 1 Cohort N = 125	Moderate	High	Direct	Low	RR 1.82, 0.84 to 3.95 RR 2.10, 0.69 to 6.41	Low
Outcome 2	: Death					
24month: 9 RCTs <i>n</i> = 1753	Low	Moderate	Direct	Low	RR 0.67, 0.28 to 1.63	Low
48 month: 4 RCTs <i>n</i> = 1183	Moderate	High	Direct	Low	RR 0.65, 0.33 to 1.30	Low

Table I-10. Cancer and death – strength of evidence (24 months and 48 months)

Appendix I (Part 2). Strength of Evidence - Earliest Time Point (4 Weeks for Adverse Events; 6 Weeks for Effectiveness)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1.	Neurological Suc	ccess				
4 RCTs <i>n=</i> 434	Moderate	Moderate	Direct	Moderate	RR 1.02, 0.93 to 1.13	Moderate
Outcome 2.	Oswestry Disabil	ity Index				
4 RCTs <i>n=</i> 444	Moderate	Low	Direct	Low	WMD - 2.36, -6.91 to 2.19	Low
Outcome 3.	ODI Success					
4 RCTs <i>n=</i> 442	Moderate	Moderate	Direct	Moderate	RR 1.04, 0.83 to 1.29	Moderate
Outcome 4.	Back Pain					
4 RCTs <i>n=</i> 443	Moderate	High	Direct	Low	WMD 0.21, -0.28 to 0.71	Moderate
Outcome 5.	Leg Pain					
4 RCTs <i>n=</i> 443	Moderate	High	Direct	Low	WMD -0.57, -1.12 to -0.02	Moderate
Outcome 6.	SF-36 PCS					
3RCTs <i>n=</i> 356	Moderate	Moderate	Direct	Moderate	WMD 0.55, -1.02 to 2.11	Moderate
Outcome 7.	SF-36 MCS					
3 RCTs <i>n=</i> 421	Moderate	Low	Direct	Moderate	WMD - 0.36, -2.45 to 1.73	Low
Outcome 8.	Return to Work					
4RCTs <i>n=</i> 211	Moderate	Moderate	Direct	Low	RR 1.21, 0.71 to 2.05	Low
Outcome 9.	Adverse Events					
5 RCTs <i>n=</i> 465	Moderate	Moderate	Direct	Moderate	RR 0.84, 0.61 to 1.17	Moderate

 Table E-11. Anterior lumbar interbody fusion (ALIF) - rhBMP-2 vs. bone graft

 Strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 10	. Serious Advers	e Events				
4RCTs <i>n=</i> 455	Moderate	Moderate	Direct	Low	RR 1.12, 0.72 to 1.74	Moderate
Outcome 11	. Retrograde Ejac	culation				
1 RCT <i>n</i> =144	Moderate	NA	Direct	Low	RR 2.62, 0.28 to 24.56	Low
Outcome 11	. Subsidence					
1 RCT <i>n</i> =279	Moderate	NA	Direct	Low	RR 1.43, 0.24 to 8.41	Low

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1.	Neurological	success				
4 RCTs <i>n</i> =706	Moderate	High	Direct	Moderate	RR 1.03, 0.94 to 1.13	Moderate
Outcome 2.	ODI success					
4 RCTs <i>n</i> =707	Moderate	High	Direct	High	RR1.00, 0.81 to 1.23	Moderate
	Return to wor	'k				
3 RCTs <i>n=</i> 233	Moderate	High	Direct	Low	RR 1.26, 0.71 to 2.21	Moderate
Outcome 4.	SF-36: PCS					
4 RCTs <i>n</i> =709	Moderate	Moderate	Direct	Moderate	WMD -0.10, -1.15 to 0.96	Moderate
Outcome 5.	SF-36: MCS					
4 RCTs <i>n</i> =709	Moderate	Moderate	Direct	Moderate	WMD 0.52, -0.94 to 1.98	Moderate
Outcome 6.	ODI					
4 RCTs <i>n</i> =718	Moderate	High	Direct	Moderate	WMD 0.74, -1.68 to 3.17	Moderate
Outcome 7.	Leg pain (0-10	0)				
4 RCTs <i>n</i> =715	Moderate	High	Direct	High	WMD 0.23, -0.21 to 0.66	Moderate
Outcome 8.	Back pain (0- [,]	10)				
4 RCTs <i>n=</i> 649	Moderate	High	Direct	High	WMD 0.10, -0.27 to 0.48	Moderate
Outcome 9.	Adverse Ever	nts				
4 RCTs <i>n</i> =722	Moderate	Moderate	Direct	Low	RR 0.93, 0.66 to 1.31	Moderate
Outcome10.	Serious Adve	erse Events				
4 RCTs <i>n=</i> 722	Moderate	Moderate	Direct	Moderate	RR 0.89, 0.67 to 1.18	Moderate
	. Back and/or	leg pain				
3 RCTs <i>n</i> =706	Moderate	Moderate	Direct	Moderate	RR 1.83, 1.15 to 2.93	Moderate
Outcome 12	. Neurologica	Adverse Event				
4 RCTs <i>n=</i> 722	Moderate	High	Direct	Moderate	RR1.53, 0.88 to 2.65	Moderate

Table I-12. Posterolateral lumbar fusion (PLF) - rhBMP-2 vs. bone graft - strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Table I-13. Posterior lumbar interbody fusion (PLIF) - rhBMP-2 vs. bone graft -strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)		
Outcome ?	1. Neurologic	al Success						
1 RCT <i>n=</i> 63	Moderate	NA	Direct	Moderate	RR 0.93, 0.73 to 1.18	Insufficient		
Outcome 2	2. Return to v	work						
1 RCT <i>n=</i> 24	Moderate	NA	Direct	Low	RR 2.78, 0.86 to 8.94	Insufficient		
Outcome 3. Leg pain (0-10 scale)								
1 RCT <i>n=</i> 63	Moderate	NA	Direct	Low	WMD -0.48, -2.14 to 1.17	Insufficient		
Outcome 4. Back pain (0-10 scale)								
1 RCT <i>n=</i> 63	Moderate	NA	Direct	Low	WMD 0.05, -1.33 to 1.42	Insufficient		
Outcome 5. Adverse Events								
1 RCT <i>n=</i> 67	Moderate	NA	Direct	Low	RR 0.93, 0.66 to 1.30	Low		
Outcome 6. Serious adverse events								
1 RCT <i>n=</i> 67	Moderate	NA	Direct	Moderate	RR 0.35, 0.12 to 0.998	Low		

Table I-14. Mixed lumbar fusion - strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)		
Outcome 1. Any	Complication							
1 cohort <i>n</i> =36,807	Moderate	NA	Direct	High	OR 1.03, 0.95 to 1.12	Low		
Outcome 2. Wound Complication								
1 cohort <i>n</i> =36,807	Moderate	NA	Direct	High	OR 0.93, 0.80 to 1.08	Low		
Outcome 3. Renal Insufficiency								
1 Cohort <i>n</i> =149	High	NA	Direct	Low	3/24 (rhBMP-2) vs. 0/125	Insufficient		

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1.	Neurological S	uccess				
1 RCT <i>n=</i> 33	Moderate	NA	Direct	Low	14/18 vs 14/15	Insufficient
	Return to Work	ζ				
1 RCT <i>n</i> =33	Moderate	NA	Direct	Low	7/12 vs 6/9	Insufficient
Outcome 3.	Neck Disability	/ Index				
1 RCT <i>n</i> =33	Moderate	NA	Direct	Low	WMD -0.21, -11.47 to 11.06	Insufficient
Outcome 4.	Neck Pain					
1 RCT <i>n</i> =33	Moderate	NA	Direct	Low	WMD -2.04, -5.56 to 1.47	Insufficient
Outcome 5.	Arm Pain					
1 RCT <i>n</i> =33	Moderate	NA	Direct	Low	WMD 0.14, -4.23 to 4.52	Insufficient
Outcome 6.	Adverse Event	s				
1 RCT <i>n</i> =33					RR 1.83, 0.58 to 5.79	
1 Cohort <i>n</i> =27,067	Moderate	Moderate	Direct	Moderate	OR 1.43, 1.20 to 1.70	Low
Outcome 7.	Dysphagia/Dys	phonia				
1 RCT <i>n=</i> 33					1/18 vs. 2/15 	
1 Cohort <i>n</i> =27,067	Moderate	Moderate	Direct	Moderate	OR 1.63, 1.30 to 2.05	Moderate
4 additional Cohorts <i>n</i> =1,113					OR ranges from 6.2 to 10.1, all significant	
Outcome 8.	Wound Compli	cations			-	
1 RCT <i>n</i> =33					2/18 vs. 0/15	
1 Cohort <i>n=</i> 27,067	Moderate	Moderate	Direct	Moderate	 OR 1.67, 1.10 to 2.53	Low

Table I-15. Anterior cervical spine fusion - rhBMP-2 vs. bone graft - strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)
Outcome 1. To	tal Adverse Events					
1 Cohort					OR 1.03,	
<i>n</i> =2,869	Moderate	NA	Direct	Low	0.73 to 1.44	Low
Outcome 2. Wo	und Complications					
1 Cohort <i>n=</i> 2,869	Moderate	NA	Direct	Low	OR 1.11, 0.60 to 2.05	Low
Outcome 3. Dys	sphagia/Dysphonia					
1 Cohort <i>n</i> =2,869	Moderate	NA	Direct	Low	OR 1.28, 0.63 to 2.59	Low

Table I-16. Posterior cervical spine fusion - rhBMP-2 vs. bone graft - strength of evidence (effectiveness at 6 weeks; adverse events at 4 weeks)

Table E-17. Thoracic – strength of evidence (effectiveness at 6 weeks; adverse	
events at 4 weeks)	

Number of Studies; Number of Patients*	Risk of Bias (Design/ Quality - High, Moderate, Low)	Consistency (High, Moderate, Low)	Directness (Direct, Indirect)	Precision (High, Moderate, Low)	Magnitude of Effect	Strength of Evidence (High, Moderate, Low, Insufficient)			
Outcome 1. Any Complication									
1 Cohort <i>n=</i> 3257	Moderate	NA	Direct	Moderate	OR 1.05, 0.83 to 1.32	Low			
Outcome 2. Wound Complication									
1 Cohort <i>n</i> =3257	Moderate	NA	Direct	Moderate	OR 0.78, 0.53 to 1.17	Low			

Appendix J. Included Studies

- Abd-El-Barr MM, Cox JB, Antonucci MU, Bennett J, Murad GJA, Pincus DW. Recombinant human bone morphogenetic protein-2 as an adjunct for spine fusion in a pediatric population. *Pediatr Neurosurg*. 2011;47(4):266-271. [PMID: 22310349]
- Acosta FL, Cloyd JM, Aryan HE, Ames CP. Patient satisfaction and radiographic outcomes after lumbar spinal fusion without iliac crest bone graft or transverse process fusion. *J Clin Neurosci*. 2009;16(9):1184-1187. [PMID: 19500992]
- Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. *J Spinal Disord Tech*. 2008;21(7):459-467. [PMID: 18836355]
- Anand N, Hamilton JF, Perri B, Miraliakbar H, Goldstein T. Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: longterm clinical, radiographic, and functional outcome. *Spine*. 2006;31(20):E748-753. [PMID: 16985443]
- Anderson CL, Whitaker MC. Heterotopic ossification associated with recombinant human bone morphogenetic protein-2 (infuse) in posterolateral lumbar spine fusion: a case report. *Spine*. 2012;37(8):E502-506. [PMID: 22020605]
- Anderson DG, Sayadipour A, Shelby K, Albert TJ, Vaccaro AR, Weinstein MS. Anterior interbody arthrodesis with percutaneous posterior pedicle fixation for degenerative conditions of the lumbar spine. *Eur Spine J.* 2011;20(8):1323-1330. [PMID: 21484538]
- Anderson DW, Burton DC, Jackson RS. Postoperative cervical myelopathy and cord compression associated with the use of recombinant bone morphogenetic protein-2 in posterior cervical decompression, instrumentation, and arthrodesis: a report of two cases. *Spine*. 2011;36(10):E682-686. [PMID: 21242869]
- Aryan HE, Lu DC, Acosta FL, Jr., Ames CP. Corpectomy followed by the placement of instrumentation with titanium cages and recombinant human bone morphogenetic protein-2 for vertebral osteomyelitis. *J Neurosurg Spine*. 2007;6(1):23-30. [PMID: 17233287]

- Balseiro S, Nottmeier EW. Vertebral osteolysis originating from subchondral cyst end plate defects in transforaminal lumbar interbody fusion using rhBMP-2. Report of two cases. *Spine J.* 2010;10(7):e6-e10. [PMID: 20488766]
- Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. *Spine*. 2003;28(12):1219-1224; discussion 1225. [PMID: 12811263]
- Boakye M, Mummaneni PV, Garrett M, Rodts G, Haid R. Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. *J Neurosurg Spine*. 2005;2(5):521-525. [PMID: 15945426]
- Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. *Spine*. 2002;27(23):2662-2673. [PMID: 12461392]
- Boden SD, Zdeblick TA, Sandhu HS, Heim SE. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. *Spine*. 2000;25(3):376-381. [PMID: 10703113]
- Brower RS, Vickroy NM. A case of psoas ossification from the use of BMP-2 for posterolateral fusion at L4-L5. *Spine*. 2008;33(18):E653-655. [PMID: 18708918]
- Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. *Spine*. 2003;28(4):372-377. [PMID: 12590213]
- Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. *J Spinal Disord Tech.* 2002;15(5):337-349. [PMID: 12394656]
- Burkus JK, Gornet MF, Glassman SD, Slosar PJ, Rosner MK, Deckey JE, et al. Blood Serum Antibody Analysis and Long-Term Follow-up of Patients Treated With Recombinant Human Bone Morphogenetic Protein-2 in the Lumbar Spine. *Spine*. 2011;36(25):2158-2167. [PMID: 21325990]

- Burkus JK, Heim SE, Gornet MF, Zdeblick TA. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. *J Spinal Disord Tech.* 2003;16(2):113-122. [PMID: 12679664]
- Burkus JK, Heim SE, Gornet MF, Zdeblick TA. The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. *Orthopedics*. 2004;27(7):723-728. [PMID: 15315042]
- Burkus JK, Sandhu HS, Gornet MF. Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. *Spine*. 2006;31(7):775-781. [PMID: 16582851]
- Burkus JK, Sandhu HS, Gornet MF, Longley MC. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. *J Bone Joint Surg Am.* 2005;87(6):1205-1212. [PMID: 15930528]
- 22. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. *Spine*. 2002;27(21):2396-2408. [PMID: 12438990]
- Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. *Spine J.* 2008;8(3):426-435. [PMID: 17977799]
- Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. *JAMA*. 2009;302(1):58-66. [PMID: 19567440]
- Cahill KS, Chi JH, Groff MW, McGuire K, Afendulis CC, Claus EB. Outcomes for singlelevel lumbar fusion: the role of bone morphogenetic protein. *Spine*. 2011;36(26):2354-2362. [PMID: 21311404]
- Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. *Spine J.* 2011;11(6):511-516. [PMID: 21612985]
- 27. Carreon LY, Glassman SD, Brock DC, Dimar JR, Puno RM, Campbell MJ. Adverse events in patients re-exposed to bone morphogenetic protein for spine surgery. *Spine*. 2008;33(4):391-393.

[PMID: 18277870]

- Carreon LY, Glassman SD, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion in patients over 60 years of age: a cost-utility study. *Spine*. 2009;34(3):238-243. [PMID: 19179918]
- 29. Chamoun RB, Relyea KM, Johnson KK, Whitehead WE, Curry DJ, Luerssen TG, et al. Use of axial and subaxial translaminar screw fixation in the management of upper cervical spinal instability in a series of 7 children. *Neurosurgery*. 2009;64(4):734-739. [PMID: 19349831]
- Chen N-F, Smith ZA, Stiner E, Armin S, Sheikh H, Khoo LT. Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. *J Neurosurg Spine*. 2010;12(1):40-46. [PMID: 20043763]
- 31. Cho SK, Stoker GE, Bridwell KH. Spinal reconstruction with pedicle screw-based instrumentation and rhBMP-2 in patients with neurofibromatosis and severe dural ectasia and spinal deformity: report of two cases and a review of the literature. *J Bone Joint Surg Am.* 2011;93(15):e86. [PMID: 21915529]
- Choudhry OJ, Christiano LD, Singh R, Golden BM, Liu JK. Bone morphogenetic protein-induced inflammatory cyst formation after lumbar fusion causing nerve root compression. *J Neurosurg Spine*. 2012;16(3):296-301. [PMID: 22176433]
- 33. Crawford CH, 3rd, Bridwell KH, Cho W, Buchowski JM, O'Shaughnessy BA, Chang MS, et al. Extension of prior idiopathic scoliosis fusions to the sacrum: a matched cohort analysis of sixty patients with minimum two-year follow-up. *Spine*. 2010;35(20):1843-1848. [PMID: 20802391]
- Crawford CH, 3rd, Carreon LY, McGinnis MD, Campbell MJ, Glassman SD. Perioperative complications of recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge versus iliac crest bone graft for posterior cervical arthrodesis. *Spine*. 2009;34(13):1390-1394. [PMID: 19440166]
- 35. David KS, Agarwala AO, Rampersaud YR. Charcot arthropathy of the lumbar spine treated using one-staged posterior three-column shortening and fusion. *Spine*. 2010;35(14):E657-662. [PMID: 20505559]
- 36. Dawson E, Bae HW, Burkus JK, Stambough JL, Glassman SD. Recombinant human bone

morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. *J Bone Joint Surg Am.* 2009;91(7):1604-1613. [PMID: 19571082]

- Deutsch H. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. *Spine J.* 2010;10(2):e1-4. [PMID: 20006558]
- Dimar JR, 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. *J Bone Joint Surg Am.* 2009;91(6):1377-1386. [PMID: 19487515]
- Dimar JR, Glassman SD, Burkus KJ, Carreon LY. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. *Spine*. 2006;31(22):2534-2539; discussion 2540. [PMID: 17047540]
- Fahim DK, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Routine use of recombinant human bone morphogenetic protein-2 in posterior fusions of the pediatric spine: safety profile and efficacy in the early postoperative period. *Neurosurgery*. 2010;67(5):1195-1204; discussion 1204. [PMID: 20871458]
- Garrett MP, Kakarla UK, Porter RW, Sonntag VKH. Formation of painful seroma and edema after the use of recombinant human bone morphogenetic protein-2 in posterolateral lumbar spine fusions. *Neurosurgery*. 2010;66(6):1044-1049; discussion 1049. [PMID: 20495420]
- Geibel PT, Boyd DL, Slabisak V. The use of recombinant human bone morphogenic protein in posterior interbody fusions of the lumbar spine: a clinical series. *J Spinal Disord Tech*. 2009;22(5):315-320. [PMID: 19525785]
- Gerszten PC, Tobler WD, Nasca RJ. Retrospective analysis of L5-S1 axial lumbar interbody fusion (AxiaLIF): a comparison with and without the use of recombinant human bone morphogenetic protein-2. *Spine J.* 2011;11(11):1027-1032. [PMID: 22122835]
- Glassman SD, Carreon L, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, et al. Posterolateral lumbar spine fusion with INFUSE bone graft. *Spine J.* 2007;7(1):44-49. [PMID: 17197332]
- 45. Glassman SD, Carreon LY, Campbell MJ, Johnson

JR, Puno RM, Djurasovic M, et al. The perioperative cost of Infuse bone graft in posterolateral lumbar spine fusion. *Spine J*. 2008;8(3):443-448. [PMID: 17526436]

- 46. Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. *Spine*. 2008;33(26):2843-2849. [PMID: 19092613]
- 47. Glassman SD, Dimar JR, 3rd, Burkus K, Hardacker JW, Pryor PW, Boden SD, et al. The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. *Spine*. 2007;32(15):1693-1698. [PMID: 17621221]
- Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR. Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. *Spine*. 2005;30(15):1694-1698. [PMID: 16094268]
- Glassman SD, Gum JL, Crawford CH, 3rd, Shields CB, Carreon LY. Complications with recombinant human bone morphogenetic protein-2 in posterolateral spine fusion associated with a dural tear. *Spine J.* 2011;11(6):522-526. [PMID: 20598649]
- Glassman SD, Howard J, Dimar J, Sweet A, Wilson G, Carreon L. Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. *Spine*. 2011;36(22):1849-1854. [PMID: 20838369]
- 51. Gornet MF, Burkus JK, Dryer RF, Peloza JH. Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. *Spine*. 2011;36(25):E1600-1611. [PMID: 21415812]
- 52. Haid RW, Jr., Branch CL, Jr., Alexander JT, Burkus JK. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. *Spine J*. 2004;4(5):527-538; discussion 538-529. [PMID: 15363423]
- Hamilton DK, Jones-Quaidoo SM, Sansur C, Shaffrey CI, Oskouian R, Jane JA, Sr. Outcomes of bone morphogenetic protein-2 in mature adults: posterolateral non-instrument-assisted lumbar decompression and fusion. *Surg Neurol.* 2008;69(5):457-461; discussion 461-452. [PMID:

18207557]

- 54. Hamilton DK, Smith JS, Reames DL, Williams BJ, Chernavvsky DR, Shaffrey CI. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. *Neurosurgery*. 2011;69(1):103-111; discussion 111. [PMID: 21368688]
- 55. Hamilton DK, Smith JS, Reames DL, Williams BJ, Shaffrey CI. Use of recombinant human bone morphogenetic protein-2 as an adjunct for instrumented posterior arthrodesis in the occipital cervical region: An analysis of safety, efficacy, and dosing. *J Craniovertebr Junct Spine*. 2010;1(2):107-112. [PMID: 21572631]
- 56. Hansen SM, Sasso RC. Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. *J Spinal Disord Tech.* 2006;19(2):130-134. [PMID: 16760788]
- Haque A, Price AV, Sklar FH, Swift DM, Weprin BE, Sacco DDJ. Screw fixation of the upper cervical spine in the pediatric population. Clinical article. *JNeurosurg Pediatr.* 2009;3(6):529-533. [PMID: 19485741]
- Helgeson MD, Lehman RA, Jr., Patzkowski JC, Dmitriev AE, Rosner MK, Mack AW. Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. *Spine J.* 2011;11(6):507-510. [PMID: 21729801]
- Hiremath GK, Steinmetz MP, Krishnaney AA. Is it safe to use recombinant human bone morphogenetic protein in posterior cervical fusion? *Spine*. 2009;34(9):885-889. [PMID: 19531997]
- Hodges SD, Eck JC, Newton D. Retrospective Study of Posterior Cervical Fusions With rhBMP-2. Orthopedics. 2012;35(6):e895-898. [PMID: 22691663]
- Hoffmann MF, Jones CB, Sietsema DL. Adjuncts in posterior lumbar spine fusion: comparison of complications and efficacy. *Arch Orthop Trauma Surg.* 2012;132(8):1105-1110. [PMID: 22562366]
- Jagannathan J, Sansur CA, Oskouian RJ, Fu KM, Shaffrey CI. Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. *Neurosurgery*. 2009;64(5):955-963. [PMID: 19404155]
- 63. Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior

minimal access interbody fusion: a CT analysis. Spine. 2007;32(25):2885-2890. [PMID: 18246013]

- 64. Katayama Y, Matsuyama Y, Yoshihara H, Sakai Y, Nakamura H, Imagama S, et al. Clinical and radiographic outcomes of posterolateral lumbar spine fusion in humans using recombinant human bone morphogenetic protein-2: an average fiveyear follow-up study. *Int Orthop.* 2009;33(4):1061-1067. [PMID: 18581064]
- Kepler CK, Huang RC, Meredith D, Cunningham M, Boachie-Adjei O. Delayed pleural effusion after anterior thoracic spinal fusion using bone morphogenetic protein-2. *Spine*. 2011;36(5):E365-369. [PMID: 21270708]
- 66. Kleeman TJ, Ahn UM, Talbot-Kleeman A. Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. *Spine*. 2001;26(24):2751-2756. [PMID: 11740368]
- Klimo P, Jr., Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. *Spine J*. 2009;9(12):959-966. [PMID: 19574105]
- Knox JB, Dai JM, 3rd, Orchowski J. Osteolysis in transforaminal lumbar interbody fusion with bone morphogenetic protein-2. *Spine*. 2011;36(8):672-676. [PMID: 21217443]
- Kuklo TR, Rosner MK, Polly DW, Jr. Computerized tomography evaluation of a resorbable implant after transforaminal lumbar interbody fusion. *Neurosurg Focus*. 2004;16(3):E10. [PMID: 15198498]
- Lanman TH, Hopkins TJ. Lumbar interbody fusion after treatment with recombinant human bone morphogenetic protein-2 added to poly(L-lactideco-D,L-lactide) bioresorbable implants. *Neurosurg Focus*. 2004;16(3):E9. [PMID: 15198497]
- Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly(L-lactide-co-D,L-lactide) bioabsorbable implants. *Neurosurg Focus*. 2004;16(3):E6. [PMID: 15198494]
- 72. Latzman JM, Kong L, Liu C, Samadani U. Administration of human recombinant bone morphogenetic protein-2 for spine fusion may be associated with transient postoperative renal insufficiency. *Spine*. 2010;35(7):E231-237. [PMID: 20228696]
- 73. Lee KB, Johnson JS, Song KJ, Taghavi CE, Wang

JC. Use of autogenous bone graft compared with RhBMP in high-risk patients: a comparison of fusion rates and time to fusion. *J Spinal Disord Tech.* 2012. [PMID: 22214928]

- 74. Lee K-B, Taghavi CE, Hsu MS, Song KJ, Yoo JH, Keorochana G, et al. The efficacy of rhBMP-2 versus autograft for posterolateral lumbar spine fusion in elderly patients. *Eur Spine J*. 2010;19(6):924-930. [PMID: 20041271]
- Lehman RA, Jr. Vertebral body osteolysis after minimal-access transforaminal interbody fusion. *Spine J.* 2011;11(6):581-582. [PMID: 21729806]
- 76. Lewandrowski K-U, Nanson C, Calderon R. Vertebral osteolysis after posterior interbody lumbar fusion with recombinant human bone morphogenetic protein 2: a report of five cases. *Spine J.* 2007;7(5):609-614. [PMID: 17526434]
- Lindley EM, McBeth ZL, Henry SE, Cooley R, Burger EL, Cain CM, et al. Retrograde ejaculation following anterior lumbar spine surgery. *Spine*. 2012;37(20):1785-1789. [PMID: 22472808]
- Lindley TE, Dahdaleh NS, Menezes AH, Abode-Iyamah KO. Complications associated with recombinant human bone morphogenetic protein use in pediatric craniocervical arthrodesis. *J Neurosurg Pediatrs*. 2011;7(5):468-474. [PMID: 21529186]
- Lu DC, Sun PP. Bone morphogenetic protein for salvage fusion in an infant with Down syndrome and craniovertebral instability. Case report. J *Neurosurg.* 2007;106(6 Suppl):480-483. [PMID: 17566406]
- Luhmann SJ, Bridwell KH, Cheng I, Imamura T, Lenke LG, Schootman M. Use of bone morphogenetic protein-2 for adult spinal deformity. *Spine*. 2005;30(17 Suppl):S110-117. [PMID: 16138058]
- Madrazo I, Zamorano C, Magallon E, Valenzuela T, Grijalva I, Salgado-Ceballos H, et al. Recombinant human bone morphogenetic protein-2 (rhBMP-2) for cervical fusion: Is there a role in cervical trauma? *Topics in Spinal Cord Injury Rehabilitation*. 2006;12(2):30-39.
- Maeda T, Buchowski JM, Kim YJ, Mishiro T, Bridwell KH. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. *Spine*. 2009;34(20):2205-2212. [PMID: 19752707]
- 83. Mannion RJ, Nowitzke AM, Wood MJ. Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic

protein-2--but what is the cost? *Spine J*. 2011;11(6):527-533. [PMID: 20739225]

- McClellan JW, Mulconrey DS, Forbes RJ, Fullmer N. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). *J Spinal Disord Tech*. 2006;19(7):483-486. [PMID: 17021411]
- Medtronic Individual Patient Data. rhBMP-2/CRM 2-level Pilot, Single-Arm Study - Individual Patient Data. *Study #15*. 2005. NCT01491568.
- Medtronic Individual Patient Data. rhBMP-2/BCP Mexico Pilot - Individual Patient Data. *Study #16*. 2001. NCT01495234.
- Medtronic Individual Patient Data. INFUSE®/INTER FIX[™] ALIF Pilot RCT -Individual Patient Data. *Study #9*. 2003. NCT01491451.
- Medtronic Individual Patient Data. Clinical Study of rhBMP-2/BCP With the TSRH® Spinal System for Posterolateral Lumbar Fusion in Patients With Degenerative Disc Disease. *Study # 13*. 2007. NCT01494454.
- Medtronic Individual Patient Data. INFUSE®/TELAMON PEEK Instrumented PLIF Pilot, Single-Arm Study - Individual Patient Data. *Study #11*. 2008. NCT01491516.
- Meisel HJ, Schnoring M, Hohaus C, Minkus Y, Beier A, Ganey T, et al. Posterior lumbar interbody fusion using rhBMP-2. *Eur Spine J*. 2008;17(12):1735-1744. [PMID: 18839225]
- Mindea SA, Shih P, Song JK. Recombinant human bone morphogenetic protein-2-induced radiculitis in elective minimally invasive transforaminal lumbar interbody fusions: a series review. *Spine*. 2009;34(14):1480-1484; discussion 1485. [PMID: 19525840]
- 92. Mines D, Gu Y, Kou TD, Cooper GS. Recombinant human bone morphogenetic protein-2 and pancreatic cancer: a retrospective cohort study. *Pharmacoepidemiol Drug Saf.* 2011;20(2):111-118. [PMID: 21254281]
- 93. Mladenov KV, Kunkel P, Stuecker R. The use of recombinant human BMP-2 as a salvage procedure in the pediatric spine: a report on 3 cases. *Eur Spine J.* 2010;19 Suppl 2:S135-139. [PMID: 19876660]
- 94. Moshel YA, Hernandez EI, Kong L, Liu C, Samadani U. Acute renal insufficiency, supraventricular tachycardia, and confusion after recombinant human bone morphogenetic protein-2

implantation for lumbosacral spine fusion. *J Neurosurg Spine*. 2008;8(6):589-593. [PMID: 18518683]

- 95. Muchow RD, Hsu WK, Anderson PA. Histopathologic inflammatory response induced by recombinant bone morphogenetic protein-2 causing radiculopathy after transforaminal lumbar interbody fusion. *Spine J.* 2010;10(9):e1-6. [PMID: 20797648]
- 96. Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. *Spine*. 2008;33(20):2153-2159. [PMID: 18725869]
- 97. Mummaneni PV, Pan J, Haid RW, Rodts GE. Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. *J Neurosurg Spine*. 2004;1(1):19-23. [PMID: 15291015]
- Neuman BJ, Radcliff K, Rihn J. Cauda Equina Syndrome After a TLIF Resulting From Postoperative Expansion of a Hydrogel Dural Sealant. *Clin Orthop Relat Res.* 2012;470(6):1640-1645. [PMID: 21952743]
- Oetgen ME, Richards BS. Complications associated with the use of bone morphogenetic protein in pediatric patients. *J Pediatr Orthop.* 2010;30(2):192-198. [PMID: 20179569]
- 100.Oluigbo CO, Solanki GA. Use of recombinant human bone morphogenetic protein-2 to enhance posterior cervical spine fusion at 2 years of age: technical note. *Pediatr. Neurosurg.* 2008;44(5):393-396. [PMID: 18703886]
- 101.O'Shaughnessy BA, Bridwell KH, Lenke LG, Cho W, Baldus C, Chang MS, et al. Does a long-fusion "t3-sacrum" portend a worse outcome than a short-fusion "t10-sacrum" in primary surgery for adult scoliosis? *Spine*. 2012;37(10):884-890. [PMID: 21971131]
- 102.O'Shaughnessy BA, Kuklo TR, Ondra SL. Surgical treatment of vertebral osteomyelitis with recombinant human bone morphogenetic protein-2. *Spine*. 2008;33(5):E132-139. [PMID: 18317180]
- 103.Owens K, Glassman SD, Howard JM, Djurasovic M, Witten JL, Carreon LY. Perioperative complications with rhBMP-2 in transforaminal

lumbar interbody fusion. *Eur Spine J.* 2011;20(4):612-617. [PMID: 20582554]

- 104.Pargament J, Stambough JL, Clouse EK. Swelling associated with use of rhBMP-2 in posterolateral lumbar fusion: A case study. *Current Orthopaedic Practice*. 2009;20(6):698-702.
- 105.Perri B, Cooper M, Lauryssen C, Anand N. Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion: a case study. *Spine J.* 2007;7(2):235-239. [PMID: 17321975]
- 106.Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. *Spine*. 2006;31(10):E277-284. [PMID: 16648733]
- 107.Rihn JA, Makda J, Hong J, Patel R, Hilibrand AS, Anderson DG, et al. The use of RhBMP-2 in single-level transforaminal lumbar interbody fusion: a clinical and radiographic analysis. *Eur Spine J*. 2009;18(11):1629-1636. [PMID: 19475434]
- 108.Rihn JA, Patel R, Makda J, Patel R, Hilibrand AS, Anderson DG, et al. Complications associated with single-level transforaminal lumbar interbody fusion. *Spine J.* 2009;9(8):623-629. [PMID: 19482519]
- 109. Robin BN, Chaput CD, Zeitouni S, Rahm MD, Zerris VA, Sampson HW. Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: a case study. *Spine*. 2010;35(23):E1350-1354. [PMID: 20938385]
- 110.Rogozinski A, Rogozinski C, Cloud G. Accelerating autograft maturation in instrumented posterolateral lumbar spinal fusions without donor site morbidity. *Orthopedics*. 2009;32(11):809. [PMID: 19902899]
- 111.Rowan FE, O'Malley N, Poynton A. RhBMP-2 use in lumbar fusion surgery is associated with transient immediate post-operative leg pain. *Eur Spine J.* 2012;21(7):1331-1337. [PMID: 22167451]
- 112.Saigal G, Quencer R, Guest JD, Cristescu MM, Lebwohl N. Vertebral body osteolysis following the use of bone morphogenetic protein in spinal surgery: A mimicker of infection. *J Neuroradiol.* 2012;39(5):354-359. [PMID: 22633046]
- 113. Scheufler K-M, Cyron D, Dohmen H, Eckardt A.

Less invasive surgical correction of adult degenerative scoliosis, part I: technique and radiographic results. *Neurosurgery*. 2010;67(3):696-710. [PMID: 20651631]

- 114.Sethi A, Craig J, Bartol S, Chen W, Jacobson M, Coe C, et al. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2assisted spinal interbody fusion.[Erratum appears in AJR Am J Roentgenol. 2011 Oct;197(4):1024 Note: Jacobsen, Mark [corrected to Jacobson, Mark]]. *AJR Am J Roentgenol.* 2011;197(1):W128-133. [PMID: 21700973]
- 115.Shah RK, Moncayo VM, Smitson RD, Pierre-Jerome C, Terk MR. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion. *Skeletal Radiol.* 2010;39(5):501-504. [PMID: 20162273]
- 116.Shahlaie K, Kim KD. Occipitocervical fusion using recombinant human bone morphogenetic protein-2: adverse effects due to tissue swelling and seroma. *Spine*. 2008;33(21):2361-2366. [PMID: 18827703]
- 117.Shen HX, Buchowski JM, Yeom JS, Liu G, Lin N, Riew KD. Pseudarthrosis in multilevel anterior cervical fusion with rhBMP-2 and allograft: analysis of one hundred twenty-seven cases with minimum two-year follow-up. *Spine*. 2010;35(7):747-753. [PMID: 20228711]
- 118.Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring Jet al., Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. *Spine*. 2006;31(5):542-547. [PMID: 16508549]
- 119.Singh K, Smucker JD, Gill S, Boden SD. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years.[Erratum appears in J Spinal Disord Tech. 2007 Apr;20(2):185 Note: Gill, Sanjitpal [added]]. J Spinal Disord Tech. 2006;19(6):416-423. [PMID: 16891977]
- 120.Slosar PJ, Josey R, Reynolds J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. *Spine J.* 2007;7(3):301-307. [PMID: 17482113]
- 121.Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. *Spine*. 2006;31(24):2813-2819.

[PMID: 17108835]

- 122.Stachniak JB, Diebner JD, Brunk ES, Speed SM. Analysis of prevertebral soft-tissue swelling and dysphagia in multilevel anterior cervical discectomy and fusion with recombinant human bone morphogenetic protein-2 in patients at risk for pseudarthrosis. *J Neurosurg Spine*. 2011;14(2):244-249. [PMID: 21184639]
- 123.Stambough JL, Clouse EK, Stambough JB. Instrumented one and two level posterolateral fusions with recombinant human bone morphogenetic protein-2 and allograft: a computed tomography study. *Spine*. 2010;35(1):124-129. [PMID: 20042965]
- 124.Subach BR, Copay AG, Martin MM, Schuler TC. Anterior lumbar interbody implants: importance of the interdevice distance. *Adv Orthop*. 2011;2011:176497. [PMID: 21994890]
- 125. Taghavi CE, Lee K-B, Keorochana G, Tzeng S-T, Yoo JH, Wang JC. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. *Spine*. 2010;35(11):1144-1150. [PMID: 20139805]
- 126. Tumialan LM, Pan J, Rodts GE, Mummaneni PV. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. *J Neurosurg Spine*. 2008;8(6):529-535. [PMID: 18518673]
- 127. Tumialan LM, Ponton RP, Riccio AI, Gluf WM. Rate of return to military active duty after single level lumbar interbody fusion: a 5-year retrospective review. *Neurosurgery*. 2012;71(2):317-324. [PMID: 22811082]
- 128. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. *Eur Spine J*. 2007;16(8):1257-1265. [PMID: 17387522]
- 129. Vaidya R, Sethi A, Bartol S, Jacobson M, Coe C, Craig JG. Complications in the use of rhBMP-2 in PEEK cages for interbody spinal fusions. *J Spinal Disord Tech.* 2008;21(8):557-562. [PMID: 19057248]
- 130. Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. *J Bone Joint SurgBr.* 2007;89(3):342-

345. [PMID: 17356146]

- 131. Villavicencio AT, Burneikiene S, Nelson EL, Bulsara KR, Favors M, Thramann J. Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human bone morphogenetic protein-2. *J Neurosurg Spine*. 2005;3(6):436-443. [PMID: 16381205]
- 132.Wang JC, Haid Jr RW, Miller JS, Robinson JC. Comparison of CD HORIZON SPIRE spinous process plate stabilization and pedicle screw fixation after anterior lumbar interbody fusion: Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2005. *J Neurosurg Spine*. 2006;4(2):132-136. [PMID: 16506480]
- 133.Whang PG, O'Hara BJ, Ratliff J, Sharan A, Brown Z, Vaccaro AR. Pseudarthrosis following lumbar interbody fusion using bone morphogenetic protein-2: intraoperative and histopathologic findings. *Orthopedics*. 2008;31(10). [PMID: 19226004]
- 134.Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). *Spine J.* 2008;8(6):1011-1018. [PMID: 18037352]
- 135.Xu R, Bydon M, Sciubba DM, Witham TF, Wolinsky JP, Gokaslan ZL, et al. Safety and efficacy of rhBMP2 in posterior cervical spinal fusion for subaxial degenerative spine disease: Analysis of outcomes in 204 patients. *Surg Neurol Int.* 2011;2:109. [PMID: 21886882]
- 136. Yaremchuk KL, Toma MS, Somers ML, Peterson E. Acute airway obstruction in cervical spinal procedures with bone morphogenetic proteins. *Laryngoscope*. 2010;120(10):1954-1957. [PMID: 20824786]

Appendix K. Excluded Studies

The following full-text publications were considered for inclusion but did not meet the selection criteria for this report. Reasons for exclusion are coded as:

1 = non-English language

- 2 = ineligible outcome
- 3 = ineligible intervention
- 4= ineligible population
- 5 = general ineligible publication type
- 5b = randomized trial available only in abstract form
- 6 = ineligible study design
- 7 = ineligible body area

Pending = final results not available at the time of the report

- Abdullah KG, Steinmetz MP, Benzel EC, Mroz TE. The state of lumbar fusion extenders. *Spine*. 2011;36(20):E1328-1334. [PMID: 21358468] Exclusion code: 5
- 2. Abraham E, Alexander D, Bailey S, Hurlbert J, McBroom R, Mahood J, et al. A long-term radiographic and clinical evaluation of a new rhBMP-2 formulation in a prospective randomized lumbar posterolateral spine fusion study. *Canadian Journal of Surgery*. 2008;51(3 Suppl):S6-S7. Exclusion code: 5b
- Abraham EP, Hurlbert J, Alexander D, Bailey S, Fisher C. Evaluation of an rhBMP-2 formulation in 2-level posterolateral lumbar spine arthrodesis. *Spine Journal*. 2010;10(9):105S. Exclusion code: 5b
- Adetchessi T, Armaganian G, Pech Gourg G, Fuentes S, Dufour H. Anterior spinal fusion and posterior percutaneous osteosynthesis in lowgrade lumbar spondylolisthesis due to isthmic lysis in adults. *European Spine Journal*. 2011;20(7):1212-1213. Exclusion code: 5
- Adogwa O, Parker SL, Shau D, Mendelhall SK, Cheng J, Aaronson O et al. Long-term outcomes of revision fusion for lumbar pseudarthrosis: Clinical article. *Journal of Neurosurgery: Spine*. 2011;15(4):393-398. [PMID: 21699473]. Exclusion code: 3
- Adogwa O, Parker SL, Shau DN, Mendenhall SK, Aaronson O, Cheng JS, et al. Cost per quality-adjusted life year gained of revision neural decompression and instrumented fusion for same-level recurrent lumbar stenosis: Defining the value of surgical intervention. Clinical article. *Journal of Neurosurgery: Spine.*

2012;16(2):135-140. [PMID: 22054639] . Exclusion code: 3Aebi M, Grob D. SSE Spine Tango: a European Spine Registry promoted by the Spine Society of Europe (SSE). *European Spine Journal*. 2004;13(8):661-662. [PMID: 15614517] Exclusion code: 5

- Agarwal R, Williams K, Umscheid CA, Welch WC. Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. *Journal of Neurosurgery Spine*. 2009;11(6):729-740. [PMID: 19951027] Exclusion code: 5
- Alexander D, Oxner W, Soroceanu A, Kelly A, Shakespeare D. A prospective randomized clinical trial of posterolateral lumbosacral spinal fusion with BMP-2 and titanium pedicle screw instrumentation versus BMP-2 alone: preliminary 6-month results. *Canadian Journal* of Surgery. 2009;52(3 Suppl):S21. CN-00726900] Exclusion code: 5b
- Allareddy V, Turkistani K, Nanda V, Gajendrareddy P, Venugopalan SR. Factors Associated With Hospitalization Charges for Cleft Palate Repairs and Revisions. *Journal of Oral and Maxillofacial Surgery*. 2011. Exclusion code: 2
- Allen RT, Lee Y-P, Stimson E, Garfin SR. Bone morphogenetic protein-2 (BMP-2) in the treatment of pyogenic vertebral osteomyelitis. *Spine*. 2007;32(26):2996-3006. [PMID: 18091493] Exclusion code: 6
- Alonso N, Tanikawa DYS, Freitas RdS, Canan L, Jr., Ozawa TO, Rocha DL. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip

and palate patients. *Tissue Engineering - Part C: Methods.* 2010;16(5):1183-1189. [PMID: 20163243] Exclusion code: 7

- Alt V, Chhabra A, Franke J, Cuche M, Schnettler R, Le Huec J-C. An economic analysis of using rhBMP-2 for lumbar fusion in Germany, France and UK from a societal perspective. *European Spine Journal.* 2009;18(6):800-806. [PMID: 19301041] Exclusion code: 2
- Alt V, Donell ST, Chhabra A, Bentley A, Eicher A, Schnettler R. A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France. *Injury*. 2009;40(12):1269-1275. [PMID: 19539926] Exclusion code: 7
- 14. Alt V, Donell ST, Chhabra A, Eicher A, Schnettler R. BMP-2 is a cost-effective therapy in grade III open tibia fractures - a healtheconomic assessment of the use BMP-2 in open tibia fractures for European health care systems. *Journal of Bone and Joint Surgery - British Volume*. 2009;91-B(SUPP_I):155-115b. CN-00689375] Exclusion code: 5
- Alt V, Meyer C, Litzlbauer HD, Schnettler R. Treatment of a double nonunion of the femur by rhBMP-2. *Journal of Orthopaedic Trauma*. 2007;21(10):734-737. [PMID: 17986892] Exclusion code: 7
- An HS, Thonar EJMA, Masuda K. Biological repair of intervertebral disc. *Spine*. 2003;28(15 Suppl):S86-92. [PMID: 12897480] Exclusion code: 3
- Anderson FA, Jr. Overview of the GLOBAL Orthopaedic Registry (GLORY). American Journal of Orthopedics (Chatham, Nj). 2010;39(9 Suppl):2-4. [PMID: 21290025] Exclusion code: 5
- Ando W, Hashimoto J, Yoshikawa H. [Osteosclerosis related with bone morphogenetic protein (BMP)]. *Nippon Rinsho - Japanese Journal of Clinical Medicine*. 2005;63 Suppl 10:444-449. [PMID: 16279680] Exclusion code: 1
- Antoni M, Charles YP, Walter A, Bogorin I, Steib JP. Consolidation of anterior grafts in thoracolumbar fractures. *European Spine Journal*. 2011;20(7):1198. Exclusion code: 5
- Apatech Inc. Actifuse ABX Versus INFUSE in Posterolateral Instrumented Lumbar Fusion. 2012. NCT01018771. Exclusion code: 5
- 21. Apatech Inc. Actifuse ABX Versus INFUSE in

Posterolateral Instrumented Lumbar Fusion (PLIF) With Interbody Fusion. 2012. NCT01013389. Exclusion code: Pending

- Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. *Injury*. 2011;42(8):730-734. [PMID: 21145058] Exclusion code: 5
- Arnold PM, Klemp JA. Assessment of malunion in spinal fusion. *Neurosurgery Quarterly*. 2005;15(4):239-247. Exclusion code: 5
- Aro HT, Govender S, Patel AD, Hernigou P, Perera de Gregorio A, Popescu GI, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. *Journal of Bone & Joint Surgery - American Volume*. 2011;93(9):801-808. [PMID: 21454742] Exclusion code: 7
- Aryan HE, Newman CB, Gold JJ, Acosta FL, Jr., Coover C, Ames CP. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment: initial clinical and radiographic experience. *Minimally Invasive Neurosurgery*. 2008;51(4):225-230. [PMID: 18683115] Exclusion code: 3
- Aspenberg P. Drugs and fracture repair. *Acta* Orthopaedica. 2005;76(6):741-748. [PMID: 16470424] Exclusion code: 5
- 27. Aspenberg P. Under-reported complications related to BMP use in spine surgery. *Acta Orthopaedica*. 2011;82(5):511-512. [PMID: 21992083] Exclusion code: 5
- Assael LA. Mandibular reconstruction: expert opinion and outcome studies remain a fragile guide to treatment. *Journal of Oral & Maxillofacial Surgery*. 2009;67(12):2557-2558.
 [PMID: 19925971] Exclusion code: 5
- 29. Assiri I, du Plessis S, Hurlbert J, Hu R, Salo P, Whittaker T. A prospective randomized clinical study comparing instrumented lumbar fusion rates of Recombinant Human Bone Morphogenic Protein-2 (rhBMP-2) with autogenous iliac crest bone graft in patients with symptomatic degenerative disc disease. *Canadian Journal of Surgery*. 2004;47(Suppl 4):7-8. CN-00524395] Exclusion code: 5b
- Axelrad TW, Einhorn TA. Bone morphogenetic proteins in orthopaedic surgery. *Cytokine & Growth Factor Reviews*. 2009;20(5-6):481-488.
 [PMID: 19892584] Exclusion code: 5
- 31. Axelrad TW, Steen B, Lowenberg DW, Creevy

WR, Einhorn TA. Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. *Journal of Bone & Joint Surgery* -*British Volume*. 2008;90(12):1617-1622. [PMID: 19043134] Exclusion code: 7

- Bachy M, Lenoir T, Dauzac C, Guigui P. Radiological analysis of bone consolidation following addition of BMP-2 and autograft in circumferential lumbar fusion. *European Spine Journal.* 2011;20(7):1211. Exclusion code: 5
- Balaji SM. Use of rhBMP2 with bone grafts in pediatric jaw resection cases. *International Journal of Oral and Maxillofacial Surgery*. 2011;40(10):1096. Exclusion code: 5
- Baltzer AWA, Ostapczuk MS, Stosch D, Granrath M. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck openwedge osteotomy. *Orthopedic Reviews*. 2012;4(1):e4. [PMID: 22577505] Exclusion code: 7
- 35. Barboza EP, Caula AL, Caula Fde O, de Souza RO, Geolás Neto L, Sorensen RG, et al. Effect of recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge with space-providing biomaterials on the augmentation of chronic alveolar ridge defects. *Journal of Periodontology*. 2004;75(5):702-708. [PMID: 15212353] Exclusion code: 4
- Barrios JMR, Collado FA, Contreras DS, Tudela LL. Economic evaluation of the rhBMP-2 (Inductos) in the treatment of vertebral fusion for chronic lowback pain in Spain. *Pharmacoeconomics - Spanish Research Articles.* 2008;5(4):109-118. Exclusion code: 1
- Bauer AS, Zampini JM, McGuire KJ. Journal Scan: Spine. *Clinical Orthopaedics and Related Research*. 2009;467(12):3358-3364. Exclusion code: 5
- Baumgarten KM. Commentary on an article by Jacob S. Vandermeer et al.: "Local administration of ibandronate and bone morphogenetic protein-2 after ischemic osteonecrosis of the immature femoral head. A combined therapy that stimulates bone formation and decreases femoral head deformity". *Journal of Bone & Joint Surgery - American Volume*. 2011;93(10):e57. [PMID: 21593363] Exclusion code: 5
- 39. Bekelis K, Gottfried ON, Wolinsky JP, Gokaslan ZL, Omeis I. Severe dysphagia secondary to

posterior C1-C3 instrumentation in a patient with atlantoaxial traumatic injury: A case report and review of the literature. *Dysphagia*. 2010;25(2):156-160. Exclusion code: 3

- 40. Bell RB, Gregoire C. Reconstruction of mandibular continuity defects using recombinant human bone morphogenetic protein 2: a note of caution in an atmosphere of exuberance. *Journal of Oral & Maxillofacial Surgery*. 2009;67(12):2673-2678. [PMID: 19925990] Exclusion code: 5
- Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. *Neurosurgery*. 2008;62(5 Suppl 2):ONS423-431; discussion ONS431. [PMID: 18596525] Exclusion code: 5
- Bennett M, Reynolds AS, Dickerman RD. Recent article by Shields et al titled "adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion". *Spine*. 2006;31(17):2029-2030. [PMID: 16924224] Exclusion code: 3
- Betz RR, Lavelle WF, Samdani AF. Bone grafting options in children. *Spine*. 2010;35(17):1648-1654. Exclusion code: 5
- 44. Bhattacharyya T. Commentary on an article by Hannu T. Aro, MD, PhD, et al.: "Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation".[Erratum appears in J Bone Joint Surg Am. 2011 May 4;93(9):e50]. *Journal of Bone & Joint Surgery - American Volume*. 2011;93(9):e50. [PMID: 21454741] Exclusion code: 5
- 45. Bianchi J, Fiorellini JP, Howell TH, Sekler J, Curtin H, Nevins ML, et al. Measuring the efficacy of rhBMP-2 to regenerate bone: a radiographic study using a commercially available software program. *International Journal of Periodontics & Restorative Dentistry*. 2004;24(6):579-587. [PMID: 15626320] Exclusion code: 5
- 46. Bibbo C. Practical use of adjuvant rhBMP-2 to augment bone healing in foot and ankle surgery. *Techniques in Orthopaedics*. 2011;26(1):28-31. Exclusion code: 5
- 47. Bibbo C, Haskell MD. Recombinant bone morphogenetic protein-2 (rhBMP-2) in high-risk foot and ankle surgery: Surgical techniques and preliminary results of a prospective, intention-to-

treat study. *Techniques in Foot and Ankle Surgery*. 2007;6(2):71-79. Exclusion code: 7

- Bibbo C, Patel DV, Haskell MD. Recombinant bone morphogenetic protein-2 (rhBMP-2) in high-risk ankle and hindfoot fusions. *Foot & Ankle International*. 2009;30(7):597-603.
 [PMID: 19589304] Exclusion code: 7
- 49. Billon-Grand R, Petit A, Launay O, Czorny A. [Thoracic spine pseudarthrosis treated by transpleural corporectomy and bone morphogenic protein]. *Neuro-Chirurgie*. 2011;57(1):28-30. [PMID: 21247607] Exclusion code: 1
- 50. Birke O, Schindeler A, Ramachandran M, et al. Treatment of congenital pseudarthrosis of the tibia using recombinant bone morphogenetic protein and bisphosphonates. *Bone*. 2010;46:S20-S21. Exclusion code: 5
- Bishop GB, Einhorn TA. Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. *International Orthopaedics*. 2007;31(6):721-727. [PMID: 17668207] Exclusion code: 5
- Block MS, Achong R. Bone morphogenetic protein for sinus augmentation. *Atlas of the Oral* & *Maxillofacial Surgery Clinics of North America*. 2006;14(1):99-105. [PMID: 16522512] Exclusion code: 5
- Blokhuis TJ, Lindner T. Allograft and bone morphogenetic proteins: an overview. *Injury*. 2008;39 (Suppl 2):S33-36. [PMID: 18804571] Exclusion code: 5
- 54. Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, et al. A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes.[Erratum appears in Spine. 2005 Oct 15;30(20):2356]. *Spine*. 2005;30(14):1565-1575; discussion E1387-1591. [PMID: 16025024] Exclusion code: 3
- Boachie-Adjei O, Cho W, King AB. Axial lumbar interbody fusion (AxiaLIF) approach for adult scoliosis. *European Spine Journal*. 2012:1-7. Exclusion code: 3
- 56. Boden SD. Evaluation of carriers of bone morphogenetic protein for spinal fusion. *Spine*. 2001;26(8):850. [PMID: 11317102] Exclusion code: 5

- Boden SD. Clinical application of the BMPs. Journal of Bone & Joint Surgery - American Volume. 2001;83-A Suppl 1(Pt 2):S161. [PMID: 11314796] Exclusion code: 4
- Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. *Spine*. 2002;27(16 Suppl 1):S26-31. [PMID: 12205416] Exclusion code: 2
- Boden SD. Efficacy of autologous growth factors in lumbar intertranverse fusions: Point of view. *Spine*. 2003;28(17):1971. Exclusion code: 5
- Boden SD. The ABCs of BMPs. *Orthopaedic Nursing*. 2005;24(1):49-52; quiz 53-44. [PMID: 15722975] Exclusion code: 5
- 61. Boden SD. Spinescope. Seminars in Spine Surgery. 2011;23(1):76-81. Exclusion code: 5
- 62. Boden SD. Spinescope. *Seminars in Spine Surgery*. 2012;24(1):81-86. Exclusion code: 5
- 63. Boden SD, Andersson GBJ, Anderson DG, Damien C, Ebara S, Helm G, et al. Summary statement: Overview of bone morphogenetic proteins for spine fusion. *Spine*. 2002;27(16 SUPPL.):S1. Exclusion code: 5
- Boden SD, Lane JM, Finnegan M. Breakout session 2: Bone. *Clinical Orthopaedics and Related Research*. 1999(367 SUPPL.):S130-S132. Exclusion code: 5
- 65. Boraiah S, Paul O, Hawkes D, Wickham M, Lorich DG. Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. *Clinical Orthopaedics & Related Research*. 2009;467(12):3257-3262. [PMID: 19693635] Exclusion code: 7
- 66. Boyne PJ. Maxillofacial surgical application of bone inductor materials. *Implant Dentistry*. 2001;10(1):2-4. [PMID: 11307643] Exclusion code: 5
- Boyne PJ. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. *Journal of Bone and Joint Surgery - Series A.* 2001;83(SUPPL. 1 II):S1146-S1150. Exclusion code: 4
- Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, et al. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. *Journal of Oral & Maxillofacial Surgery*. 2005;63(12):1693-1707. [PMID:

16297689] Exclusion code: 7

- Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. *International Journal of Periodontics & Restorative Dentistry*. 1997;17(1):11-25. [PMID: 10332250] Exclusion code: 7
- Boyne PJ, Nakamura A, Shabahang S. Evaluation of the long-term effect of function on rhBMP-2 regenerated hemimandibulectomy defects. *British Journal of Oral & Maxillofacial Surgery*. 1999;37(5):344-352. [PMID: 10577748] Exclusion code: 4
- 71. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. *Cellular Signalling*. 2011;23(4):609-620. [PMID: 20959140] Exclusion code: 5
- 72. Branch CL, Jr. Physican-directed (off-label) use of recombinant bone morphogenic protein-2: let us do it well! *Spine Journal: Official Journal of the North American Spine Society*. 2011;11(6):469-470. [PMID: 21729795] Exclusion code: 5
- 73. Buchowski JM, Riew KD, Nussenbaum B. In reference to acute airway obstruction in cervical spinal procedures with bone morphogenetic proteins. *Laryngoscope*. 2011;121(11):2501. Exclusion code: 5
- 74. Burkhart KJ, Rommens PM. Intramedullary application of bone morphogenetic protein in the management of a major bone defect after an Ilizarov procedure. *Journal of Bone & Joint Surgery British Volume*. 2008;90(6):806-809. [PMID: 18539677] Exclusion code: 3
- 75. Burks MV, Nair L. Long-term effects of bone morphogenetic protein- based treatments in humans. *Journal of Long-Term Effects of Medical Implants.* 2010;20(4):277-293. [PMID: 21488821] Exclusion code: 5
- 76. Burkus JK. Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new technologies. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. *Journal of Neurosurgery Spine*. 2004;1(3):254-260. [PMID: 15478362] Exclusion code: 6
- 77. Burkus JK. Surgical treatment of the painful motion segment: Matching technology with indications. *Spine*. 2005;30(16 SUPPL.):S7-S15.

Exclusion code: 5

- Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA. Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. *Journal of Bone & Joint Surgery - American Volume*. 2009;91(5):1181-1189. [PMID: 19411467] Exclusion code: 6
- 79. Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA. Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2: Reply. *Journal of Bone and Joint Surgery Series A*. 2010;92(15):2615-2616. Exclusion code: 5
- Burnei G, Vlad C, Gavriliu S, Georgescu I, Hodorogea D, Pârvan A, et al. Upper and lower limb length equalization: diagnosis, limb lengthening and curtailment, epiphysiodesis. *Rom. J. Intern. Med.* 2012;50(1):43-59. [PMID: 22788093] Exclusion code: 3
- Cahill KS, Claus EB. Complications associated with use of bone-morphogenetic proteins in spinal fusion procedures: Reply. *JAMA - Journal* of the American Medical Association. 2009;302(19):2091. Exclusion code: 5
- Calori GM, D'Avino M, Tagliabue L, Albisetti W, d'Imporzano M, Peretti G. An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results.[Erratum appears in Injury. 2007 Oct;38(10):1224]. *Injury*. 2006;37 Suppl 3:S43-50. [PMID: 16963360] Exclusion code: 3
- Calori GM, Mazza E, Colombo M, Ripamonti C, Tagliabue L. Treatment of long bone non-unions with polytherapy: indications and clinical results. *Injury*. 2011;42(6):587-590. [PMID: 21524745] Exclusion code: 2
- 84. Cannada LK, Anglen JO, Archdeacon MT, Herscovici Jr D, Ostrum RF. Avoiding complications in the care of fractures of the tibia. *Journal of Bone and Joint Surgery - Series A*. 2008;90(8):1760-1768. Exclusion code: 5
- Canter HI, Vargel I, Mavili ME. Reconstruction of mandibular defects using autografts combined with demineralized bone matrix and cancellous allograft. *Journal of Craniofacial Surgery*. 2007;18(1):95-100; discussion 101-103. [PMID: 17251844] Exclusion code: 5

- Capital District Health Authority Canada. Spine Fusion Instrumented With BMP-2 vs Uninstrumented With Infuse BMP-2 Alone. 2010. NCT00405600. Exclusion code: Pending
- 87. Capital District Health Authority Canada, Canadian Orthopaedic Trauma Society. A Randomized Controlled Cost Study of Infuse BMP 2 vs Iliac Crest Autograft for Non Union of Long Bone Fractures. 2010. NCT00856479. Exclusion code: 7
- Capo JT, Marcus MS, Shamian B. Treatment of a segmental defect in open radial and ulnar shaft fractures using rhBMP-2 and iliac crest bone graft: A case report. *Hand*. 2011;6(4):424-428. Exclusion code: 2
- Cardoso MJ, Sciubba DM. Is use of bonemorphogenetic proteins for spine fusion surgery cost-effective? *Archives of Surgery*. 2009;144(11):996-997. Exclusion code: 5
- Carlisle E, Fischgrund JS. Bone morphogenetic proteins for spinal fusion. *Spine Journal: Official Journal of the North American Spine Society*. 2005;5(6 Suppl):240S-249S. [PMID: 16291119] Exclusion code: 5
- 91. Carragee E, Mitsunaga K, Abrams J, Scuderi G. Local bone graft harvesting with careful facet arthodesis in posterolateral lumbar fusion: Outcomes and morbidity compared with amplify trial data. *Spine Journal*. 2011;11(10):60S-61S. Exclusion code: 3
- 92. Carragee E, Weiner B, Hurwitz E. Comparison of adverse events and disclosures in the original rhBMP-2 trials with fda data and subsequent publications. *Spine Journal*. 2011;11(10):21S-22S. Exclusion code: 5
- Carragee E, Wildstein M. Subsidence and osteolysis in patients undergoing alif with and without rhBMP-2 graft aumentation. *Spine Journal.* 2011;11(10):114S. Exclusion code: 5
- 94. Carragee EJ, Bono CM, Scuderi GJ. Pseudomorbidity in iliac crest bone graft harvesting: the rise of rhBMP-2 in short-segment posterior lumbar fusion. *Spine Journal: Official Journal of the North American Spine Society.* 2009;9(11):873-879. [PMID: 19850231] Exclusion code: 5
- 95. Carragee EJ, Ghanayem AJ, Weiner BK, Rothman DJ, Bono CM. A challenge to integrity in spine publications: years of living dangerously with the promotion of bone growth factors. *Spine Journal: Official Journal of the North American*

Spine Society. 2011;11(6):463-468. [PMID: 21729794] Exclusion code: 5

- 96. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(6):471-491. [PMID: 21729796] Exclusion code: 5
- Carragee EJ, Hurwitz EL, Weiner BK. Carragee et al. respond. *Spine Journal*. 2011;11(8):804-805. Exclusion code: 5
- Carragee EJ, Hurwitz EL, Weiner BK, Bono CM, Rothman DJ. Future directions for the Spine Journal: Managing and reporting conflict of interest issues. *Spine Journal*. 2011;11(8):695-697. Exclusion code: 5
- Carragee EJ, Hurwitz EL, Weiner BK, Scuderi GJ, Bono CM. Authors and editors combined response to Zdeblick letter (revised 28 June 2011). *Spine Journal*. 2011;11(7):687-690. Exclusion code: 5
- 100.Carreon L, Crawford C, Lenke L, Sucato D, Stephens Richards B. Does iliac crest harvesting affect outcomes following posterior fusions for adolescent idiopathic scoliosis? *Spine Journal*. 2011;11(10):64S. Exclusion code: 3
- 101. Carstens MH, Chin M, Ng T, Tom WK. Reconstruction of #7 facial cleft with distractionassisted in situ osteogenesis (DISO): role of recombinant human bone morphogenetic protein-2 with Helistat-activated collagen implant. *Journal of Craniofacial Surgery*. 2005;16(6):1023-1032. [PMID: 16327550] Exclusion code: 2
- 102. Carter TG, Brar PS, Tolas A, Beirne OR. Offlabel use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for reconstruction of mandibular bone defects in humans. *Journal of Oral & Maxillofacial Surgery*. 2008;66(7):1417-1425. [PMID: 18571026] Exclusion code: 7
- 103.Casado PL, Duarte MEL, Carvalho W, Esmeraldo da Silva L, Barboza EP. Ridge bone maintenance in human after extraction. *Implant Dentistry*. 2010;19(4):314-322. [PMID: 20683288] Exclusion code: 3
- 104.Chao M, Donovan T, Sotelo C, Carstens MH. In situ osteogenesis of hemimandible with rhBMP-2 in a 9-year-old boy: osteoinduction via stem cell concentration. *Journal of Craniofacial*

Surgery. 2006;17(3):405-412. [PMID: 16770173] Exclusion code: 7

- 105.Chao ST, Joyce MJ, Suh JH. Treatment of Heterotopic Ossification. Orthopedics. 2007;30(6):457-464. Exclusion code: 5
- 106. Chapman MW. Thoughts on clinical trials to evaluate the action and effectiveness of BMPs in bone healing. *Journal of Bone & Joint Surgery -American Volume*. 2001;83-A Suppl 1(Pt 2):S163-164. [PMID: 11314798] Exclusion code: 5
- 107. Chataigner H. Study of segmental lumbar lordosis following posterior transforaminal fusion, anterior fusion or disc prosthesis: Therapeutic consequences. *European Spine Journal.* 2011;20(7):1208-1209. Exclusion code: 5
- 108. Chataigner H, Vidal P. A study of lumbar isokinetics after disc prosthesis insertion or monosegmental fusion. *European Spine Journal*. 2011;20(7):1204. Exclusion code: 5
- 109. Chau AMT, Mobbs RJ. Bone graft substitutes in anterior cervical discectomy and fusion. *European Spine Journal*. 2009;18(4):449-464. Exclusion code: 5
- 110. Chen G, Yang JZ, Xu HM, Wang M. The Application of NNB/BMP Complex in the Treatment of Ununited-tibia Fracture. *The Orthopedic Journal of China*. 2000;7(8):758-761. CN-00352548] Exclusion code: 1
- 111. Chen HA, Chen PC, Lin YJ, Chen CH, Liao HT, Chou CT. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. *International Journal of Rheumatic Diseases*. 2010;13:141. Exclusion code: 3
- 112. Chen H-A, Chen C-H, Lin Y-J, Chen PC, Chen WS, Lu CL, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. *Journal of Rheumatology*. 2010;37(10):2126-2132. [PMID: 20682677] Exclusion code: 2
- 113.Cheng CZ, Lin ZD. Application of allogeneic bone transplantation in anterior cervical corpectomy. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2007;11(43):8765-8769. Exclusion code: 1
- 114.Cheung A, Phillips AM. Bone morphogenetic proteins in orthopaedic surgery. *Current Orthopaedics*. 2006;20(6):424-429. Exclusion code: 5

- 115. Cheung LK, Zheng LW. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction at different rates in an experimental model. *Journal of Craniofacial Surgery*. 2006;17(1):100-108; discussion 109-110. [PMID: 16432416] Exclusion code: 4
- 116. Chi JH. Exposing conflicts of interest and complications of rhBMP-2. *Neurosurgery*. 2011;69(4):N21-22. [PMID: 21900807] Exclusion code: 5
- 117. Chin M. Primary reconstruction of alveolar clefts using recombinant human bone morphogenetic protein-2: clinical and radiologic outcomes. *Journal of Craniofacial Surgery*. 2009;20 Suppl 2:1766-1767. [PMID: 19816347] Exclusion code: 5
- 118. Chin M, Ng T, Tom WK, Carstens M. Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts. *Journal of Craniofacial Surgery*. 2005;16(5):778-789. [PMID: 16192856] Exclusion code: 7
- 119.Cho SK, Bridwell KH, Lenke LG, Baldus CR. Is there a difference in clinical outcome between adult patients under and over age 60 who have revision scoliosis fusion surgery to the sacrum? *Spine Journal.* 2010;10(9):61S. Exclusion code: 5
- 120.Cho W, Shimer AL, Shen FH. Complications Associated with Posterior Lumbar Surgery. *Seminars in Spine Surgery*. 2011;23(2):101-113. Exclusion code: 5
- 121. Choi EJ, Kang SR, Kim BC, Kim HJ. Efficacy of new HA-ErhBMP2 implant in maxillary sinus graft. *International Journal of Oral and Maxillofacial Surgery*. 2011;40(10):1136-1137. Exclusion code: 5
- 122. Chrastil J, Patel AA. Complications associated with posterior and transforaminal lumbar interbody fusion. *Journal of the American Academy of Orthopaedic Surgeons*.
 2012;20(5):283-291. [PMID: 22553100] Exclusion code: 5
- 123.Cicciu M, Herford AS, Juodzbalys G, Stoffella E. Recombinant human bone morphogenetic protein type 2 application for a possible treatment of bisphosphonates-related osteonecrosis of the jaw. *Journal of Craniofacial Surgery*. 2012;23(3):784-788. [PMID: 22565901] Exclusion code: 7

124. Cicciu M, Herford AS, Stoffella E, Cervino G,

Cicciu D. Protein-Signaled Guided Bone Regeneration Using Titanium Mesh and Rh-BMP2 in Oral Surgery: A Case Report Involving Left Mandibular Reconstruction after Tumor Resection. *The open dentistry journal*. 2012;6:51-55. [PMID: 22435080] Exclusion code: 7

- 125.Cimic M, Smoljanovic T, Bojanic I. Re: Hiremath GK, Steinmetz MP, Krishnaney AA. Is it safe to use recombinant human bone morphogenetic protein in posterior cervical fusion? Spine 2009;34:885-9. *Spine*. 2010;35(3):361; author reply 361-362. [PMID: 20118766] Exclusion code: 5
- 126.Clark RR, McKinley TO. Bilateral olecranon epiphyseal fracture non-union in a competitive athlete. *Iowa Orthopaedic Journal*. 2010;30:179-181. [PMID: 21045994] Exclusion code: 3
- 127. Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H. Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3-year results of a pilot study in humans. *Journal of Periodontology*. 2000;71(8):1241-1257. [PMID: 10972640] Exclusion code: 7
- 128.Cochran DL, Schenk R, Buser D, Wozney JM, Jones AA. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. *Journal of Periodontology*. 1999;70(2):139-150. [PMID: 10102551] Exclusion code: 4
- 129.Cohen D. Medtronic submits full data on spinal protein to independent scrutiny. *BMJ*.2011;343:d5484. [PMID: 21878463] Exclusion code: 5
- 130.Cole CD, McCall TD, Schmidt MH, Dailey AT. Comparison of low back fusion techniques: Transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. *Current Reviews in Musculoskeletal Medicine*. 2009;2(2):118-126. Exclusion code: 5
- 131.Combe C, Bornet C, Adam P, Colomb R. Use of bone morphogenetic profeins: Audit in 24 University Hospitals mailed. *Journal de Pharmacie Clinique*. 2007;26(4):203-207. Exclusion code: 1
- 132.Conroy JL, Whitehouse SL, Graves SE, Pratt NL, Ryan P, Crawford RW. Risk factors for revision for early dislocation in total hip arthroplasty. *Journal of Arthroplasty*. 2008;23(6):867-872. [PMID: 18534522]

Exclusion code: 2

- 133.Crandall D, Patterson J, Huish E, Revella J, Datta J, Chang M, et al. RhBMP-2 in TLIF: Dose related complications from a large series. *Spine Journal*. 2011;11(10):61S. Exclusion code: 5
- 134. Crawford CH, Buchowski JM. Bone morphogenetic protein use in anterior cervical spine surgery: A review of current Literature concerning indications, safety, and efficacy. *Neurosurgery Quarterly*. 2009;19(4):283-287. Exclusion code: 5
- 135. Crawford CH, 3rd, Seligson D. Atrophic nonunion of humeral diaphysis treated with locking plate and recombinant bone morphogenetic protein: nine cases. *American Journal of Orthopedics (Chatham, Nj)*.
 2009;38(11):567-570. [PMID: 20049351] Exclusion code: 7
- 136.Cross JD, Wenke JC, Ficke JR, Johnson AE. Data-driven disaster management requires data: implementation of a military orthopaedic trauma registry. *Journal of Surgical Orthopaedic Advances.* 2011;20(1):56-61. [PMID: 21477535] Exclusion code: 5
- 137.Csimma C, Swiontkowski MF. Large clinical trials in musculoskeletal trauma: are they possible? Lessons learned from the international study of the use of rhBMP-2 in open tibial fractures. *Journal of Bone & Joint Surgery -American Volume*. 2005;87(1):218-222. [PMID: 15634835] Exclusion code: 5
- 138.Cushner F, Agnelli G, FitzGerald G, Warwick D. Complications and functional outcomes after total hip arthroplasty and total knee arthroplasty: results from the Global Orthopaedic Registry (GLORY). American Journal of Orthopedics (Chatham, Nj). 2010;39(9 Suppl):22-28. [PMID: 21290028] Exclusion code: 3
- 139.Daentzer D. The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers: Comment. Zeitschrift fur Orthopadie und Unfallchirurgie. 2007;145(5):552. Exclusion code: 1
- 140.Daewoong Pharmaceutical Co. LTD. Efficacy and Safety of Bongros-BMP Compared to Biooss for Regeneration of Alveolar Bone Tissue After Maxillary Sinus Floor Augmentation. 2012. NCT01634308. Exclusion code: 3
- 141.Dahdaleh NS, Albert GW, Hasan DM. Multiple symptomatic vertebral artery loops treated with

posterior cervical fusion. *Journal of Clinical Neuroscience*. 2010;17(6):788-790. Exclusion code: 3

- 142. De Franceschi R, Ono HY, Lobo LF.
 Preliminary studies on the use of BMPs in Orthognatic surgery. *International Journal of Oral and Maxillofacial Surgery*.
 2011;40(10):1196. Exclusion code: 5
- 143.De Long WG, Jr., Einhorn TA, Koval K, McKee M, Smith W, Sanders R, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. *Journal of Bone & Joint Surgery American Volume*. 2007;89(3):649-658. [PMID: 17332116] Exclusion code: 5
- 144.de Steiger RN, Miller LN, Prosser GH, Graves SE, Davidson DC, Stanford TE. Poor outcome of revised resurfacing hip arthroplasty. *Acta Orthopaedica*. 2010;81(1):72-76. [PMID: 20170416] Exclusion code: 3
- 145. Deatherage J. Bone materials available for alveolar grafting. Oral & Maxillofacial Surgery Clinics of North America. 2010;22(3):347-352.
 [PMID: 20713267] Exclusion code: 5
- 146.Delimar D, Smoljanovic T, Bojanic I. Could the use of bone morphogenetic proteins in fracture healing do more harm than good to our patients? *International Orthopaedics*. 2011:1. Exclusion code: 5
- 147. Delimar D, Smoljanovic T, Bojanic I. Could the use of bone morphogenetic proteins in fracture healing do more harm than good to our patients? *International Orthopaedics*. 2012;36(3):683. Exclusion code: 5
- 148. Delloye C, Suratwala SJ, Cornu O, Lee FY. Treatment of allograft nonunions with recombinant human bone morphogenetic proteins (rhBMP). *Acta Orthopaedica Belgica*. 2004;70(6):591-597. [PMID: 15669462] Exclusion code: 7
- 149.Den Boer FC, Patka P, Haarman HJTM. Bone induction with bone growth factors: 'Bone morphogenetic proteins'. *Nederlands Tijdschrift voor Geneeskunde*. 1996;140(48):2390-2394. Exclusion code: 1
- 150.Desai PP, Bell AJ, Suk M. Treatment of recalcitrant, multiply operated tibial nonunions with the RIA graft and rh-BMP2 using intramedullary nails. *Injury*. 2010;41 Suppl 2:S69-71. [PMID: 21144932] Exclusion code: 7
- 151. Deutsch H, Haid R, Rodts Jr G, Mummaneni PV.

The decision-making process: Allograft versus autograft. *Neurosurgery*. 2007;60(1 SUPPL.):S1-98-S91-102. Exclusion code: 5

- 152. DeVries JG, Nguyen M, Berlet GC, Hyer CF. The Effect of Recombinant Bone Morphogenetic Protein-2 in Revision Tibiotalocalcaneal Arthrodesis: Utilization of the Retrograde Arthrodesis Intramedullary Nail Database. *Journal of Foot and Ankle Surgery*. 2012;51(4):426-432. Exclusion code: 7
- 153. Deyo RA, Ching A, Matsen L, Martin BI, Kreuter W, Jarvik JG, et al. Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: trends, complications, repeat surgery, and charges. *Spine*. 2012;37(3):222-230. [PMID: 21494195]. Exclusion code: 3
- 154.Dickerman RD, Reynolds A, Morgan B.
 Calcium phosphate silicate for spinal fusion: a good alternative to bone morphogenetic protein-2! *Spine Journal: Official Journal of the North American Spine Society.* 2008;8(6):1046-1047.
 [PMID: 18280217] Exclusion code: 3
- 155.Dickerman RD, Reynolds AS, Bennett M. Brower RS, Vickrov NM. A case of psoas ossification from the use of BMP-2 for posterolateral fusion at L4-L5. Spine 2008;33:E653-55. *Spine*. 2009;34(7):749; author reply 749. [PMID: 19333110] Exclusion code: 5
- 156.Dickerman RD, Reynolds AS, Morgan B. Polyetheretherketone (PEEK) cage filled with bone morphogenic protein and demineralised bone matrix in anterior cervical discectomy and fusion. *International Orthopaedics*. 2008;32(5):717. Exclusion code: 5
- 157.Dickerman RD, Reynolds AS, Morgan BC, Tompkins J, Cattorini J, Bennett M. rh-BMP-2 can be used safely in the cervical spine: dose and containment are the keys! *Spine Journal: Official Journal of the North American Spine Society*. 2007;7(4):508-509. [PMID: 17521966] Exclusion code: 5
- 158.Dickerman RD, Reynolds AS, Tackett J, Beugler DM, Bennett M. Dynamic versus static cervical plating for fusion: what about the interbody graft? *Spine Journal*. 2009;9(4):336. Exclusion code: 5
- 159.Dickinson BP, Ashley RK, Wasson KL, O'Hara C, Gabbay J, Heller JB, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. *Plastic & Reconstructive Surgery*.

2008;121(1):209-217. [PMID: 18176223] Exclusion code: 7

- 160.Dickman CA. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR(trademark) allograft ring and the ATLANTIS(trademark) anterior cervical plate: Point of view. *Spine*. 2003;28(12):1225. Exclusion code: 5
- 161.Dimar JR, Glassman SD. The art of bone grafting. *Current Opinion in Orthopaedics*. 2007;18(3):226-233. Exclusion code: 5
- 162. Dimar JR, 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Reply to "A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned". *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(11):1082-1083. [PMID: 22078853] Exclusion code: 5
- 163.Dimar JRI. Letters [2]. *Spine*. 2007;32(6):708. Exclusion code: 5
- 164.Dimar JRI, Djurasovic M, Carreon LY. Surgical management of degenerative and postsurgical spondylolisthesis. *Seminars in Spine Surgery*. 2005;17(3 SPEC. ISS.):186-194. Exclusion code: 5
- 165.Dimar JRI, Djurasovic M, Carreon LY. Surgical management of degenerative spinal stenosis. *Seminars in Spine Surgery*. 2005;17(3 SPEC. ISS.):195-204. Exclusion code: 5
- 166.Dinopoulos HTH, Giannoudis PV. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. *Expert Opinion* on Drug Safety. 2006;5(6):847-866. [PMID: 17044811] Exclusion code: 5
- 167. DiPaola CP, Molinari RW. Posterior lumbar interbody fusion. *Journal of the American Academy of Orthopaedic Surgeons*.
 2008;16(3):130-139. [PMID: 18316711] Exclusion code: 2
- 168. Dmitriev AE, Lehman RA, Jr., Symes AJ. Bone morphogenetic protein-2 and spinal arthrodesis: the basic science perspective on protein interaction with the nervous system. *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(6):500-505. [PMID: 21729799] Exclusion code: 2
- 169.Docherty Skogh A-C, Engstrand T. Bone morphogenetic proteins in cranial

reconstructions: clinical evaluation of heparinchitosan as a carrier for BMP-2. *Plastic & Reconstructive Surgery*. 2009;123(6):192e-193e. [PMID: 19483536] Exclusion code: 5

- 170.Does the use of bone morphogenetic protein (rhBMP-2) in patients undergoing Anterior Cervical Decompression and Fusion (ACDF) increase their risk of adverse events?-a retrospective case-control study. [Poster]. *Spine*. 2009. Exclusion code: 5
- 171.Donegan DJ, Scolaro J, Matuszewski PE, Mehta S. Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. *Orthopedics*. 2011;34(11):e730-735. [PMID: 22049954] Exclusion code: 7
- 172.Ducray F, Idbaih A, de Reynies A, Bièche I, Thillet J, Mokhtari K, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. *Molecular Cancer*. 2008;7:41. [PMID: 18492260] Exclusion code: 2
- 173.ECRI. Interbody cage with bone morphogenetic protein (InFUSE™/LT-CAGE™) for degenerative disc disease. Plymouth Meeting, PA: ECRI, 2004:78. Exclusion code: 5
- 174.Ehsan A, Lee B, Itamura JM. Total elbow allografts with collateral ligament reconstruction for posttraumatic elbow injuries. *Journal of Orthopaedic Science*. 2010;15(6):795-803.
 [PMID: 21116898] Exclusion code: 7
- 175.El-Amin SF, Hogan MV, Allen AA, Hinds J, Laurencin CT. The indications and use of bone morphogenetic proteins in foot, ankle, and tibia surgery. *Foot & Ankle Clinics*. 2010;15(4):543-551. [PMID: 21056855] Exclusion code: 5
- 176.Engelhardt VR. Fusion techniques at the lumbosacral junction. Zeitschrift fur Orthopadie und Ihre Grenzgebiete. 1999;137(4):Oa15-Oa16. Exclusion code: 1
- 177.Epstein NE. Pros, cons, and costs of INFUSE in spinal surgery. *Surgical neurology international*. 2011;2:10. [PMID: 21297932] Exclusion code: 5
- 178.Epstein NE, Schwall GS. Costs and frequency of "off-label" use of INFUSE for spinal fusions at one institution in 2010. *Surgical neurology international.* 2011;2:115. [PMID: 21886888] Exclusion code: 5
- 179.Esposito M, Grusovin MG, Coulthard P, Worthington HV. The efficacy of various bone augmentation procedures for dental implants: a

Cochrane systematic review of randomized controlled clinical trials. *International Journal of Oral & Maxillofacial Implants*. 2006;21(5):696-710. [PMID: 17066630] Exclusion code: 5

- 180.Fallucco MA, Carstens MH. Primary reconstruction of alveolar clefts using recombinant human bone morphogenic protein-2: clinical and radiographic outcomes. *Journal of Craniofacial Surgery*. 2009;20 Suppl 2:1759-1764. [PMID: 19816345] Exclusion code: 7
- 181.Fehlings MG, Arvin B. Surgical management of cervical degenerative disease: the evidence related to indications, impact, and outcome. *Journal of Neurosurgery Spine*. 2009;11(2):97-100. [PMID: 19769487] Exclusion code: 5
- 182.Ferguson M, Brand C, Lowe A, Gabbe B, Dowrick A, Hart M, et al. Outcomes of isolated tibial shaft fractures treated at level 1 trauma centres. *Injury*. 2008;39(2):187-195. [PMID: 17825303] Exclusion code: 3
- 183.Ferretti C, Ripamonti U. Human segmental mandibular defects treated with naturally derived bone morphogenetic proteins. *Journal of Craniofacial Surgery*. 2002;13(3):434-444. [PMID: 12040215] Exclusion code: 3
- 184.Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. *Journal of Periodontology*. 2005;76(4):605-613. [PMID: 15857102] Exclusion code: 7
- 185.Fourie JA, Thompson ML. A model for the prediction of time to union in fractures of the tibia. *Physiotherapy Research International*. 1998;3(1):27-36. [PMID: 9718615] Exclusion code: 5
- 186.Franco J, Coppage J, Carstens MH. Mandibular distraction using bone morphogenic protein and rapid distraction in neonates with Pierre Robin syndrome. *Journal of Craniofacial Surgery*. 2010;21(4):1158-1161. [PMID: 20613593] Exclusion code: 7
- 187.Fritzell P. "Spine Tango" spine registry. *European Spine Journal.* 2002;11(4):301-302.[PMID: 12193989] Exclusion code: 5
- 188.Fujita N, Matsushita T, Ishida K, Sasaki K, Kubo S, Matsumoto T, et al. An analysis of bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein 2 from a biodegradable sponge composed of

gelatin and (beta)-tricalcium phosphate. *Journal* of Tissue Engineering and Regenerative Medicine. 2011. [PMID: 21706776]. Exclusion code: 4

- 189.Gardiner A, Weitzel PP. Bone graft substitutes in sports medicine. Sports Medicine and Arthroscopy Review. 2007;15(3):158-166. Exclusion code: 5
- 190.Garg A. Bone morphogenetic protein (BMP) for sinus lift. *Dental Implantology Update*.2010;21(4):25-29. [PMID: 20422900] Exclusion code: 5
- 191.Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. *Health Technology Assessment (Winchester, England).* 2007;11(30):1-150. [PMID: 17669279] Exclusion code: 5
- 192.Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey I, et al. Bone morphogenetic protein (BMP) for fracture healing in adults. *Cochrane Database of Systematic Reviews*. 2010(6):CD006950. [PMID: 20556771] Exclusion code: 5
- 193.Gebauer G, Anderson DG. Complications of Minimally Invasive Lumbar Spine Surgery. Seminars in Spine Surgery. 2011;23(2):114-122. Exclusion code: 5
- 194.Gekle CJE, Schildhauer TA, Hopf KF, Muhr G. Radiological changes after application of recombinant human bone morphogenis protein 2 (rhBMP-2) in open tibia fractures. *Hefte zur der Unfallchirurg*. 2000;275:587-588. CN-00359894] Exclusion code: 1
- 195.Gerling MC, Bohlman HH. Dropped head deformity due to cervical myopathy: Surgical treatment outcomes and complications spanning twenty years. *Spine*. 2008;33(20):E739-E745. Exclusion code: 3
- 196.Ghodadra N, Singh K. Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures. *Biologics*. 2008;2(3):345-354. [PMID: 19707367] Exclusion code: 5
- 197.Giannoudis P, Psarakis S, Kontakis G. Can we accelerate fracture healing? A critical analysis of the literature. *Injury*. 2007;38 Suppl 1:S81-89.
 [PMID: 17383489] Exclusion code: 4
- 198. Giannoudis PV. Fracture healing and bone regeneration: autologous bone grafting or

BMPs? *Injury*. 2009;40(12):1243-1244. [PMID: 19850291] Exclusion code: 5

- 199.Giannoudis PV, Dinopoulos HT. BMPs: Options, indications, and effectiveness. *Journal* of Orthopaedic Trauma. 2010;24 Suppl 1:S9-16. [PMID: 20182245] Exclusion code: 5
- 200. Giannoudis PV, Dinopoulos HT. Autologous bone graft: when shall we add growth factors? *Foot & Ankle Clinics*. 2010;15(4):597-609.
 [PMID: 21056859] Exclusion code: 5
- 201.Giannoudis PV, Dinopoulos HT. Autologous bone graft: when shall we add growth factors? *Orthopedic Clinics of North America*.
 2010;41(1):85-94; table of contents. [PMID: 19931056] Exclusion code: 2
- 202. Giannoudis PV, Jones E, Einhorn TA. Fracture healing and bone repair. *Injury*. 2011;42(6):549-550. Exclusion code: 5
- 203. Giannoudis PV, Kontakis G. Treatment of long bone aseptic non-unions: Monotherapy or polytherapy? *Injury*. 2009;40(10):1021-1022. Exclusion code: 3
- 204. Giannoudis PV, Pountos I, Morley J, Perry S, Tarkin HI, Pape H-C. Growth factor release following femoral nailing. *Bone*.
 2008;42(4):751-757. [PMID: 18243089] Exclusion code: 2
- 205.Gigante A, Cappella M, Manzotti S, Cecconi S, Greco F, Di Primio R, et al. Osteoinduction properties of different growth factors on cells from non-union patients: in vitro study for clinical application. *Journal of Biological Regulators & Homeostatic Agents*. 2010;24(1):51-62. [PMID: 20385071] Exclusion code: 5
- 206.Gill JB. Re: Dimar JR, Glassman SD, Burkus KJ, et al. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 2006; 31:2534-40. *Spine.* 2007;32(6):708; author reply 708. [PMID: 17413480] Exclusion code: 5
- 207.Gillam MH, Ryan P, Graves SE, Miller LN, de Steiger RN, Salter A. Competing risks survival analysis applied to data from the Australian Orthopaedic Association National Joint Replacement Registry. *Acta Orthopaedica*.
 2010;81(5):548-555. [PMID: 20919809] Exclusion code: 5

- 208.Gillam MH, Salter A, Ryan P, Graves SE.
 Different competing risks models applied to data from the Australian Orthopaedic Association National Joint Replacement Registry. *Acta Orthopaedica*. 2011;82(5):513-520. [PMID: 21895508] Exclusion code: 5
- 209.Giudice G, Gozzo G, Sportelli P, Gargiuoli F, Siate AD. The role of functional orthodontic stress on implants in residual alveolar cleft. *Plastic and Reconstructive Surgery*. 2007;119(7):2206-2217. Exclusion code: 3
- 210.Glassman SD, Carreon LY, Anderson PA, Resnick DK. A diagnostic classification for lumbar spine registry development. *Spine Journal: Official Journal of the North American Spine Society*. 2011;11(12):1108-1116. [PMID: 22208855] Exclusion code: 2
- 211.Glassman SD, Howard JM, Sweet A, Carreon LY. Complications and concerns with osteobiologics for spine fusion in clinical practice. *Spine*. 2010;35(17):1621-1628. [PMID: 20628338] Exclusion code: 5
- 212.Glied AN, Kraut RA. Off-label use of rhBMP-2 for reconstruction of critical-sized mandibular defects. *New York State Dental Journal*.
 2010;76(4):32-35. [PMID: 20863038] Exclusion code: 7
- 213.Gonzalez M, Fuentes R, Triplett R, Triplett S. BMP-2 used for maxillary sinus augmentation and implant placement: 15 years follow-up after final restorations. *Journal of Oral and Maxillofacial Surgery*. 2011;69(9):e-51. Exclusion code: 5
- 214.Good CR, Lenke LG, Bridwell KH, O'Leary PT, Pichelmann MA, Keeler KA, et al. Can posterior-only surgery provide similar radiographic and clinical results as combined anterior (thoracotomy/ thoracoabdominal)/ posterior approaches for adult scoliosis? *Spine*. 2010;35(2):210-218. [PMID: 20038868] Exclusion code: 3
- 215.Gornet MF, Dryer RF, Peloza JH, Schranck FW. Lumbar disc arthroplasty vs. Anterior lumbar interbody fusion: Five-year outcomes for patients in the Maverick(degrees) disc IDE study. *Spine Journal*. 2010;10(9):64S. Exclusion code: 5
- 216.Gotlieb EL, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth. *Journal of the American Dental*

Association. 2008;139(4):457-465. [PMID: 18385030] Exclusion code: 2

- 217. Govender S. The treatment of open tibial fractures with intramedullary nailing and recombinant human bone morphogenetic protein-2 [abstract]. *Journal of Bone and Joint Surgery British Volume*. 2005;87-B(SUPP_I):14. CN-00746954] Exclusion code: 5
- 218.Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. *Journal of Bone & Joint Surgery - American Volume*. 2002;84-A(12):2123-2134. [PMID: 12473698] Exclusion code: 7
- 219.Granata JD, Ellis TJ. Management of tibial nonunions. *Current Orthopaedic Practice*. 2009;20(5):522-526. Exclusion code: 3
- 220.Graves SE, Davidson D, Ingerson L, Ryan P, Griffith EC, McDermott BF, et al. The Australian Orthopaedic Association National Joint Replacement Registry. *Medical Journal of Australia*. 2004;180(5 Suppl):S31-34. [PMID: 14984361] Exclusion code: 5
- 221.Gray RJ, Rampersaud YR. Comparison of the incidence of radiculitis and radiographic adverse event following minimally invasive lumbar transforaminal interbody fusions (TLIF) with and without the use of bone morphogenetic protein (BMP). *Spine Journal.* 2010;10(9):8S-9S. Exclusion code: 5
- 222.Grob D, Luca A, Mannion AF. An observational study of patient-rated outcome after atlantoaxial fusion in patients with rheumatoid arthritis and osteoarthritis. *Clinical Orthopaedics & Related Research.* 2011;469(3):702-707. [PMID: 20838947] Exclusion code: 2
- 223.Grob D, Mannion AF. The patient's perspective on complications after spine surgery. *European Spine Journal*. 2009;18 Suppl 3:380-385.[PMID: 19390874] Exclusion code: 2
- 224.Grob D, Porchet F, Kleinstuck FS, Lattig F, Jeszenszky D, Luca A, et al. A comparison of outcomes of cervical disc arthroplasty and fusion in everyday clinical practice: surgical and methodological aspects. *European Spine Journal.* 2010;19(2):297-306. [PMID: 19882177] Exclusion code: 3

- 225.Gross RH. The use of bone grafts and bone graft substitutes in pediatric orthopaedics: an overview. *Journal of Pediatric Orthopedics*. 2012;32(1):100-105. [PMID: 22173396] Exclusion code: 5
- 226.Gruber R, Weich HA, Dullin C, Schliephake H. Ectopic bone formation after implantation of a slow release system of polylactic acid and rhBMP-2. *Clinical Oral Implants Research*.
 2009;20(1):24-30. [PMID: 19126104] Exclusion code: 4
- 227.Guelcher SA, Brown KV, Li B, Guda T, Lee B-H, Wenke JC. Dual-purpose bone grafts improve healing and reduce infection. *Journal of Orthopaedic Trauma*. 2011;25(8):477-482.
 [PMID: 21738070] Exclusion code: 4
- 228.Guerado E, Fuerstenberg CH. What bone graft substitutes should we use in post-traumatic spinal fusion? *Injury*. 2011;42 Suppl 2:S64-71.
 [PMID: 21839997] Exclusion code: 5
- 229.Guo J, Li C, Zhang Q, Wu G, Deacon SA, Chen J, et al. Secondary bone grafting for alveolar cleft in children with cleft lip or cleft lip and palate. *Cochrane Database of Systematic Reviews.* 2011(6):CD008050. [PMID: 21678372] Exclusion code: 2
- 230.Guyer RD, Tromanhauser SG, Regan JJ. An economic model of one-level lumbar arthroplasty versus fusion. *Spine Journal: Official Journal of the North American Spine Society*.
 2007;7(5):558-562. [PMID: 17588819] Exclusion code: 5
- 231.Habal MB. Bone tissue engineering, the new concept in regenerative medicine and surgery: Reflections on innovations. *Journal of Craniofacial Surgery*. 2009;20(1):4-6. Exclusion code: 2
- 232.Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. *Biotechnology Letters*. 2009;31(12):1825-1835. [PMID: 19690811] Exclusion code: 3
- 233.Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. *Biotechnology Letters*. 2009;31(12):1817-1824. [PMID: 19690804] Exclusion code: 5
- 234. Hak DJ. Management of aseptic tibial nonunion.

Journal of the American Academy of Orthopaedic Surgeons. 2011;19(9):563-573. [PMID: 21885702] Exclusion code: 5

- 235.Hak DJ, Pittman JL. Biological rationale for the intramedullary canal as a source of autograft material. *Orthopedic Clinics of North America*. 2010;41(1):57-61; table of contents. [PMID: 19931053] Exclusion code: 3
- 236. Hamdy R. Limb reconstruction in children using distraction osteogenesis. *Bone.* 2009;45:S95. Exclusion code: 2
- 237.Hamdy RC. Limb reconstruction in children using distraction osteogenesis. *Bone*. 2009;45:S48. Exclusion code: 2
- 238. Hart KL, Bowles D. Reconstruction of Alveolar Defects Using Titanium-Reinforced Porous Polyethylene as a Containment Device for Recombinant Human Bone Morphogenetic Protein 2. Journal of Oral and Maxillofacial Surgery. 2011. Exclusion code: 7
- 239. Hart KL, Bowles D. Reconstruction of alveolar defects using titanium-reinforced porous polyethylene as a containment device for recombinant human bone morphogenetic protein
 2. Journal of Oral & Maxillofacial Surgery.
 2012;70(4):811-820. [PMID: 22209107]
 Exclusion code: 7
- 240.Hart RA. Acknowledging the elephant in the room: Conflict of interest in industry-sponsored clinical research. *Spine Journal*. 2011;11(8):703-704. Exclusion code: 2
- 241.Harwood PJ, Giannoudis PV. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. *Expert Opinion on Drug Safety*. 2005;4(1):75-89.
 [PMID: 15709900] Exclusion code: 5
- 242. Hawkins BJ. Recombinant bone morphogenetic protein-2: Clinical use in the treatment of recalcitrant nonunion and difficult fractures. *Techniques in Foot and Ankle Surgery*. 2007;6(2):80-88. Exclusion code: 7
- 243.Hawkins BJ. Biologics in foot and ankle surgery. Foot & Ankle Clinics. 2010;15(4):577-596.[PMID: 21056858] Exclusion code: 7
- 244.He JP, Su XY. Repairing effect of transforming growth factor beta 1 and bone morphogenetic protein-2 on articular cartilage injury. *Journal of Clinical Rehabilitative Tissue Engineering Research.* 2009;13(46):9155-9158. Exclusion code: 1

- 245.Heggeness MH. Important considerations on bone morphogenetic protein-2 and neuroinflammation. *Spine Journal: Official Journal of the North American Spine Society*.
 2011;11(6):506. [PMID: 21729800] Exclusion code: 5
- 246.Helm G, Anderson DG, Andersson GBJ, Boden SD, Damien C, Ebara S, et al. Summary statement: Bone morphogenetic proteins: Basic science. *Spine*. 2002;27(16 SUPPL.):S9. Exclusion code: 5
- 247.Herford AS. rhBMP-2 as an option for reconstructing mandibular continuity defects. *Journal of Oral & Maxillofacial Surgery*.
 2009;67(12):2679-2684. [PMID: 19925991] Exclusion code: 7
- 248.Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). *Journal of Oral & Maxillofacial Surgery*. 2008;66(4):616-624. [PMID: 18355584] Exclusion code: 7
- 249.Herford AS, Boyne PJ, Rawson R, Williams RP. Bone morphogenetic protein-induced repair of the premaxillary cleft. *Journal of Oral & Maxillofacial Surgery*. 2007;65(11):2136-2141.
 [PMID: 17954305] Exclusion code: 7
- 250. Herford AS, Boyne PJ, Williams RP. Clinical applications of rhBMP-2 in maxillofacial surgery. *Journal of the California Dental Association*. 2007;35(5):335-341. [PMID: 17822159]
- 251.Herford AS, Cicciu M. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. *Journal of Craniofacial Surgery*.
 2010;21(6):1970-1975. [PMID: 21119472] Exclusion code: 2
- 252.Herford AS, Stoffella E, Cicciu M. 5 Years follow up of patient treated with rhBMP2 for large mandibulary bone defects. *International Journal of Oral and Maxillofacial Surgery*. 2011;40(10):1126. Exclusion code: 5
- 253.Herford AS, Stoffella E, Tandon R. Reconstruction of Mandibular Defects Using Bone Morphogenic Protein: Can Growth Factors Replace the Need for Autologous Bone Grafts? A Systematic Review of the Literature. *Plastic Surgery International.* 2011;2011:165824. [PMID: 22567236] Exclusion code: 5
- 254.Hoffmann M, Jones CB. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in

posterolateral spine fusion: What's the correct successful dose/dosage? *Spine Journal*. 2011;11(10):113S-114S. Exclusion code: 5

- 255.Hoffmann M, Jones CB. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in posterolateral lumbar spine fusion: Complications in the elderly. *Spine Journal*. 2011;11(10):61S-62S. Exclusion code: 5
- 256.Hoffmann M, Jones CB. Complication rates utilizing rhBMP-2 for lumbar posterolateral fusions. *Spine Journal*. 2011;11(10):164S-165S. Exclusion code: 5
- 257.Hollinger JO, Winn SR. Tissue engineering of bone in the craniofacial complex. *Annals of the New York Academy of Sciences*. 1999;875:379-385. [PMID: 10415584] Exclusion code: 5
- 258. Howard JM, Glassman SD, Carreon LY. Posterior iliac crest pain after posterolateral fusion with or without iliac crest graft harvest. *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(6):534-537. [PMID: 20947439] Exclusion code: 2
- 259.Howell K. AttraX[®] Putty in spinal interbody fusion: Evaluation of radiographic and clinical outcomes (NUVA.AX1101). Exclusion code: 3
- 260.Howell TH, Fiorellini J, Jones A, Alder M, Nummikoski P, Lazaro M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. *International Journal of Periodontics & Restorative Dentistry*. 1997;17(2):124-139. [PMID: 9497707] Exclusion code: 7
- 261.Hsiong SX, Mooney DJ. Regeneration of vascularized bone. *Periodontology 2000*.
 2006;41:109-122. [PMID: 16686929] Exclusion code: 5
- 262.Hsu WK, Wang JC. Bone graft substitutes: The use of genetically engineered bone morphogenetic proteins for spinal fusion. *Current Opinion in Orthopaedics*. 2004;15(3):167-171. Exclusion code: 5
- 263.Hsu WK, Wang JC. The use of bone morphogenetic protein in spine fusion. *Spine Journal: Official Journal of the North American Spine Society*. 2008;8(3):419-425. [PMID: 18375186] Exclusion code: 5
- 264.Hu SS. Iliac crest bone graft: are the complications overrated? *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(6):538-539. [PMID: 21729802]

Exclusion code: 5

- 265.Huang JI, Paczas M, Hoyen HA, Vallier HA. Functional outcome after open reduction internal fixation of intra-articular fractures of the distal humerus in the elderly. *Journal of Orthopaedic Trauma*. 2011;25(5):259-265. [PMID: 21464746] Exclusion code: 3
- 266.Huang Y-H, Polimeni G, Qahash M, Wikesjo UME. Bone morphogenetic proteins and osseointegration: current knowledge - future possibilities. *Periodontology 2000*. 2008;47:206-223. [PMID: 18412583] Exclusion code: 5
- 267.Huh J, Stinner DJ, Burns TC, Hsu JR. Infectious complications and soft tissue injury contribute to late amputation after severe lower extremity trauma. *Journal of Trauma - Injury, Infection and Critical Care.* 2011;71(SUPPL. 1):S47-S51. Exclusion code: 2
- 268. Huh J-B, Lee H-J, Jang J-W, Kim MJ, Yun PY, Kim SH, et al. Randomized clinical trial on the efficacy of Escherichia coli-derived rhBMP-2 with beta-TCP/HA in extraction socket. *The Journal of Advanced Prosthodontics*. 2011;3(3):161-165. [PMID: 22053248] Exclusion code: 3
- 269.Hull P. The management of open tibial fractures. *European Journal of Orthopaedic Surgery and Traumatology*. 2008;18(6):441-447. Exclusion code: 2
- 270. Interbody cage with bone morphogenetic protein (InFUSETM(TM)/LT-CAGETM)(TM) for degenerative disc disease (Brief record). Health Technology Assessment Database. 2012(3). [PMID: HTA-32006000298.] Exclusion code: 5
- 271.Iwata H, Sakano S, Itoh T, Bauer TW.
 Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. *Clinical Orthopaedics & Related Research*.
 2002(395):99-109. [PMID: 11937869] Exclusion code: 5
- 272.Jensen OT. Preface: Toward tissue engineering in maxillofacial reconstruction. Oral & Maxillofacial Surgery Clinics of North America. 2011;23(2):ix. [PMID: 21492794] Exclusion code: 5
- 273.Jensen OT, Cottam J, Ringeman J, Adams M. Trans-Sinus Dental Implants, Bone Morphogenetic Protein 2, and Immediate Function for All-on-4 Treatment of Severe Maxillary Atrophy. *Journal of Oral & Maxillofacial Surgery*. 2012;70(1):141-148.

[PMID: 21802186] Exclusion code: 7

- 274.Jeong GK, Sandhu HS. Applications of recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal surgery. *Seminars in Spine Surgery*. 2006;18(1):15-21. Exclusion code: 5
- 275.Jeong GK, Sandhu HS, Farmer J. Bone morphogenic proteins: applications in spinal surgery. *HSS Journal*. 2005;1(1):110-117.[PMID: 18751819] Exclusion code: 5
- 276.Jiang Q, Wei LC, Liu DP, Hu YX, Zhang YQ, Yin JW. Allochthonous bone composited bone morphogenetic protein 2 for treating 31 cases of humerus nonunion. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2008;12(42):8377-8379. Exclusion code: 1
- 277.Johnson EE, Urist MR. One-stage lengthening of femoral nonunion augmented with human bone morphogenetic protein. *Clinical Orthopaedics & Related Research*. 1998(347):105-116. [PMID: 9520880] Exclusion code: 3
- 278.Johnson EE, Urist MR. Human bone morphogenetic protein allografting for reconstruction of femoral nonunion. *Clinical Orthopaedics & Related Research*.
 2000(371):61-74. [PMID: 10693551] Exclusion code: 3
- 279. Johnston CE, Birch JG. A tale of two tibias: a review of treatment options for congenital pseudarthrosis of the tibia. *Journal of Childrens Orthopaedics*. 2008;2(2):133-149. [PMID: 19308593] Exclusion code: 7
- 280.Jones AL. Recombinant human bone morphogenic protein-2 in fracture care. *Journal* of Orthopaedic Trauma. 2005;19(10 Suppl):S23-25. [PMID: 16479219] Exclusion code: 5
- 281.Jones AL, Aro HT, Nordsletten L, Patel AD, Valentin-Opran A. Factors affecting outcomes in open tibial fractures: an evaluation of 450 patients enrolled in a prospective rhBMP-2 study [abstract]. American Orthopaedic Association Annual Meeting. 2003;03(09). CN-00449709] Exclusion code: 5 (abstract only)
- 282.Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. *Journal of Bone & Joint Surgery* - *American Volume*. 2006;88(7):1431-1441. [PMID: 16818967] Exclusion code: 7

- 283.Jones NF, Brown EE, Mostofi A, Vogelin E, Urist MR. Healing of a scaphoid nonunion using human bone morphogenetic protein. *Journal of Hand Surgery - American Volume*. 2005;30(3):528-533. [PMID: 15925163] Exclusion code: 3
- 284.Jones NF, Brown EE, Vogelin E, Urist MR. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock's disease by vascular pedicle implantation. *Journal of Hand Surgery: European Volume*. 2008;33(3):317-321. [PMID: 18562364] Exclusion code: 3
- 285.Julka A, Shah AS, Miller BS. Inflammatory response to recombinant human bone morphogenetic protein-2 use in the treatment of a proximal humeral fracture: a case report. *Journal* of Shoulder & Elbow Surgery. 2012;21(1):e12-16. [PMID: 21795067] Exclusion code: 7
- 286.Jung RE, Glauser R, Scharer P, Hammerle CHF, et al. The effect of rhBMP-2 on guided bone regeneration in humans [abstract]. *Journal of Dental Research*. 2002;81(Spec Iss A). CN-00796337 NEW]Exclusion code: 5 (abstract only)
- 287.Jung RE, Glauser R, Scharer P, Hammerle CHF, Sailer HF, Weber FE. Effect of rhBMP-2 on guided bone regeneration in humans. *Clinical Oral Implants Research*. 2003;14(5):556-568. [PMID: 12969359] Exclusion code: 7
- 288.Jung RE, Thoma DS, Hammerle CHF.
 Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. *Journal of Clinical Periodontology*. 2008;35(8 Suppl):255-281.
 [PMID: 18724854] Exclusion code: 5
- 289.Jung RE, Windisch SI, Eggenschwiler AM, Thoma DS, Weber FE, Hammerle CHF. A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. *Clinical Oral Implants Research*. 2009;20(7):660-666. [PMID: 19489935] Exclusion code: 7
- 290. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. *Clinical Oral Implants Research*.
 2009;20 Suppl 4:185-206. [PMID: 19663965] Exclusion code: 3
- 291.Kain MSH, Einhorn TA. Recombinant human bone morphogenetic proteins in the treatment of

fractures. *Foot & Ankle Clinics*. 2005;10(4):639-650. [PMID: 16297824] Exclusion code: 5

- 292. Kaiser MG, Haid RW. Cervicomedullary Compression and Occipitocervical Instability. *Neurosurgery Clinics of North America*. 2006;17(3):235-246. Exclusion code: 5
- 293.Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone nonunions. *Injury*. 2007;38 Suppl 2:S77-84. [PMID: 17920421] Exclusion code: 5
- 294.Kanakaris NK, Giannoudis PV. Clinical applications of bone morphogenetic proteins: current evidence. *Journal of Surgical Orthopaedic Advances*. 2008;17(3):133-146. [PMID: 18851797] Exclusion code: 5
- 295.Kanakaris NK, Mallina R, Calori GM, Kontakis G, Giannoudis PV. Use of bone morphogenetic proteins in arthrodesis: clinical results. *Injury*. 2009;40 Suppl 3:S62-66. [PMID: 20082794] Exclusion code: 3
- 296.Kanakaris NK, Paliobeis C, Nlanidakis N, Giannoudis PV. Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. *Injury*. 2007;38 Suppl 2:S65-75. [PMID: 17920420] Exclusion code: 5
- 297.Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV. Is there a role for bone morphogenetic proteins in osteoporotic fractures? *Injury*. 2009;40 Suppl 3:S21-26. [PMID: 20082786] Exclusion code: 3
- 298.Kandziora F. BMP-2 and IGF-I/TGF-beta1 stimulate intervertebral spondylodesis. *Zeitschrift fur Orthopadie und Ihre Grenzgebiete*. 2002;140(5):466. Exclusion code: 1
- 299.Kang JD. Another complication associated with rhBMP-2? Spine Journal: Official Journal of the North American Spine Society. 2011;11(6):517-519. [PMID: 21612984] Exclusion code: 5
- 300.Kang S-W, Bae J-H, Park S-A, Kim WD, Park MS, Ko YJ, et al. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model. *Biotechnology Letters*. 2012;34(7):1375-1384. [PMID: 22447098] Exclusion code: 4
- 301.Kao DWK, Kubota A, Nevins M, Fiorellini JP. The negative effect of combining rhBMP-2 and Bio-Oss on bone formation for maxillary sinus augmentation. *International Journal of*

Periodontics & Restorative Dentistry. 2012;32(1):61-67. [PMID: 22254226] Exclusion code: 7

- 302.Karbowski A, Schwitalle M, Beekman M. Serial MR-assisted evaluation of the impact of RHBMP-2 on bone repair after core decompression of femoral heads with avascular necrosis [Abstract]. Orthopaedic Transactions. 1997;21(1):61-62. CN-00226318] Exclusion code: 5
- 303.Karbowski A, Schwitalle M, Beekman M. Serial MR-assisted evaluation of the impact of rhBMP-2 on bone repair after decompression of the femoral head with avascular necrosis [Abstract]. *Journal of Bone and Joint Surgery British*. 1997;79(2). CN-00226319] Exclusion code: 5
- 304. Keeling JJ, Gwinn DE, Tintle SM, Andersen RC, McGuigan FX. Short-term outcomes of severe open wartime tibial fractures treated with ring external fixation. *Journal of Bone and Joint Surgery - Series A*. 2008;90(12):2643-2651. Exclusion code: 2
- 305.Kelley P, Mata C, Da Silveira A. Chronic temporomandibular joint dislocation by mandibular distraction in a patient with Melnickneedles syndrome. *Journal of Craniofacial Surgery*. 2010;21(1):174-176. [PMID: 20072009] Exclusion code: 7
- 306.Kepler CK, Vaccaro AR. Point of view: Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: Trends, complications, repeat surgery, and charges. *Spine*. 2011. Exclusion code: 2
- 307.Kerr EJ, Jawahar A, Cavanaugh DA, Kay SG, Nunley PD. Lumbar interbody fusion procedures with osteoconductive mesenchymal stem-cells allograft: Safe and effective alternative to bone morphogenetic protein. *European Journal of Neurology*. 2010;17:25. Exclusion code: 2
- 308.Kessler JT, Melloh M, Zweig T, Aghayev E, Roder C. Development of a documentation instrument for the conservative treatment of spinal disorders in the International Spine Registry, Spine Tango. *European Spine Journal*. 2011;20(3):369-379. [PMID: 20532924] Exclusion code: 2
- 309.Khan A, Barrey C, Massourides H, Perrin G. Lumbar Hemivertebra in an Adult Treated by Transpedicular Osteotomy. World Neurosurgery. 2012. Exclusion code: 3

310. Khan SN, Lane JM. The use of recombinant

human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. *Expert Opinion on Biological Therapy*. 2004;4(5):741-748. [PMID: 15155165] Exclusion code: 5

- 311.Khan SN, Mermer MJ, Myers E, Sandhu HS. The roles of funding source, clinical trial outcome, and quality of reporting in orthopedic surgery literature. *American Journal of Orthopedics (Chatham, Nj).* 2008;37(12):E205-212; discussion E212. [PMID: 19212579] Exclusion code: 5
- 312.Khan SN, Sandhu HS, Lane JM, Cammisa FP, Jr., Girardi FP. Bone morphogenetic proteins: relevance in spine surgery. *Orthopedic Clinics of North America*. 2002;33(2):447-463. [PMID: 12389291] Exclusion code: 5
- 313.Khan SN, Sandhu HS, Parvataneni HK, Girardi FP, Cammisa FP, Jr. Bone graft substitutes in spine surgery. *Bulletin of the Hospital for Joint Diseases*. 2000;59(1):5-10. [PMID: 10789032] Exclusion code: 5
- 314.Kim C, Catanzariti AR, Mendicino RW. Tibiotalocalcaneal Arthrodesis for Salvage of Severe Ankle Degeneration. *Clinics in Podiatric Medicine and Surgery*. 2009;26(2):283-302. Exclusion code: 5
- 315.Kim DH, Jenis L, Berta SC, Vaccaro AR. Bone graft alternatives in spinal fusion surgery. *Current Opinion in Orthopaedics*. 2003;14(3):127-137. Exclusion code: 5
- 316.Kim M, Choe S. BMPs and their clinical potentials. *BMB reports*. 2011;44(10):619-634.[PMID: 22026995] Exclusion code: 5
- 317.Konstantinov IE, Saxena P, Wood DJ.
 Stabilisation of chronic flail chest: a novel approach of surgical fixation and osteogenesis. *Thorax.* 2009;64(3):265-266. [PMID: 19252022] Exclusion code: 5
- 318.Koolen PGL, Schreinemacher MHF, Peppelenbosch AG. Heterotopic ossifications in midline abdominal scars: a critical review of the literature. *European Journal of Vascular & Endovascular Surgery*. 2010;40(2):155-159.
 [PMID: 20400341] Exclusion code: 5
- 319.Korge A, Siepe C, Mehren C, Mayer HM. [Minimally invasive anterior approaches to the lumbosacral junction]. *Operative Orthopadie und Traumatologie*. 2010;22(5-6):582-592. [PMID: 21153015] Exclusion code: 1
- 320.Kraiwattanapong C, Boden SD, Louis-Ugbo J, Attallah E, Barnes B, Hutton WC. Comparison

of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. *Spine*. 2005;30(9):1001-1007. Exclusion code: 4

- 321.Krause F, Younger A, Weber M. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. *Journal of Bone & Joint Surgery - American Volume.* 2008;90(5):1168; author reply 1168-1169. [PMID: 18451418] Exclusion code: 5
- 322.Krumholz HM, Ross JS. A model for dissemination and independent analysis of industry data. JAMA - Journal of the American Medical Association. 2011;306(14):1593-1594. Exclusion code: 5
- 323.Kujala S, Raatikainen T, Ryhanen J, Kaarela O, Jalovaara P. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions--a preliminary study. *Scandinavian Journal of Surgery: SJS.* 2002;91(2):186-190. [PMID: 12164521] Exclusion code: 2
- 324. Kujala S, Raatikainen T, Ryhanen J, Kaarela O, Jalovaara P. Composite implant of native bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of resistant ulnar nonunions: report of five preliminary cases. *Archives of Orthopaedic & Trauma Surgery*. 2004;124(1):26-30. [PMID: 14618346] Exclusion code: 3
- 325.Kujala S, Vahasarja V, Serlo W, Jalovaara P. Treatment of congenital pseudarthrosis of the tibia with native bovine BMP: a case report. *Acta Orthopaedica Belgica*. 2008;74(1):132-136.
 [PMID: 18411616] Exclusion code: 2
- 326.Kuklo TR, Groth AT, Anderson RC, Frisch HM, Islinger RB. Recombinant human bone morphogenetic protein-2 for grade III open segmental tibial fractures from combat injuries in Iraq.[Retraction in Scott J. J Bone Joint Surg Br. 2009 Mar;91(3):285-6; PMID: 19258600]. Journal of Bone & Joint Surgery - British Volume. 2008;90(8):1068-1072. [PMID: 18669965] Exclusion code: 7
- 327.Kwong FNK, Harris MB. Recent developments in the biology of fracture repair. *Journal of the American Academy of Orthopaedic Surgeons*. 2008;16(11):619-625. [PMID: 18978283] Exclusion code: 5
- 328.Lad SP, Bagley JH, Ugiliweneza B, Babu R, Karikari I, Patil, CG, et al. 134[em space]BMP

and Cancer Risk: Results of a Large, Propensity Matched Study. *Neurosurgery*. 2012;71(2):E554. Exclusion code: 5

- 329.Lad SP, Nathan JK, Boakye M. Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States. *Spine*. 2011;36(4):E274-281. [PMID: 21304362] Exclusion code: 2
- 330.Ladd AL, Pliam NB. Bone graft substitutes in the radius and upper limb. *Journal of the American Society for Surgery of the Hand*. 2003;3(4):227-245. Exclusion code: 5
- 331.Leas B, Williams K. Safety and effectiveness of rhBMP-2 (infuse bone graft) for spinal fusion: 2011 update (Structured abstract). *Health Technology Assessment Database*. 2012(3).
 [PMID: HTA-32011001591] Exclusion code: 5
- 332.Lebl D, Cammisa F, Pumberger M, Kotwal S, Sama A, Girardi F. Early results of a novel technique for salvage lumbosacral interbody fusion by a posterior reamed transacral approach. *Spine Journal*. 2011;11(10):134S. Exclusion code: 2
- 333.Lee JY, Zeiller S, Voltaggio L, Lim MR, Hilibrand AS, Vaccaro AR, et al. Histological analysis of a displaced femoral ring allograft spacer filled with a recombinant human bone morphogenetic protein-2-soaked collagen sponge. A case report. *Journal of Bone & Joint Surgery - American Volume*. 2005;87(10):2318-2322. [PMID: 16203900] Exclusion code: 2
- 334.Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, et al. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. *Anesthesiology*. 2006;105(4):652-659; quiz 867-658. [PMID: 17006060] Exclusion code: 3
- 335.Lee MB. Bone morphogenetic proteins: background and implications for oral reconstruction. A review. *Journal of Clinical Periodontology*. 1997;24(6):355-365. [PMID: 9205913] Exclusion code: 5
- 336.Lee MJ, Hacquebord J, Varshney A, Cizik AM, Bransford RJ, Bellabarba C, et al. Risk factors for medical complication after lumbar spine surgery: a multivariate analysis of 767 patients. *Spine*. 2011;36(21):1801-1806. [PMID: 22046614] Exclusion code: 3
- 337.Lee RS, White AP, Grauer JN. The safety and

utility of bone morphogenetic protein in anterior and posterior cervical-spine fusions. *Current Opinion in Orthopaedics*. 2007;18(3):270-275. Exclusion code: 5

- 338.Leslie KS, Shah SN, Darrah C, Cooper A, Valentin-Opran A, Patel AD, et al. Alopecia universalis treated with bone morphogenetic protein? *British Journal of Dermatology*. 2006;154(1):190-191. [PMID: 16403121] Exclusion code: 5
- 339.Levin BP, Tawil P. Posterior tooth replacement with dental implants in sites augmented with rhBMP-2 at time of extraction--a case series. *Compendium of Continuing Education in Dentistry*. 2012;33(2):104-108. [PMID: 22545428] Exclusion code: 7
- 340.Lewkonia P, Dipaola C, Fisher C, Dvorak M, Paquette S, Kwon BK, et al. The incidence and bacteriology of delayed infections after instrumented spinal fusion. *Spine Journal*. 2011;11(10):165S-166S. Exclusion code: 5
- 341.Li D, Kong X, Li SX, et al. Bone morphogenetic protein and cartilage tissue repair. *Journal of Clinical Rehabilitative Tissue Engineering Research.* 2008;12(28):5525-5529. Exclusion code: 1
- 342.Li L, Xiao ZM. Injected bone restoring materials in the treatment of delayed union or nonunion of bone fracture. *Chinese Journal of Clinical Rehabilitation*. 2006;10(21):149-152. Exclusion code: 1
- 343.Lieberman JR, Conduah A, Urist MR. Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. *Clinical Orthopaedics & Related Research.* 2004(429):139-145. [PMID: 15577478] Exclusion code: 2
- 344.Liporace FA, Bibbo C, Azad V, Koerner J, Lin SS. Bioadjuvants for complex ankle and hindfoot reconstruction. *Foot & Ankle Clinics*. 2007;12(1):75-106. [PMID: 17350512] Exclusion code: 2
- 345.Lissenberg-Thunnissen SN, de Gorter DJJ, Sier CFM, Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. *International Orthopaedics*. 2011;35(9):1271-1280. [PMID: 21698428] Exclusion code: 2
- 346.Liu X, Shu DF, Li T, Liu H. Evidence for use of bone morphogenetic protein in lumbar spine arthrodesis. *Chinese Journal of Evidence-Based Medicine*. 2008;8(9):786-790. Exclusion code: 1

- 347.Liu Y, Wu G, de Groot K. Biomimetic coatings for bone tissue engineering of critical-sized defects. *Journal of the Royal Society Interface*. 2010;7 Suppl 5:S631-647. [PMID: 20484228] Exclusion code: 2
- 348.Lu DC, Chou D, Rodts G, Mummaneni PV. Multilevel ACDF with and without BMP: A comparison of outcomes and dysphagia rates in 150 patients. *Journal of Neurosurgery*. 2010;113(2):A406. Exclusion code: 5
- 349.Lutz R. [Study of the bone-implant interface after BMP gene therapy in a peri-implant defective model]. *Deutsche Zahnarztliche Zeitschrift*. 2005;60(Abstracts):A193. CN-00646159] Exclusion code: 1
- 350.MacDonald KM, Swanstrom MM, McCarthy JJ, Nemeth BA, Guliani TA, Noonan KJ. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts. *Journal of Pediatric Orthopedics*. 2010;30(2):199-205. [PMID: 20179570] Exclusion code: 7
- 351.Makino T, Kokubu T, Kurosaka M. [Effect of recombinant human bone morphogenetic protein on preventing atrophic nonunion]. *Clinical Calcium.* 2006;16(5):823-827. [PMID: 16679625] Exclusion code: 1
- 352.Mamidwar SS. Preface: bone graft materials. Journal of Long-Term Effects of Medical Implants. 2010;20(4):269. [PMID: 21488819] Exclusion code: 5
- 353.Mannion RJ, Nowitzke AM, Wood MJ. Improved fusion in minimally invasive lumbar interbody stabilisation with low dose BMP-2, but at what cost? *British Journal of Neurosurgery*. 2010;24(2):120. Exclusion code: 2
- 354.Mauffrey C, Seligson D, Lichte P, Pape HC, Al-Rayyan M. Bone graft substitutes for articular support and metaphyseal comminution: What are the options? *Injury*. 2011;42(SUPPL. 2):S35-S39. Exclusion code: 2
- 355.Mayo Clinic. Evaluation of Radiculitis Following Use of Bone Morphogenetic Protein-2 for Interbody Arthrodesis in Spinal Surgery World Health Organization - International Clinical Trials Registry Platform. 2009. NCT00984672. Exclusion code: 2
- 356.McAfee PC. Total disc replacement. *Operative Techniques in Orthopaedics*. 2003;13(3):214-221. Exclusion code: 5
- 357.McAfee PC, Cunningham B, Holsapple G,

Adams K, Blumenthal S, Guyer RD, et al. A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. *Spine*. 2005;30(14):1576-1583; discussion E1388-1590. [PMID: 16025025] Exclusion code: 3

- 358.McAfee PC, Fedder IL, Saiedy S, Shucosky EM, Cunningham BW. SB Charite disc replacement: report of 60 prospective randomized cases in a US center. *Journal of Spinal Disorders & Techniques*. 2003;16(4):424-433. [PMID: 12902960] Exclusion code: 3
- 359.McConnell J. A comparison of b-tcpdbmaversus rhBMP-2 in anterior lumbar interbody fusion: A prospective, randomized trial with two-year clinical and radiographic outcomes. *Spine Journal*. 2011;11(10):64S-65S. Exclusion code: 5b
- 360.McGirt M, Adogwa O, Parker S, Shau D, Mendenhall S, Aaronson O, et al. Cost effectiveness of revision instrumented fusion for lumbar pseudoarthrosis. *Spine Journal*. 2011;11(10):140S. Exclusion code: 5
- 361.McGirt M, Adogwa O, Parker S, Shau D, Mendenhall S, Cheng J, et al. Effectiveness of revision fusion for lumbar pseudoarthrosis: Twoyear improvement in pain, disability, quality of life and health-state utility. *Spine Journal*. 2011;11(10):140S-141S. Exclusion code: 5
- 362.McGuire KJ. Graft resorption with the use of bone morphogenetic protein: Lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Pradhan B, Bae H, Dawson E, Patel V, Delamarter R. Spine.
 2006;31:E277-E284. *Clinical Orthopaedics and Related Research.* 2007(454):287. Exclusion code: 5
- 363.McGuire KJ. Point of view. *Spine*. 2011;36(24):2051. Exclusion code: 5
- 364.McInnis MM, Olchanski N, Kemner JE, Goss T. Budget impact of new rhbmp-2 formulation in patients undergoing posterolateral spinal fusion procedures for degenerative disc disease in randomized controlled trial (RCT). Value in Health. 2010;13(7):A305. Exclusion code: 2
- 365.McKay B. Local sustained delivery of

recombinant human bone morphogenetic protein-2 (rhBMP-2). *Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society.* 2009;2009:236-237. [PMID: 19963455] Exclusion code: 5

- 366.McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. *Spine*. 2002;27(16 Suppl 1):S66-85. [PMID: 12205423] Exclusion code: 5
- 367.McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). *International Orthopaedics*. 2007;31(6):729-734. [PMID: 17639384] Exclusion code: 5
- 368.McKee MD. Recombinant human bone morphogenic protein-7: applications for clinical trauma. *Journal of Orthopaedic Trauma*.
 2005;19(10 Suppl):S26-28. [PMID: 16479220] Exclusion code: 5
- 369.Medtronic Individual Patient Data. A Pivotal Study of rhBMP-2/ACS/LT-CAGE® Device for Anterior Lumbar Interbody Fusion in Patients With Degenerative Disc Disease. *Study #3*. 2002. NCT01491425. Exclusion code: 5
- 370.Medtronic Individual Patient Data. Pivotal Study of rhBMP-2/ACS/Allograft Bone Dowel for Anterior Lumbar Interbody Fusion in Patients With Symptomatic Degenerative Disc Disease. *Study #5*. 2004. NCT01494493. Exclusion code: 5
- 371.Medtronic Individual Patient Data. INFUSE ® Bone Graft/CORNERSTONE-SR® Allograft Ring/ATLANTIS® Anterior Cervical Plate System Pivotal Trial - Individual Patient Data. *Study #17*. 2005. NCT01491477. Exclusion code: 6
- 372.Medtronic Spinal Biologics. Pilot Study of rhBMP-2/ACS/LT-CAGE® for Anterior Lumbar Interbody Fusion in Patients With Degenerative Disc Disease. 1999. NCT01491373. Exclusion code: 5
- 373.Medtronic Spinal Biologics. Pilot Study of rhBMP-2/BCP in Patients With Spinal Degeneration With Instability Requiring Surgical Fusion. 2001. NCT01495234. Exclusion code: 5
- 374.Medtronic Spinal Biologics. A Pivotal Study of rhBMP-2/ACS/INTER FIX[™] Device for Posterior Lumbar Interbody Fusion in Patients With Degenerative Disc Disease. 2002.

NCT01491464. Exclusion code: 5

- 375.Medtronic Spinal Biologics. Pivotal Study of rhBMP-2/ACS/LT-CAGE® Device for Anterior Lumbar Interbody Fusion in Patients With Symptomatic Degenerative Disc Disease. 2002. NCT01491386. Exclusion code: 5
- 376.Medtronic Spinal Biologics. INFUSE™ BONE GRAFT/CORNERSTONE-SR™ Allograft Ring/ATLANTIS™ Anterior Cervical Plate-Pilot Study. 2003. NCT01491399. Exclusion code: 5
- 377.Medtronic Spinal Biologics. Pilot Study of rhBMP/BCP With or Without the TSRH® Spinal System for Posterolateral Lumbar Fusion in Patients With Degenerative Disc Disease.
 2003. NCT01494441. Exclusion code: 5
- 378.Medtronic Spinal Biologics. A Pilot Study of rhBMP-2/ACS With the INTERFIX[™] Device for the Anterior-Lumbar Interbody Fusion in Patients With Degenerative Disc Disease. 2003. NCT01491451. Exclusion code: 5
- 379.Medtronic Spinal Biologics. A Pilot Study of rhBMP-2/ACS/Allograft Bone Dowel for Anterior Lumbar Interbody Fusion in Patients With Symptomatic Degenerative Disc Disease. 2004. NCT01494428. Exclusion code: 5
- 380.Medtronic Spinal Biologics. INFUSE ® Bone Graft/CORNERSTONE-SR® Allograft Ring/ATLANTIS® Anterior Cervical Plate System Pivotal Trial. 2005. NCT01491477. Exclusion code: 5
- 381.Medtronic Spinal Biologics. rhBMP-2/CRM/CD HORIZON® Spinal System Pivotal Study. 2005. NCT00707265. Exclusion code: 2
- 382.Medtronic Spinal Biologics. INFUSE® Bone Graft and MASTERGRAFT® Granules With CD HORIZON® for Posterolateral Lumbar Fusion in Patients With Degenerative Disc Disease - Pilot Study. 2006. NCT01491542. Exclusion code: 2
- 383.Medtronic Spinal Biologics. MAVERICK[™] Total Disc Replacement- Pivotal Study. 2006. NCT00635843. Exclusion code: 2
- 384.Medtronic Spinal Biologics. TELAMON P[™] Implant/INFUSE® Bone Graft/CD HORIZON® Spinal System Pilot Study. 2008. NCT01491516. Exclusion code: 5
- 385.Medtronic Spinal Biologics. rhBMP-2/CRM/CD HORIZON® Spinal System Pilot Study (2-Level). 2009. NCT01491568. Exclusion code: 2

- 386.Medtronic Spinal Biologics. INFUSE® Bone Graft/ PEEK Interbody Spacer/ Anterior Cervical Plate Pivotal Clinical Trial. 2012. NCT00485173. Exclusion code: 2
- 387.Medtronic Spinal Biologics, Averion International Corporation. Localized Alveolar Ridge Augmentation With Dental Implant. 2010. NCT00991965. Exclusion code: 2
- 388.Medtronic Spinal Biologics, Averion International Corporation. Sinus Augmentation With Dental Implant. 2011. NCT00991393. Exclusion code: 2
- 389.Medtronic Spinal Biologics, Averion International Corporation. Localized Alveolar Ridge Augmentation With Space Maintenance Devices. 2011. NCT00991432. Exclusion code: 2
- 390.Mehta S, Goss B, Williams R. Retrospective comparative analysis of degenerative lumbar spondylolisthesis treated with posterolateral fusion (PLF) with bone morphogenic protein (BMP) 2 with or without additional transforaminal lumbar interbody fusion (TLIF). *Spine.* 2010. Exclusion code: 5
- 391.Mehta SK, Breitbart EA, Berberian WS, Lin SS. The role of growth factors in foot and ankle surgery. *Current Orthopaedic Practice*. 2010;21(3):245-250. Exclusion code: 5
- 392.Melloh M, Staub L, Aghayev E, Zweig T, Barz T, Theis JC, et al. The international spine registry SPINE TANGO: status quo and first results.[Erratum appears in Eur Spine J. 2008 Sep;17(9):1210]. *European Spine Journal*. 2008;17(9):1201-1209. [PMID: 18446386] Exclusion code: 2
- 393.Melvin JS, Dombroski DG, Torbert JT, Kovach SJ, Esterhai JL, Mehta S. Open tibial shaft fractures: II. Definitive management and limb salvage. *Journal of the American Academy of Orthopaedic Surgeons*. 2010;18(2):108-117. [PMID: 20118327] Exclusion code: 5
- 394.Merritt AL, Spinnicke A, Pettigrew K, Alamin TF. Gluteal-sparing approach for posterior iliac crest bone graft: description of a new technique and assessment of morbidity in ninety-two patients after spinal fusion. *Spine*. 2010;35(14):1396-1400. [PMID: 20551786] Exclusion code: 2
- 395.Mirza SK. Folly of FDA-approval studies for bone morphogenetic protein. *Spine Journal: Official Journal of the North American Spine*

Society. 2011;11(6):495-499. [PMID: 21729798] Exclusion code: 5

- 396.Misch CM. The use of recombinant human bone morphogenetic protein-2 for the repair of extraction socket defects: a technical modification and case series report. *International Journal of Oral & Maxillofacial Implants*.
 2010;25(6):1246-1252. [PMID: 21197504] Exclusion code: 7
- 397.Misch CM. Bone Augmentation of the Atrophic Posterior Mandible for Dental Implants Using rhBMP-2 and Titanium Mesh: Clinical Technique and Early Results. *International Journal of Periodontics & Restorative Dentistry*. 2011;31(6):581-589. [PMID: 22140660] Exclusion code: 7
- 398.Mitka M. Questions about spine fusion product prompt a new process for reviewing data. *JAMA*. 2011;306(12):1311-1312. [PMID: 21954470] Exclusion code: 5
- 399.Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. *European Spine Journal*. 2009;18(6):783-799.
 [PMID: 19280232] Exclusion code: 5
- 400.Moghadam HG, Urist MR, Sandor GK, Clokie CM. Successful mandibular reconstruction using a BMP bioimplant. *Journal of Craniofacial Surgery*. 2001;12(2):119-127; discussion 128.
 [PMID: 11314620] Exclusion code: 7
- 401.Moghaddam A, Zimmermann G, Hammer K, Bruckner T, Grutzner PA, von Recum J. Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures. *Injury*. 2011;42(12):1435-1442.
 [PMID: 21665205] Exclusion code: 2
- 402. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. *Tissue engineering Part* A. 2011;17(21-22):2845-2855. [PMID: 21815822] Exclusion code: 5
- 403.Mok JM, Durrani SK, Piper SL, Hu SS, Deviren V, Berven SH, et al. Extravasation of rhBMP-2 with use of postoperative drains after posterolateral spinal fusion. *Spine*. 2008;33(15):1668-1674. [PMID: 18594460] Exclusion code: 2
- 404.Mont MA, Etienne G, Ragland PS. Outcome of nonvascularized bone grafting for osteonecrosis of the femoral head. *Clinical Orthopaedics &*

Related Research. 2003(417):84-92. [PMID: 14646705] Exclusion code: 2

- 405.Morgan A. Treatment of chronic nonunion of a sternal fracture with bone morphogenetic protein. *Annals of Thoracic Surgery*. 2008;85(2):e12-13. [PMID: 18222222] Exclusion code: 2
- 406.Morgan I, Richman M, Hudson J. Repair of dentoalveolar clefts with rhbmp-2. *Journal of Oral and Maxillofacial Surgery*. 2011;69(9):e-76. Exclusion code: 5
- 407.Mroz TE, Wang JC, Hashimoto R, Norvell DC. Complications related to osteobiologics use in spine surgery: a systematic review. *Spine*. 2010;35(9 Suppl):S86-104. [PMID: 20407355] Exclusion code: 5
- 408.Mummaneni PV, Meyer SA, Wu J-C. Biological approaches to spinal instrumentation and fusion in spinal deformity surgery. *Clinical Neurosurgery*. 2011;58:110-116. [PMID: 21916134] Exclusion code: 5
- 409.Murata M, Inoue M, Arisue M, Kuboki Y, Nagai N. Carrier-dependency of cellular differentiation induced by bone morphogenetic protein in ectopic sites. *International Journal of Oral and Maxillofacial Surgery*. 1998;27(5):391-396. Exclusion code: 3
- 410.Mussano F, Ciccone G, Ceccarelli M, Baldi I, Bassi F. Bone morphogenetic proteins and bone defects: a systematic review. *Spine*. 2007;32(7):824-830. [PMID: 17414919] Exclusion code: 5
- 411.Nauth A, Miclau T, 3rd, Bhandari M, Schemitsch EH. Use of osteobiologics in the management of osteoporotic fractures. *Journal of Orthopaedic Trauma*. 2011;25(Suppl 2):S51-55.
 [PMID: 21566475] Exclusion code: 5
- 412.Nauth A, Ristevski B, Li R, Schemitsch EH. Growth factors and bone regeneration: how much bone can we expect? *Injury*. 2011;42(6):574-579. [PMID: 21489530] Exclusion code: 5
- 413.Nauth A, Ristiniemi J, McKee MD, Schemitsch EH. Bone morphogenetic proteins in open fractures: past, present, and future. *Injury*. 2009;40 Suppl 3:S27-31. [PMID: 20082787] Exclusion code: 5
- 414.Ning J, Liu YL, Yang KH, Wang L, Ma P, Liu B. A systematic review of osteogenesis induced by recombinant human bone morphogenetic protein-2/absorbable collagen sponge for

maxillary sinus floor augmentation. *Journal of Clinical Rehabilitative Tissue Engineering Research.* 2011;15(9):1603-1606. Exclusion code: 1

- 415.Nishikawa M, Milhorat TH, Bolognese PA, et al. Occipito-cervical fusion in patients with occipito-atlanto-axial joints instability: A preliminary report of outcome and examination of influence factors for outcome. *Medical Journal of Minami Osaka Hospital*. 2012;59(1):7-14. Exclusion code: 1
- 416.Nobel Biocare. A Study of Dental Implants Coated With Bone Morphogenetic Protein Placed in the Upper or Lower Jaw. 2009. NCT00422279. Exclusion code: 2
- 417.Nord RM, Sandhu HS, Khan SN, Diwan AD. Threaded cortical bone dowels in lumbosacral arthrodesis: A review. *Clinical Orthopaedics and Related Research*. 2003(414):101-111. Exclusion code: 5
- 418.Nordsletten L. Recent developments in the use of bone morphogenetic protein in orthopaedic trauma surgery. *Current Medical Research & Opinion*. 2006;22 Suppl 1:S13-17; S23. [PMID: 16882365] Exclusion code: 7
- 419.Nordsletten L, Madsen JE. The effect of bone morphogenetic proteins in fracture healing. *Scandinavian Journal of Surgery: SJS.* 2006;95(2):91-94. [PMID: 16821651] Exclusion code: 5
- 420.Nordsletten L, Valentin-Opran A. Recombinant human bone morphogenetic protein-2 for the treatment of Gustilo Grade III open tibia fractures. *The Journal of Bone and Joint Surgery* (*Proceedings*). 2006;88-B(SUPP_I):183-118f. CN-00626701] Exclusion code: 5
- 421.Oetgen ME, Richards BS. Surgical Correction of Congenital Pseudoarthrosis of the Tibia: Use of the Williams Intramedullary Rod and Recombinant Human Bone Morphogenetic Protein-2. *Operative Techniques in Orthopaedics*. Vol 192009:13-18. Exclusion code: 7
- 422. Ong KL, Villarraga ML, Lau E, Carreon LY, Kurtz SM, Glassman SD. Off-label use of bone morphogenetic proteins in the United States using administrative data. *Spine*. 2010;35(19):1794-1800. [PMID: 20700081] Exclusion code: 2
- 423.O'Shaughnessy BA, Bridwell KH, Lenke LG, Cho W, Baldus C, Chang MS, et al. Does a long-

fusion "t3-sacrum" portend a worse outcome than a short-fusion "t10-sacrum" in primary surgery for adult scoliosis? Spine. 2012;37(10):884-90. [PMID:21971131] Exclusion code: 3

- 424.Panchbhavi VK. Synthetic bone grafting in foot and ankle surgery. *Foot & Ankle Clinics*. 2010;15(4):559-576. [PMID: 21056857] Exclusion code: 5
- 425.Pannier S. Congenital pseudarthrosis of the tibia. Orthopaedics and Traumatology: Surgery and Research. 2011;97(7):750-761. Exclusion code: 5

426.Papakostidis C, Kontakis G, Bhandari M, Giannoudis PV. Efficacy of autologous iliac crest bone graft and bone morphogenetic proteins for posterolateral fusion of lumbar spine: a meta-analysis of the results. *Spine*. 2008;33(19):E680-692. [PMID: 18758349] Exclusion code: 5

427.Park JB. Use of bone morphogenetic proteins in sinus augmentation procedure. *Journal of Craniofacial Surgery*. 2009;20(5):1501-1503. Exclusion code: 5

428.Park K. Erratum to "Non-invasive monitoring of BMP-2 retention and bone formation" [J. Control. Release 134 (2009) 157] (DOI:10.1016/j.jconrel.2009.02.001). Journal of Controlled Release. 2009;137(3):255. Exclusion code: 5

- 429.Patel AA, Spiker WR. Update on the Diagnosis and Treatment of Lumbar Nonunions. *Seminars in Spine Surgery*. 2008;20(1):20-26. Exclusion code: 5
- 430.Patel AD. Bone morphogenetic proteins in orthopaedic trauma: recent clinical findings with human bone morphogenetic protein-2 (rhBMP-2). *Current Medical Research & Opinion*. 2006;22 Suppl 1:S1-5. [PMID: 16882363] Exclusion code: 7
- 431.Patel AD, Group BS, Csimma C, Valentin A. Clinical benefits of recombinant human bone morphogenetic protein-2 in the treatment of open tibial shaft fractures [abstract]. *Journal of Bone* and Joint Surgery British. 2003;85(2):98-99. CN-00464452] Exclusion code: 5
- 432.Patel VV, Estes S, Lindley EM, Burger E. Lumbar spinal fusion versus anterior lumbar disc replacement: the financial implications. *Journal* of Spinal Disorders & Techniques. 2008;21(7):473-476. [PMID: 18836357]

Exclusion code: 3

- 433.Pei W, Zhe L, Li SY, Yan HW. Treating old scaphoid fractures using different implant materials. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2010;14(21):3907-3910. Exclusion code: 1
- 434.Pellegrini G, Seol YJ, Gruber R, Giannobile WV. Pre-clinical models for oral and periodontal reconstructive therapies. *Journal of Dental Research*. 2009;88(12):1065-1076. [PMID: 19887682] Exclusion code: 4
- 435.Pfizer. Study Evaluating Changes In Bone Mineral Density (BMD), And Safety Of Rhbmp-2/CPM In Subjects With Decreased BMD. 2013. NCT00752557. Exclusion code: 2
- 436.Phieffer LS, Goulet JA. Delayed unions of the tibia. Journal of Bone & Joint Surgery -American Volume. 2006;88(1):206-216. [PMID: 16425471] Exclusion code: 5
- 437.Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM. Demineralized bone matrix graft: a scientific and clinical case study assessment. *Journal of Foot & Ankle Surgery*. 2005;44(5):345-353. [PMID: 16210154] Exclusion code: 2
- 438.Pimenta L, Marchi L, Oliveira L, Coutinho E. A prospective, randomized, controlled clinical and radiological study to evaluate and compare the use of silicated calcium phosphate and rh-BMP2 in interbody lumbar spine fusion: 36 month follow-up. *Spine Journal*. 2011;11(10):130S. Exclusion code: 5b
- 439.Pimenta L, Pesantez CFA, Oliveira L. Silicon Matrix Calcium Phosphate as a Bone Substitute: Early Clinical and Radiological Results in a Prospective Study With 12-Month Follow-up. SAS Journal. 2008;2(2):62-68. Exclusion code: 3
- 440.Pneumaticos SG, Triantafyllopoulos GK, Chatziioannou S, Basdra EK, Papavassiliou AG. Biomolecular strategies of bone augmentation in spinal surgery. *Trends in Molecular Medicine*. 2011;17(4):215-222. [PMID: 21195666] Exclusion code: 5
- 441.Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. *Spine*. 2002;27(16 Suppl 1):S40-48. [PMID: 12205419] Exclusion code: 5
- 442.Pumberger M, Kotwal S, Lebl D, Hughes A, Sama A, Girardi F. Sensory and motor deficit following lateral lumbar interbody fusion. *Spine Journal*. 2011;11(10):84S. Exclusion code: 3

- 443.Rakovac M, Bojanic I, Smoljanovic T. Recombinant human bone morphogenetic protein 2 labeled use in spinal surgery and sexual dysfunction. *Surgical neurology international*. 2011;2:55. [PMID: 21697969] Exclusion code: 5
- 444.Raschke M, Csimma C, Valentin OA. Recombinant human bone morphogenetic Protein-2 (RhBMP-2; Dibotermin alpha) in the management of open tibia fractures: a prospective, randomized, controlled study in 450 patients. *Hefte zur der Unfallchirurg*. 2001;283:231-232. CN-00366531] Exclusion code: 1
- 445.Raschke MJ, Group BS, Csimma C, Valentin N. Recombinant human bone morphogenetic protein-2 (RhBMP-2; dibotermin-alpha) in the management of open tibia fractures: a prospective, randomized, controlled study in 450 patients. *119th Chirurgisches forum fur experimentelle und klinische forschung.* 2002. CN-00386993]
- 446.Exclusion code: 1
- 447.Rawashdeh MaA, Telfah H. Secondary alveolar bone grafting: the dilemma of donor site selection and morbidity. *British Journal of Oral* & *Maxillofacial Surgery*. 2008;46(8):665-670.
 [PMID: 18760515] Exclusion code: 5
- 448.Reames DL, Hamilton DK, Smith JS, Williams BS, Chernavvsky DR, Shaffrey CI. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein 2 (rhBMP 2) for posterior cervical and cervico-thoracic instrumented fusion with a minimum two year follow-up. *Journal of Neurosurgery*. 2011;115(2):A457-A458. Exclusion code: 5
- 449.Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. *Journal of Biomechanics*. 2011;44(2):213-220. Exclusion code: 5
- 450.Resnick DK, Choudhri TF, Dailey AT, Groff MW, Khoo L, Matz PG, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes. *Journal of Neurosurgery Spine*. 2005;2(6):733-736.
 [PMID: 16028744] Exclusion code: 5
- 451.Retrospective review of posterior cervical fusions with rhBMP-2/ACS. [Poster]. *Spine*. 2009. Exclusion code: 5
- 452.Richards BS, Oetgen ME, Johnston CE. The use of rhBMP-2 for the treatment of congenital

pseudarthrosis of the tibia: a case series. *Journal* of Bone & Joint Surgery - American Volume. 2010;92(1):177-185. [PMID: 20048110] Exclusion code: 7

- 453.Riedel G, Valentin-Opran A. Selection of a control group in BMP clinical studies. *Journal of Bone & Joint Surgery - American Volume*.
 2001;83-A Suppl 1(Pt 2):S159-160. [PMID: 11314794] Exclusion code: 5
- 454.Riedel GE, Valentin-Opran A. Clinical evaluation of rhBMP-2/ACS in orthopedic trauma: a progress report. *Orthopedics*. 1999;22(7):663-665. [PMID: 10418860] Exclusion code: 7
- 455.Rihn JA, Gates C, Glassman SD, Phillips FM, Schwender JD, Albert TJ. The use of bone morphogenetic protein in lumbar spine surgery. *Journal of Bone & Joint Surgery - American Volume*. 2008;90(9):2014-2025. [PMID: 18762664] Exclusion code: 5
- 456.Rihn JA, Gates C, Glassman SD, Phillips FM, Schwender JD, Albert TJ. The use of bone morphogenetic protein in lumbar spine surgery. *Instructional Course Lectures*. 2009;58:677-688. [PMID: 19385577] Exclusion code: 5
- 457.Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. *Spine*. 2010;35(17):1629-1639. [PMID: 20628336] Exclusion code: 5
- 458.Riska O. [Army doctor accused of falsifying data]. *Tidsskrift for Den Norske Laegeforening*. 2009;129(18):1902. [PMID: 19844293] Exclusion code: 1
- 459.Ritting AW, Weber EW, Lee MC. Exaggerated inflammatory response and bony resorption from BMP-2 use in a pediatric forearm nonunion. *Journal of Hand Surgery - American Volume*. 2012;37(2):316-321. [PMID: 22119603] Exclusion code: 7
- 460. Robinson Y, Heyde CE, Tschoke SK, Mont MA, Seyler TM, Ulrich SD. Evidence supporting the use of bone morphogenetic proteins for spinal fusion surgery. *Expert Review of Medical Devices*. 2008;5(1):75-84. [PMID: 18095899] Exclusion code: 5
- 461.Rodeo SA. The role of bone morphogenetic proteins in rotator cuff tendon repair. *Techniques in Orthopaedics*. 2007;22(1):10-13. Exclusion code: 5
- 462.Rodgers WB, Gerber EJ. A DBM, BMA, local bone graft composite in multi-level PLIF: Fusion

rates. *Spine Journal*. 2010;10(9):26S. Exclusion code: 3

- 463.Rose PS, Lenke LG, Bridwell KH, Mulconrey DS, Cronen GA, Buchowski JM, et al. Pedicle screw instrumentation for adult idiopathic scoliosis: an improvement over hook/hybrid fixation. *Spine*. 2009;34(8):852-857; discussion 858. [PMID: 19365256] Exclusion code: 2
- 464.Rosen CD. It's not about the money. *Spine Journal*. 2011;11(8):700-702. Exclusion code: 3
- 465.Rotenberg SA, Tatakis DN. Recombinant human bone morphogenetic protein-2 for peri-implant bone regeneration: a case report. *Journal of Periodontology*. 2011;82(8):1212-1218. [PMID: 21235332] Exclusion code: 7
- 466.Ryken TC, Heary RF, Matz PG, Anderson PA, Groff MW, Holly LT, Kaiser MG, et al. Techniques for cervical interbody grafting. *Journal of Neurosurgery Spine*. 2009;11(2):203-220. [PMID: 19769500] Exclusion code: 5
- 467.Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. *Journal of the American Academy* of Orthopaedic Surgeons. 2011;19(2):101-111.
 [PMID: 21292933] Exclusion code: 5
- 468.Salisbury EA, Olmsted-Davis EA, Davis AR. Adverse events and bone morphogenetic protein-2. Spine Journal: Official Journal of the North American Spine Society. 2011;11(8):802.
 [PMID: 21925422] Exclusion code: 5
- 469.Salyer KE. Primary reconstruction of alveolar clefts using recombinant human bone morphogenic protein-2: clinical and radiographic outcomes. *Journal of Craniofacial Surgery*. 2009;20 Suppl 2:1765. [PMID: 19816346] Exclusion code: 5
- 470.Samartzis D, Khanna N, Shen FH, An HS. Update on bone morphogenetic proteins and their application in spine surgery. *Journal of the American College of Surgeons*. 2005;200(2):236-248. [PMID: 15664100] Exclusion code: 5
- 471.Sandhu H. Spinal fusion using bone morphogenetic proteins. *Orthopedics*. 2004;27(7):717-718. [PMID: 15315040] Exclusion code: 5
- 472.Sandhu HS. Anterior lumbar interbody fusion with osteoinductive growth factors. *Clinical Orthopaedics & Related Research*.
 2000(371):56-60. [PMID: 10693550] Exclusion code: 5

- 473.Sandhu HS. Bone morphogenetic proteins and spinal surgery. *Spine*. 2003;28(15 Suppl):S64-73. [PMID: 12897477] Exclusion code: 5
- 474.Sandhu HS, Anderson DG, Andersson GBJ, Boden SD, Damien C, Ebara S, et al. Summary statement: Safety of bone morphogenetic proteins for spine fusion. *Spine*. 2002;27(16 SUPPL.):S39. Exclusion code: 5
- 475.Sandhu HS, Boden SD. Biologic enhancement of spinal fusion. *Orthopedic Clinics of North America*. 1998;29(4):621-631. [PMID: 9756959] Exclusion code: 5
- 476.Sandhu HS, Boden SD, An H, Kang J, Weinstein J. BMPs and gene therapy for spinal fusion: summary statement. *Spine*. 2003;28(15 Suppl):S85. [PMID: 12897479] Exclusion code: 5
- 477.Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. *Orthopedic Clinics of North America*. 1999;30(4):685-698. [PMID: 10471772] Exclusion code: 5
- 478.Sandhu HS, Kanim LEA, Toth JM. Erratum: Experimental spinal fusion with recombinant human bone morphogenetic protein-2 without decortication of osseous elements (Spine (June 1, 1997) 22 (1171-1180)). *Spine*.
 1997;22(20):2463. Exclusion code: 5
- 479.Sandhu HS, Khan SN. Recombinant human bone morphogenetic protein-2: use in spinal fusion applications. *Journal of Bone & Joint Surgery -American Volume*. 2003;85-A Suppl 3:89-95.
 [PMID: 12925615] Exclusion code: 5
- 480.Sanz Casado JV. [Bone regeneration in oral surgery]. Anales de la Real Academia Nacional de Medicina. 2002;119(2):237-247; discussion 247-254. [PMID: 12518653] Exclusion code: 1
- 481.Sass M. [Autologous bone or bone substitutes in spinal fusion]. Zeitschrift fur Orthopadie & Unfallchirurgie. 2009;147(4):411. [PMID: 19693734] Exclusion code: 1
- 482.Sasso RC, Burkus JK, Lehuec JC. Letters. *Spine*. 2010;35(14):E623. Exclusion code: 5
- 483.Sasso RC, Kenneth Burkus J, LeHuec J-C. Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. *Spine*. 2003;28(10):1023-1026. [PMID: 12768143] Exclusion code: 5
- 484.Sasso RC, LeHuec JC, Shaffrey C, Spine Interbody Research G. Iliac crest bone graft

donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. *Journal of Spinal Disorders & Techniques.* 2005;18 Suppl:S77-81. [PMID: 15699810] Exclusion code: 3

- 485.Sato R, Uchida K, Kobayashi S, Yayama T, Kokubo Y, Nakajima H, et al. Ossification of the posterior longitudinal ligament of the cervical spine: histopathological findings around the calcification and ossification front. *Journal of Neurosurgery Spine*. 2007;7(2):174-183. [PMID: 17688057] Exclusion code: 3
- 486.Schinke T, Amling M. Novel complexities regarding BMPs and fracture healing. *Journal of Bone & Mineral Research*. 2010;25(6):1193-1195. [PMID: 20499366] Exclusion code: 5
- 487.Schmidmaier G, Schwabe P, Wildemann B, Haas NP. Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. *Injury*. 2007;38 Suppl 4:S35-41.
 [PMID: 18224735] Exclusion code: 5
- 488.Schoenfeld AJ, Ochoa LM, Bader JO, Belmont PJ, Jr. Risk factors for immediate postoperative complications and mortality following spine surgery: a study of 3475 patients from the National Surgical Quality Improvement Program. *Journal of Bone & Joint Surgery American Volume*. 2011;93(17):1577-1582. [PMID: 21915571] Exclusion code: 2
- 489.Schuberth JM, DiDomenico LA, Mendicino RW. The utility and effectiveness of bone morphogenetic protein in foot and ankle surgery. *Journal of Foot & Ankle Surgery*.
 2009;48(3):309-314. [PMID: 19423030] Exclusion code: 3
- 490.Schuckert K-H, Jopp S, Osadnik M. Modern bone regeneration instead of bone transplantation: a combination of recombinant human bone morphogenetic protein-2 and platelet-rich plasma for the vertical augmentation of the maxillary bone-a single case report. *Tissue Engineering - Part C: Methods.* 2010;16(6):1335-1346. [PMID: 20302447] Exclusion code: 7
- 491.Schuckert K-H, Jopp S, Teoh S-H. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case. *Tissue engineering Part* A. 2009;15(3):493-499. [PMID: 18767969] Exclusion code: 7

- 492.Schuckert K-H, Osadnik M. Bone tissue engineering in oral surgery: a new method of bone development in periodontal surgery. *Tissue Engineering - Part C: Methods.* 2011;17(12):1179-1187. [PMID: 21895495] Exclusion code: 7
- 493.Schwall GJ, Epstein NE, Hood DC, Reilly T, Insinna T, Bahnken A. The surgeon's choices, and the choice of surgeons,affect the cost of single-levelanterior cervical surgery. *Spine*. 2009. Exclusion code: 5
- 494.Schwartz CE, Martha JF, Kowalski P, Wang DA, Bode R, Li L, et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. *Health & Quality of Life Outcomes*. 2009;7:49. [PMID: 19480692] Exclusion code: 3
- 495.Schwartz ND, Hicks BM. Eight-centimeter segmental ulnar defect treated with recombinant human bone morphogenetic protein-2. *American Journal of Orthopedics (Chatham, Nj)*.
 2008;37(11):569-571. [PMID: 19104684] Exclusion code: 7
- 496.Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. *Journal of Spinal Disorders & Techniques*. 2005;18 Suppl:S1-6. [PMID: 15699793] Exclusion code: 3
- 497.Scranton PEJ. Comparison of open isolated subtalar arthrodesis with autogenous bone graft versus outpatient arthroscopic subtalar arthrodesis using injectable bone morphogenic protein-enhanced graft. *Foot and Ankle International.* 1999;20(3):162-165. Exclusion code: 3
- 498.Seeherman H, Li R, Li XJ, Wozney J. Injectable rhBMP-2/CPM paste for closed fracture and minimally invasive orthopaedic repairs. *Journal* of Musculoskeletal Neuronal Interactions. 2003;3(4):317-319; discussion 320-311. [PMID: 15758309] Exclusion code: 5
- 499.Sekhon L, Tomlinson A, Allen B, Lynch J, Hurlbert JR. Immediate postoperative complications and radiological features of interbody fusion between infuse bmp andactifuse: A randomized prospective trial. *Spine*. 2009. Exclusion code: 5b
- 500.Selznick LA, Shamji MF, Isaacs RE. Minimally invasive interbody fusion for revision lumbar surgery: Technical feasibility and safety. *Journal*

of Spinal Disorders and Techniques. 2009;22(3):207-213. Exclusion code: 3

- 501.Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? *Injury*. 2007;38 Suppl 1:S75-80. [PMID: 17383488] Exclusion code: 5
- 502.Sergides I, Donnellan M, Appleyard R, Sears W. Atlantoaxial stabilization using multi-axial C1 posterior arch screws. *Spine Journal*. 2010;10(9):125S. Exclusion code: 5
- 503.Shah MM, Smyth MD, Woo AS. Adverse facial edema associated with off-label use of recombinant human bone morphogenetic protein-2 in cranial reconstruction for craniosynostosis. Case report. *Journal of Neurosurgery Pediatrics*. 2008;1(3):255-257. [PMID: 18352773] Exclusion code: 7
- 504.She XM, Jin X, Tian K, Zhang Q, Yang L, Xiong GF. Repairing hard palatal defects with osteoinduction active materials: CT threedimensional reconstruction of pars palatalis at 3 months postoperatively. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2009;13(42):8225-8228. Exclusion code: 1
- 505.Shimer AL, Oner FC, Vaccaro AR. Spinal reconstruction and bone morphogenetic proteins: open questions. *Injury*. 2009;40 Suppl 3:S32-38.
 [PMID: 20082788] Exclusion code: 5
- 506.Sier CFM, Lissenberg-Thunnissen SN, De Gorter DJJ, Schipper IB. Reply to the letter to the editor: Could the use of bone morphogenetic proteins in fracture healing do more harm than good to our patients? *International Orthopaedics.* 2011:1. Exclusion code: 5
- 507.Sier CFM, Lissenberg-Thunnissen SN, De Gorter DJJ, Schipper IB. Reply to the letter to the editor: Could the use of bone morphogenetic proteins in fracture healing do more harm than good to our patients? *International Orthopaedics*. 2012;36(3):685. Exclusion code: 5
- 508.Silber JS, Anderson DG, Hayes VM, Vaccaro AR. Advances in surgical management of lumbar degenerative disease. *Orthopedics*.
 2002;25(7):767-771; quiz 772-763. [PMID: 12138967] Exclusion code: 5
- 509.Singh K, Dumonski M, Stanley T, Ponnappan R, Phillips FM. Repeat use of human recombinant bone morphogenetic protein-2 for second level lumbar arthrodesis. *Spine*. 2011;36(3):192-196. [PMID: 20634780] Exclusion code: 4

- 510.Singh K, Smucker JD, Gill S, Boden SD. Erratum: Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: A prospective CT-scan analysis at one and two years (Journal of Spinal Disorders and Techniques (2006) 19, (416-423)). Journal of Spinal Disorders and Techniques. 2007;20(2):185. Exclusion code: 5
- 511.Smith DM, Cooper GM, Mooney MP, Marra KG, Losee JE. Bone morphogenetic protein 2 therapy for craniofacial surgery. *Journal of Craniofacial Surgery*. 2008;19(5):1244-1259. [PMID: 18812847] Exclusion code: 5
- 512.Smoljanovic T, Aljinovic A, Bojanic I. Recommendation for use of rhBMP-2 in spinal interbody fusions. *European Spine Journal*. 2010;19(8):1385-1386; author reply 1389-1391. [PMID: 20431896] Exclusion code: 5
- 513. Smoljanovic T, Bicanic G, Bojanic I. Re: Kleeman TJ, Ahn UM, Talbot-Kleeman A. Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine 2001;26:2751-6. *Spine*. 2010;35(20):E1013. [PMID: 20844419] Exclusion code: 5
- 514.Smoljanovic T, Bicanic G, Bojanic I. Update of comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. *Neurosurgery*. 2010;66(5):E1030; author reply E1030. [PMID: 20404684] Exclusion code: 5
- 515.Smoljanovic T, Bojanic I. Re: Mroz TE, Wang JC, Hashimoto R, et al.Complications related to osteobiologics use in spine surgery: a systematic review. Spine (Phila Pa 1976) 2010;35:S86-104. *Spine*. 2010;35(20):E1010. [PMID: 20844415] Exclusion code: 5
- 516.Smoljanovic T, Bojanic I. An evolving perception of the risk of rhBMP-2 use for anterior spinal interbody fusions. *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(6):520-521. [PMID: 21612986] Exclusion code: 5
- 517.Smoljanovic T, Bojanic I, Bicanic G, Delimar D. Re: Toth JM, Boden SD, Burkus JK, et al. Shortterm osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein-2 in a cancellous bone environment. Spine 2009;34:539-50. *Spine*. 2010;35(5):597; author reply 597-598. [PMID: 20190628] Exclusion code: 5
- 518. Smoljanovic T, Bojanic I, Cimic M. Bone morphogenetic protein. *Journal of Neurosurgery*

Spine. 2009;11(1):92-93; author reply 93-94. [PMID: 19569950] Exclusion code: 5

- 519.Smoljanovic T, Bojanic I, Cimic M. Re: Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. DeFinitive evidence of osteoinduction in humans: a preliminary report. Spine 2000; 25:376-81. *Spine*. 2010;35(20):E1010-1011; author reply E1011. [PMID: 20844414] Exclusion code: 5
- 520. Smoljanovic T, Bojanic I, Dapic T. Significance of early CT evaluation after lumbar interbody fusions using recombinant human bone morphogenetic protein-2. *Ajnr: American Journal of Neuroradiology*. 2009;30(5):e71.
 [PMID: 19246530] Exclusion code: 5
- 521.Smoljanovic T, Bojanic I, Delimar D. Adverse effects of posterior lumbar interbody fusion using rhBMP-2. *European Spine Journal*. 2009;18(6):920-923; author reply 924. [PMID: 19352727] Exclusion code: 5
- 522.Smoljanovic T, Bojanic I, Dokuzovic S. Re: Mindea SA, Shih P, Song JK. Recombinant human bone morphogenetic protein-2-induced radiculitis in elective minimally invasive transforaminal lumbar interbody fusions: a series review. Spine 2009;34:1480-5. *Spine*. 2010;35(8):929. [PMID: 20395781] Exclusion code: 5
- 523.Smoljanovic T, Bojanic I, Pecina M. The use of bone morphogenetic protein in lumbar spine surgery. *Journal of Bone & Joint Surgery -American Volume*. 2009;91(8):2045-2046; author reply 2046-2047. [PMID: 19651976] Exclusion code: 5
- 524.Smoljanovic T, Bojanic I, Pecina M. End plates resorptions after the applications of rhBMP-2 for interbody spinal fusions. *Journal of Spinal Disorders & Techniques*. 2009;22(4):309; author reply 310. [PMID: 19494752] Exclusion code: 5
- 525.Smoljanovic T, Bojanic I, Pecina M. The confusion of important literature review. Spine Journal: Official Journal of the North American Spine Society. 2009;9(5):427-428; author reply 428-429. [PMID: 18805065] Exclusion code: 5
- 526.Smoljanovic T, Bojanic I, Rakovac M. Letters. Spine. 2010;35(14):E622. Exclusion code: 5
- 527.Smoljanovic T, Bojanic I, Vlahovic Z. Safety of posterior interbody fusions of the lumbar spine using rhBMP-2. *Journal of Spinal Disorders & Techniques*. 2010;23(1):78. [PMID: 20134288] Exclusion code: 5

- 528. Smoljanovic T, Caric D, Bojanic I. RE: Clinical applications of bone morphogenetic proteins: current evidence. Kanakaris, NK; Giannoudis, PV; JSOA 17(3):133-46, 2008. [Erratum appears in J Surg Orthop Adv. 2010 Autumn; 19(3):186 Note: Smoljanovic, Tomislay [corrected to Smoljanovic, Tomislav]; Caric, David [corrected to Caric, Davor]]. Journal of Surgical Orthopaedic Advances. 2010;19(2):135-137; author reply 137. [PMID: 20795305] Exclusion code: 5
- 529.Smoljanovic T, Cimic M, Bojanic I. Is a barrier really necessary to prevent radiculitis when using recombinant human bone morphogenetic protein-2 in proximity of nerve roots? *Spine Journal: Official Journal of the North American Spine Society.* 2010;10(3):279; author reply 279-280. [PMID: 20207336] Exclusion code: 5
- 530.Smoljanovic T, Cimic M, Bojanic I. Aggressive end plate decortication as a cause of osteolysis after rhBMP-2 use in cervical spine interbody fusion. Spine Journal: Official Journal of the North American Spine Society. 2010;10(2):187-188; author reply 188. [PMID: 20142074] Exclusion code: 5
- 531.Smoljanovic T, Dokuzovic S, Bojanic I.
 Osteoinductive bone graft substitutes for lumbar fusion. *Journal of Neurosurgery Spine*.
 2010;13(3):407-409. [PMID: 20809739]
 Exclusion code: 5
- 532.Smoljanovic T, Grgurevic L, Jelic M, Kreszinger M, Haspl M, Maticić D, et al. Regeneration of the skeleton by recombinant human bone morphogenetic proteins. *Collegium Antropologicum*. 2007;31(3):923-932. [PMID: 18041408] Exclusion code: 5
- 533.Smoljanovic T, Janjanin S, Bojanic I. Avoiding unanticipated adverse effects of recombinant human bone morphogenetic protein-2 therapy in craniofacial surgery with experiences from spinal applications. *Journal of Craniofacial Surgery*. 2009;20(5):1626. [PMID: 19816316] Exclusion code: 5
- 534.Smoljanovic T, Josipovic M, Bojanic I. The justification for recombinant human bone morphogenetic protein-2 use in one- or two-level lumbar spine interbody fusions. *Journal of Clinical Neuroscience*. 2011;18(3):445-446.
 [PMID: 21236680] Exclusion code: 5
- 535.Smoljanovic T, Pecina M. RE: complications attributable to the use of rhBMP-2 inside the femoral ring allograft during anterior lumbar

interbody fusion. *Spine Journal: Official Journal of the North American Spine Society.* 2008;8(2):413-414; author reply 414. [PMID: 18178134] Exclusion code: 5

- 536. Smoljanovic T, Pecina M. Re: Burkus J K, Sandhu H S, Gornet M F. Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine 2006;31:775-81. *Spine*. 2008;33(2):226. [PMID: 18197115] Exclusion code: 5
- 537.Smoljanovic T, Pecina M. Re: Burkus J K, Transfeldt E E, Kitchel S H, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 2002;27:2396-408. Spine. 2008;33(2):224. [PMID: 18197113] Exclusion code: 5
- 538.Smoljanovic T, Rakovac M, Bojanic I. Could chronic host inflammatory response be responsible for delayed onset of retrograde ejaculation after the labeled use of recombinant human bone morphogenetic protein-2? *Spine Journal: Official Journal of the North American Spine Society.* 2011;11(2):167-168. [PMID: 21296304] Exclusion code: 5
- 539.Smoljanovic T, Siric F, Bojanic I. Complications associated with use of bone-morphogenetic proteins in spinal fusion procedures. *JAMA*. 2009;302(19):2090-2091; author reply 2091.
 [PMID: 19920232] Exclusion code: 5
- 540.Smoljanovic T, Siric F, Bojanic I. Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. *Journal of Bone & Joint Surgery -American Volume*. 2010;92(15):2614-2615; author reply 2615-2616. [PMID: 21048181] Exclusion code: 5
- 541.Smoljanovic T, Stipcic I, Bojanic I. The level of evidence in clinical studies of the use of rhBMP-2 in spinal interbody fusions. *European Spine Journal*. 2010;19(8):1387-1388; author reply 1389-1391. [PMID: 20424871] Exclusion code: 5
- 542.Smoljanovic T, Vukicevic S, Pecina M. Bone morphogenetic protein and fusion. *Journal of Neurosurgery Spine*. 2007;6(4):378-379; author reply 379-380. [PMID: 17436934] Exclusion code: 5
- 543.Solberg TK, Sorlie A, Sjaavik K, Nygaard OP, Ingebrigtsen T. Would loss to follow-up bias the

outcome evaluation of patients operated for degenerative disorders of the lumbar spine? *Acta Orthopaedica*. 2011;82(1):56-63. [PMID: 21189113] Exclusion code: 3

- 544.Spiro AS, Babin K, Lipovac S, Stenger P, Mladenov K, Rupprecht M, et al. Combined treatment of congenital pseudarthrosis of the tibia, including recombinant human bone morphogenetic protein-2: a case series. *Journal* of Bone & Joint Surgery - British Volume. 2011;93(5):695-699. [PMID: 21511938] Exclusion code: 7
- 545.St. Louis University. rhBMP-2 Versus Autograft in Critical Size Tibial Defects World Health Organization - International Clinical Trials Registry Platform. 2009. NCT00853489. Exclusion code: 2
- 546.Starman JS, Bosse MJ, Cates CA, Norton HJ. Recombinant human bone morphogenetic protein-2 use in the off-label treatment of nonunions and acute fractures: a retrospective review. *The Journal of Trauma and Acute Care Surgery*. 2012;72(3):676-81. [PMID:22491552] Exclusion code: 7
- 547.Starr AJ. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures. *Journal of Bone & Joint Surgery* - *American Volume*. 2003;85-A(10):2049; author replies 2049-2050. [PMID: 14563816] Exclusion code: 5
- 548.Steinbrook R. Industry payments to physicians: Lessons from orthopedic surgery. *Archives of Internal Medicine*. 2011;171(19):1765-1766. Exclusion code: 5
- 549. Stevens K, Tao C, Lee SU, <u>Salem N</u>, <u>Vandevenne J, Cheng C</u>, et al. Subchondral fractures in osteonecrosis of the femoral head: Comparison of radiography, CT, and MR imaging. *American Journal of Roentgenology*. 2003;180(2):363-368.[PMID: 12540435] Exclusion code: 7
- 550.Stiehl JB, Ulrich SD, Seyler TM, Bonutti PM, Marker DR, Mont MA. Bone morphogenetic proteins in total hip arthroplasty, osteonecrosis and trauma surgery. *Expert Review of Medical Devices*. 2008;5(2):231-238. [PMID: 18331183] Exclusion code: 5
- 551.Sun YP, Qiao GY, Wang YB, et al. Comparison between iliac autograft combined with bone morphogenetic protein and iliac autograft for bone nonunion. *Journal of Clinical Rehabilitative Tissue Engineering Research*.

2009;13(33):6465-6468. Exclusion code: 1

- 552.Sweeny L, Lancaster WP, Dean NR, Magnuson JS, Carroll WR, Louis PJ, et al. Use of recombinant bone morphogenetic protein 2 in free flap reconstruction for osteonecrosis of the mandible. *Journal of Oral & Maxillofacial Surgery*. 2012;70(8):1991-1996. [PMID: 22177824] Exclusion code: 7
- 553.Swiontkowski MF, Aro HT, Donell S, Esterhai JL, Goulet J, Jones A, et al. Recombinant human bone morphogenetic protein-2 in open tibial fractures. A subgroup analysis of data combined from two prospective randomized studies. *Journal of Bone & Joint Surgery - American Volume.* 2006;88(6):1258-1265. [PMID: 16757759] Exclusion code: 7
- 554.Szpalski M, Gunzburg R. Recombinant human bone morphogenetic protein-2: a novel osteoinductive alternative to autogenous bone graft? *Acta Orthopaedica Belgica*.
 2005;71(2):133-148. [PMID: 16152845] Exclusion code: 5
- 555.Tao Y, Song W. [Results with a new type ossicular prostheses mixed bone morphogenetic protein and hydroxyapatite]. *Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Journal Of Clinical Otorhinolaryngology, Head, & Neck Surgery.* 2007;21(16):738-740. [PMID: 18035738] Exclusion code: 1
- 556. Tarnow DP, Wallace SS, Testori T, Froum SJ, Motroni A, Prasad HS. Maxillary sinus augmentation using recombinant bone morphogenetic protein-2/acellular collagen sponge in combination with a mineralized bone replacement graft: a report of three cases. *International Journal of Periodontics & Restorative Dentistry*. 2010;30(2):139-149. [PMID: 20228973] Exclusion code: 7
- 557. Tehran University of Medical Sciences. Evaluating the effectiveness of rhBMP-2/ACS as compared to autogenous bone graft in the human maxillary sinus floor augmentation World Health Organization - International Clinical Trials Registry Platform. 2010:IRCT138901243703N138901243701. Exclusion code: 2
- 558. Tom WK, Chin M, Ng T, Bouchoucha S. Pretreatment of distraction docking sites with bone morphogenetic protein (rhBMP-2). *Journal* of Oral & Maxillofacial Surgery. 2009;67(9):2026-2034. [PMID: 19686945] Exclusion code: 7

- 559.Tom WK, Chin M, Ng T, Bouchoucha S, Carstens M. Distraction of rhBMP-2-generated mandible: how stable is the engineered bone in response to subsequent surgeries? *Journal of Oral & Maxillofacial Surgery*. 2008;66(7):1499-1505. [PMID: 18571039] Exclusion code: 7
- 560. Tonetti MS, Hammerle CHF, European Workshop on Periodontology Group C. Advances in bone augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on Periodontology. *Journal of Clinical Periodontology*. 2008;35(8 Suppl):168-172. [PMID: 18724849] Exclusion code: 5
- 561.Toolan BC. Current concepts review: orthobiologics. *Foot & Ankle International*. 2006;27(7):561-566. [PMID: 16842727] Exclusion code: 5
- 562. Toom A, Arend A, Gunnarsson D, Ulfsparre R, Suutre S, Haviko T, et al. Bone formation zones in heterotopic ossifications: histologic findings and increased expression of bone morphogenetic protein 2 and transforming growth factors beta2 and beta3. *Calcified Tissue International*. 2007;80(4):259-267. [PMID: 17401695] Exclusion code: 4
- 563. Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art. *Journal of Oral & Maxillofacial Surgery*. 2009;67(5):1121-1127. [PMID: 19375027] Exclusion code: 5
- 564. Toth JM. Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagenceramic sponge bulking agent as graft substitutes for lumbar spine fusion: Point of view. *Spine*. 2005;30(9):1007. Exclusion code: 4
- 565. Traynelis VC. Ectopic bone. Journal of Neurosurgery Spine. 2010;12(1):39. [PMID: 20043762] Exclusion code: 5
- 566. Treasure T. The "bone-less" bone graft: The use of bone morphogenic protein-2 in jaw reconstruction. *Journal of the Indiana Dental Association*. 2010;89(2):25-29. [PMID: 20945687] Exclusion code: 5
- 567. Tressler MA, Richards JE, Sofianos Dm, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. *Orthopedics*. 2011;34(12):e877-884. [PMID: 22146205] Exclusion code: 7

568. Triplett RG, Nevins M, Marx RE, Spagnoli DB,

Oates TW, Moy PK, et al. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. *Journal of Oral & Maxillofacial Surgery*. 2009;67(9):1947-1960. [PMID: 19686934] Exclusion code: 7

- 569. Tumialan LM, Rodts GE. Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion. *Spine Journal: Official Journal of the North American Spine Society.* 2007;7(4):509-510. [PMID: 17526433] Exclusion code: 5
- 570. Tzeng S-T, Liao J-C, Murray SS, Brochmann EJ, Carlson GD, Wang JC. Absence of bone morphogenetic protein-2 in human breast milk after spinal surgery. *Spine Journal: Official Journal of the North American Spine Society*. 2010;10(6):e17-20. [PMID: 20494807] Exclusion code: 2
- 571. University of Missouri-Columbia. Incisional Vacuum Assisted Closure (IVAC) Device and Its Effect on Implanted Bone Morphogenic Protein (BMP-2). World Health Organization -International Clinical Trials Registry Platform. 2009. NCT00829621. Exclusion code: 2
- 572. Utku S, Baysal H, Zileli M. Spine surgery database: a Turkish registry for spinal disorders. *Turkish Neurosurgery*. 2010;20(2):223-230.
 [PMID: 20401850] Exclusion code: 5
- 573. Vaibhav B, Nilesh P, Vikram S, Anshul C. Bone morphogenic protein and its application in trauma cases: a current concept update. *Injury*. 2007;38(11):1227-1235. [PMID: 17307180] Exclusion code: 5
- 574. Vaidya R. Transforaminal interbody fusion and the "off label" use of recombinant human bone morphogenetic protein-2. *Spine Journal: Official Journal of the North American Spine Society.* 2009;9(8):667-669. [PMID: 19622413] Exclusion code: 5
- 575. Valdes MA, Thakur NA, Namdari S, Ciombor DM, Palumbo M. Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Archives of Orthopaedic & Trauma Surgery. 2009;129(12):1651-1657. [PMID: 19280204] Exclusion code: 5
- 576. Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2. *Clinical Orthopaedics & Related Research*. 2002(395):110-120. [PMID: 11937870]

Exclusion code: 5

- 577.van der Kraan PM, Davidson ENB, van den Berg WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing's? *Osteoarthritis & Cartilage*.
 2010;18(6):735-741. [PMID: 20211748] Exclusion code: 5
- 578.van Hout WMMT, Mink van der Molen AB, Breugem CC, Koole R, Van Cann EM. Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. *Clinical Oral Investigations*. 2011;15(3):297-303. [PMID: 21465220] Exclusion code: 5
- 579. Villamor A, Rios-Luna A, Villanueva-Martinez M, Fahandezh-Saddi H. Nonunion of distal radius fracture and distal radioulnar joint injury: a modified Sauve-Kapandji procedure with a cubitus proradius transposition as autograft. *Archives of Orthopaedic & Trauma Surgery*. 2008;128(12):1407-1411. [PMID: 18677493] Exclusion code: 7
- 580.Walker DH, Wright NM. Bone morphogenetic proteins and spinal fusion. *Neurosurgical Focus*. 2002;13(6):e3. [PMID: 15766229] Exclusion code: 5
- 581.Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: Posterolateral fusion versus interbody fusion. *Spine*. 2005;30(16 SUPPL.):S33-S43. Exclusion code: 5
- 582.Wang Y-k, Sun W-f, Liu X-g, Deng J, Yan BE, Jiang WY, et al. [Comparative study of serum levels of BMP-2 and heterotopic ossification in traumatic brain injury and fractures patients]. *Zhongguo Gushang*. 2011;24(5):399-403. [PMID: 21688537] Exclusion code: 1
- 583.Watts C. Off-label use of rhBMP-2. Surgical neurology international. 2011;2:40. [PMID: 21475644] Exclusion code: 5
- 584.Wei S, Cai X, Huang J, Xu F, Liu X, Wang Q. Recombinant Human BMP-2 for the Treatment of Open Tibial Fractures. *Orthopedics.* 2012;35(6):e847-854. [PMID: 22691656] Exclusion code: 7
- 585.Weinstein JN, Boden SD, An H. Emerging technology in spine: Should we rethink the past or move forward in spite of the past? *Spine*. 2003;28(15 SUPPL.):S1. Exclusion code: 5

586.Whang PG, Wang JC. Bone graft substitutes for spinal fusion. Spine Journal: Official Journal of the North American Spine Society.
2003;3(2):155-165. [PMID: 14589231] Exclusion code: 5

587.White AP, Brothers JG, Brown ZB, Vaccaro AR. Techniques to maximize the safety of bone morphogenetic proteins in cervical spine surgery. *Minerva Ortopedica e Traumatologica*. 2007;58(3):271-278. Exclusion code: 5

588. White AP, Lee RS, Grauer JN. Bone Morphogenetic Protein for Pseudarthrosis Repair in Revision Cervical Spine Surgery. Seminars in Spine Surgery. 2006;18(4):207-210. Exclusion code: 5

- 589. Whitesides LM, Radwan A, Sharawy M. Sinus floor augmentation using a composite graft of bone morphogenic protein-2 and allogenic cancellous bone (Puros): case report. *Journal of Oral Implantology*. 2006;32(5):259-264. [PMID: 17069172] Exclusion code: 7
- 590. Wikesjo UME, Huang Y-H, Polimeni G, Qahash M. Bone morphogenetic proteins: a realistic alternative to bone grafting for alveolar reconstruction. *Oral & Maxillofacial Surgery Clinics of North America.* 2007;19(4):535-551. [PMID: 18088904] Exclusion code: 5
- 591.Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. *Ajnr: American Journal of Neuroradiology*. 2005;26(8):2057-2066. [PMID: 16155160] Exclusion code: 5
- 592. Williams BJ, Smith JS, Fu KM, Hamilton DK, Perra J, Polly D, Jr., et al. Complications associated with BMP use in 11,933 cases of spinal fusion. *Spine Journal*. 2010;10(9):98S-99S. Exclusion code: 5
- 593. Williams BJ, Smith JS, Fu K-MG, Hamilton DK, Polly DW Jr, Ames CP, et al. Does bone morphogenetic protein increase the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fusion with and without bone morphogenetic protein. *Spine*. 2011;36(20):1685-1691. [PMID: 21897187] Exclusion code: 3
- 594.Wong E. Is there a role for BMPs in spinal fusion surgery? *Bone.* 2009;44:S159. Exclusion code: 5
- 595.Woo EJ. Expanded indication for recombinant human bone morphogenetic protein 2. *Spine*. 2011;36(21):1817; author reply 1817-1818.

[PMID: 22046613] Exclusion code: 5

- 596.Woo EJ. Re: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. *Spine Journal: Official Journal* of the North American Spine Society.
 2011;11(8):804; author reply 804-805. [PMID: 21925424] Exclusion code: 5
- 597.Woo EJ. Adverse Events Reported After the Use of Recombinant Human Bone Morphogenetic Protein 2. *Journal of Oral and Maxillofacial Surgery*. 2011. Exclusion code: 7
- 598.Woo EJ. Response: Letter-to-the-editor Re: Does bone morphogenetic protein increase the incidence of perioperative complications in spinal fusion? *Spine*. 2011. Exclusion code: 5
- 599.Woo EJ. Adverse events reported after the use of recombinant human bone morphogenetic protein
 2. Journal of Oral & Maxillofacial Surgery.
 2012;70(4):765-767. [PMID: 22177811]
 Exclusion code: 7
- 600. Wright M. Use of bone morphogenic protein in anterior cervical fusions. *Spine J.* 2005;5(4):45S. Exclusion code: 5 - Abstract only
- 601.Wu JC, Mummaneni PV. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up: Commentary. *Neurosurgery*. 2011;69(1):111. Exclusion code: 5
- 602.Wu RH, Fraser JF, Hartl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. *Spine*. 2010;35(26):2273-2281. [PMID: 20581757] Exclusion code: 3
- 603.Wyeth (wholly owned subsidiary of Pfizer). Study Evaluating rhMBP-2/CPM in Open Wedge Osteotomies.NCT00243295. Exclusion code: 2
- 604.Wyeth (wholly owned subsidiary of Pfizer). Study Evaluating rhBMP-2/CPM in Closed Distal Radius Fractures. 2007. NCT00161629. Exclusion code: 2
- 605.Wyeth (wholly owned subsidiary of Pfizer). Study Evaluating InductOs in Diaphyseal Tibia Fractures. 2008. NCT00161616. Exclusion code: 7
- 606.Wyeth (wholly owned subsidiary of Pfizer). A Phase 2/3 Multicenter, Controlled Trial Of

rhBMP-2/CPM In Tibial Fractures. 2009. NCT00387686. Exclusion code: 2

- 607.Wyeth (wholly owned subsidiary of Pfizer). A Study of rhBMP-2/CPM in Closed Fractures of the Humerus. 2010. NCT00384852. Exclusion code: 2
- 608.Wyeth (wholly owned subsidiary of Pfizer). Feasibility And Safety Study Of rhBMP-2/CPM For Hip Fractures. 2010. NCT00384358. Exclusion code: 2
- 609. Wyeth Pharmaceuticals Inc. A Phase 2/3, Multicenter, Double-Blind, Randomized, Controlled Study of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP 2)/Calcium Phosphate Matrix (CPM) in Closed Diaphyseal Tibial Fractures World Health Organization -International Clinical Trials Registry Platform. 2006:EUCTR2006-001831-001823-FR. Exclusion code: 2
- 610. Wyeth Pharmaceuticals Inc. A Phase 2, Multicenter, Single-Blind, Randomized, Stratified, Standard-of-Care Controlled, Feasibility and Safety Study of rhBMP-2/CPM as an Adjuvant Therapy for Fractures of the Proximal Femur. World Health Organization -International Clinical Trials Registry Platform. 2006:EUCTR2006-001832-001834-HU. Exclusion code: 2
- 611.Xia L, Li JW. Cervical vertebral fusion and degeneration of adjacent segments after fusion. *Chinese Journal of Clinical Rehabilitation*. 2005;9(46):122-124. Exclusion code: 1
- 612.Xiao R, Li Q, Tang Z. [Comparative study of lumbar spondylolisthesis treated by three different materials]. *Chung-Kuo Hsiu Fu Chung Chien Wai Ko Tsa Chih/Chinese Journal of Reparative & Reconstructive Surgery*. 2007;21(5):453-456. [PMID: 17578280] Exclusion code: 1
- 613.Xiao RC, Li NN, Tang ZH, et al. Bone morphogenetic protein versus iliac bone graft substitute with internal fixation in the treatment of osteoporotic intertrochanteric fracture. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2007;11(21):4077-4080. Exclusion code: 1
- 614.Xiao RC, Xiao ZM, Li Q, Tang ZH, Hu JZ, Zou GY. Bone morphogenetic protein and interbody fusion cage change the height of intervertebral space in patients with lumbar spondylolisthesis. *Journal of Clinical Rehabilitative Tissue Engineering Research.* 2007;11(8):1443-1446.

Exclusion code: 1

- 615.Xiao YX, Chen QX, Li FC. Unilateral transforaminal lumbar interbody fusion: A review of the technique, indications and graft materials. *Journal of International Medical Research.* 2009;37(3):908-917. Exclusion code: 5
- 616. Yang SQ, Wang ZQ, Zhang ZG, Zhang LF, Li J. Bone morphogenetic protein-2 in bone reconstruction. *Chinese Journal of Clinical Rehabilitation*. 2006;10(17):146-148. Exclusion code: 1
- 617. Yao J, Ho AM. Bone Graft Substitutes in the Treatment of Distal Radius and Upper Limb Injuries. *Operative Techniques in Orthopaedics*. 2009;19(2):77-87. Exclusion code: 5
- 618. Yao J, Ladd AL. Bone Grafts and Bone Graft Substitutes in Distal Radius Fractures. *Atlas of Hand Clinics*. 2006;11(2):243-250. Exclusion code: 5
- 619. Yaremchuk K, Peterson E. In response to acute airway obstruction in cervical spinal procedures with bone morphogenetic proteins. *Laryngoscope*. 2011;121(11):2502-2503. Exclusion code: 5
- 620. Yaremchuk K, Toma M, Somers M. Acute airway obstruction associated with the use of bone-morphogenetic protein in cervical spinal fusion. *Laryngoscope*. 2010;120 Suppl 4:S140.
 [PMID: 21225738] Exclusion code: 5
- 621.Yu B, Tian J, Jin AM. Clinical evaluation of bone morphogenetic protein in spinal fusion. *Chinese Journal of Clinical Rehabilitation*. 2003;7(20):2856-2857. Exclusion code: 1
- 622. Yuan H-f, Wang Z-l, Qiao Y-d, Ding H-q, Zhao H-n. [The research of bone morphogenetic protein expression, CT value and mature degree of ossification in the thoracic ossification of ligamentum flavum]. *Chung-Hua Wai Ko Tsa Chih [Chinese Journal of Surgery]*. 2006;44(20):1381-1384. [PMID: 17217828] Exclusion code: 1
- 623.Zalavras CG, Marcus RE, Levin LS, Patzakis MJ. Management of open fractures and subsequent complications. *Journal of Bone and Joint Surgery - Series A*. 2007;89(4):884-895. Exclusion code: 5
- 624.Zappaterra T, Ghislandi X, Adam A, Huard S, Gindraux F, Gallinet D, et al. [Induced membrane technique for the reconstruction of bone defects in upper limb. A prospective single

center study of nine cases]. *Chirurgie de la Main.* 2011;30(4):255-263. [PMID: 21816650] Exclusion code: 1

- 625.Zdeblick TA. Letters to the editor: Science please. *Spine Journal*. 2011;11(7):686. Exclusion code: 5
- 626.Zdeblick TA, Phillips FM. Interbody cage devices. *Spine*. 2003;28(15 SUPPL.):S2-S7. Exclusion code: 5
- 627.Zebala L, Buchowski J, Bridwell K, Cho S, Pahys J, Kang M, et al. RhBMP-2 and modern surgical techniques significantly reduce the pseudarthrosis rate in long fusions to the sacrum for complex adult spinal deformity. *Spine Journal.* 2011;11(10):149S-150S. Exclusion code: 5
- 628.Zetola A, Ferreira FM, Larson R, Shibli JA. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandibular sequelae after tumor resection. *Oral & Maxillofacial Surgery*. 2011;15(3):169-174. [PMID: 20571845] Exclusion code: 7
- 629.Zhai W-L, Li D, Lian K-J. [Tunnel enlargement after anterior cruciate ligament reconstruction with peroneus longus muscle combined with BMP and allogeneic bone]. *Zhongguo Gushang*. 2010;23(6):414-416. [PMID: 20669568] Exclusion code: 1
- 630.Zhang Y, Wei DM, Yin XX, Jia XM. Repair of articular cartilage defects by tissue engineering. *Journal of Clinical Rehabilitative Tissue Engineering Research*. 2011;15(33):6227-6230. Exclusion code: 1
- 631.Zhao J, Ehnert S, Freude T, et al. Why do some patients not respond to a BMP-2 and BMP-7 therapy: Possible inhibition of the signaling cascade by TGF-(beta)-induced activation of histone deacetylases via SnoN. *Langenbeck's Archives of Surgery*. 2011;396(6):902-903. Exclusion code: 2
- 632.Zhao Y, Carstens M, Chen Q-s. [Anatomic and functional plasty for unilateral complete cleft lip]. *Zhonghua Zheng Xing Wai Ke Za Zhi*. 2009;25(2):85-88. [PMID: 19558157] Exclusion code: 1
- 633.Zhou N, Wang J, Liu C, Fan C, Zhang Q, Xue F, et al. [Clinical application of bioactive CPC loading rhBMP-2 in repairing bone defects]. *Chung-Kuo Hsiu Fu Chung Chien Wai Ko Tsa Chih/Chinese Journal of Reparative & Reconstructive Surgery*. 2009;23(3):257-260.

[PMID: 19366127] Exclusion code: 1

- 634.Zijderveld SA, Giltaij LR, Van Den Bergh JPA, Ten Bruggenkate CM, Tuinzing DB. Pre-clinical and clinical experiences with BMP-2 and BMP-7 in sinus floor elevation surgery: A comparison. *Journal of Musculoskeletal Research*. 2002;6(1):43-54. Exclusion code: 5
- 635.Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. *Injury*. 2011;42(SUPPL. 2):S16-S21. Exclusion code: 2
- 636.Zimmermann G, Wagner C, Moghaddam A, Wentzensen A. Need for bone morphogenetic proteins in fracture treatment. *Trauma und Berufskrankheit*. 2006;8(SUPPL. 1):S45-S48. Exclusion code: 1

Study and Approach	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	, CI	<i>P</i> -Value
		Ν	Mean	SD	Ν	Mean	SD		Lower	Upper	
Infuse-LT-	pre- operative	7	41.1	8.9	3	34.7	13.3				
Cage Pilot,	3 months	7	38.0	19.2	3	42.7	14.5	-11.9	-37.8	14.0	0.3
1997 ALIF	6 months	7	30.9	19.2	3	28.0	26.2	-5.6	-35.8	24.6	0.7
Study 1	12 months	7	23.1	17.7	3	27.3	27.0	-13.7	-39.2	11.7	0.2
·	24 months	7	17.0	18.8	3	20.0	22.3	-14.4	-29.7	1.0	0.1
Infuse-LT-	pre- operative	143	53.7	12.7	136	55.1	11.8				
Cage Pivotal,	6 weeks	140	42.1	17.4	131	41.4	18.4	1.4	-2.7	5.5	0.5
1998	3 months	141	33.4	17.7	134	34.2	18.5	0.1	-4.0	4.1	1.0
ALIF	6 months	136	29.3	18.8	131	29.4	18.2	0.5	-3.7	4.7	0.8
Study 2	12 months	130	25.5	18.2	125	25.6	19.1	0.5	-3.9	4.9	0.8
	24 months	124	23.9	18.7	111	23.7	20.8	0.4	-4.6	5.4	0.9
Infuse-Bone	pre- operative	24	52.4	13.1	22	55.3	13.5				
Dowel Pilot,	6 weeks	24	39.9	16.8	21	47.2	18.8	-5.3	-14.2	3.7	0.2
1998	3 months	24	29.0	14.7	21	42.0	19.0	-10.1	-18.4	-1.7	0.0
ALIF	6 months	24	21.4	16.1	20	34.4	21.8	-10.7	-20.3	-1.0	0.0
Study 4	12 months	24	20.8	14.9	20	32.0	22.5	-8.5	-18.3	1.4	0.1
	24 months	24	18.9	14.5	20	38.3	25.2	-16.7	-27.9	-5.6	0.0
Infuse-Bone	pre- operative	55	54.2	9.6	30	57.5	9.4				
Dowel Pivotal,	6 weeks	54	39.1	16.8	29	47.9	15.3	-6.6	-13.7	0.5	0.1
2000 ALIF	3 months	55	28.2	16.3	29	36.0	15.6	-6.7	-14.0	0.7	0.1
Study 5	6 months	54	21.5	15.7	30	28.4	17.4	-5.8	-13.2	1.5	0.1
-	12 months	51	21.0	17.9	24	28.8	20.2	-6.1	-15.0	2.8	0.2

Appendix L. Individual Patient Data (IPD) Summary Data Table L-1. IPD Summary Data for Oswestry Score Outcomes, Medtronic RCT Studies

Appendix L - 1

Study and Approach	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	5 CI	<i>P</i> -Value
		Ν	Mean	SD	Ν	Mean	SD		Lower	Upper	
	24 months	48	21.1	20.6	22	26.0	23.2	-3.8	-14.8	7.3	0.5
	pre- operative	34	54.6	11.4	33	52.7	12.0				
Infuse-Interfix	6 weeks	33	45.5	14.4	31	39.4	17.6	5.8	-2.3	13.9	0.2
PLIF, 1999 PLIF	3 months	33	32.8	15.5	32	33.6	17.4	-1.2	-9.4	6.9	0.8
Study 6	6 months	32	30.2	16.6	31	31.8	19.3	-1.8	-10.9	7.3	0.7
	12 months	32	27.9	17.6	28	32.2	16.5	-4.6	-13.5	4.3	0.3
	24 months	29	29.5	19.7	30	27.9	17.7	1.3	-8.6	11.2	0.8
Infuse-	pre- operative	18	61.3	11.9	15	55.4	13.9				
Cornerstone	6 weeks	18	23.9	17.3	15	22.8	12.6	-0.2	-11.5	11.1	1.0
ACDF, 1999	3 months	17	21.3	20.0	15	21.9	16.4	-3.4	-16.2	9.3	0.6
CERVICAL	6 months	17	12.9	13.3	13	13.4	10.9	-1.6	-11.7	8.4	0.7
Study 7	12 months	15	16.3	17.7	14	12.3	12.7	3.2	-9.7	16.2	0.6
	24 months	14	10.1	14.9	13	13.4	12.4	-4.7	-16.9	7.6	0.4
Infuse-	pre- operative	25	52.1	13.3	21	49.7	12.8				
Mastergraft	6 weeks	25	39.2	17.6	21	37.1	17.0	0.9	-8.8	10.6	0.8
Pilot, 2003	3 months	25	29.4	17.5	21	30.1	18.4	-1.7	-12.0	8.6	0.7
PLF	6 months	25	27.6	18.0	21	30.2	18.6	-3.7	-14.2	6.9	0.5
Study 8	12 months	23	21.1	16.7	21	27.9	19.9	-7.4	-18.4	3.5	0.2
	24 months	23	19.7	15.7	20	25.8	19.0	-6.9	-17.5	3.7	0.2
	pre- operative	25	54.3	13.5	19	52.2	12.4				
Infuse-Interfix	6 weeks	25	40.2	14.6	17	41.8	15.0	-2.4	-11.8	7.0	0.6
Pilot, 1999 ALIF	3 months	24	30.2	17.1	16	32.8	16.6	-3.7	-14.8	7.3	0.5
Study 9	6 months	24	23.7	17.8	16	24.9	14.6	-3.0	-13.7	7.7	0.6
2.2.2, 0	12 months	23	25.7	20.7	16	21.5	12.3	2.6	-8.7	13.8	0.6
	24 months	21	19.0	18.0	15	25.1	21.1	-7.3	-19.9	5.3	0.2

Study and Approach	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	, CI	<i>P</i> -Value
		N	Mean	SD	Ν	Mean	SD		Lower	Upper	
	pre- operative	172	54.5	12.6	405	53.3	13.0				
Maverick Disc	6 weeks	166	41.4	17.1	395	31.2	19.5	9.6	6.4	12.9	0.0
Pivotal, 2003 ALIF	3 months	159	32.1	16.8	386	23.4	18.8	8.2	4.9	11.4	0.0
Study 10	6 months	158	26.7	17.4	385	20.0	18.1	6.4	3.2	9.5	0.0
	12 months	154	24.9	19.8	389	19.0	17.8	5.5	2.1	8.8	0.0
	24 months	137	24.0	19.5	366	19.0	19.9	4.6	0.8	8.3	0.0
	pre- operative	11	47.9	13.0	5	54.4	15.3				
BCP US,	6 weeks	11	44.8	15.0	5	43.0	22.3	5.7	-13.3	24.7	0.5
1999	3 months	11	30.9	10.7	5	39.6	20.2	-6.4	-22.9	10.0	0.4
PLF Study 12	6 months	10	28.7	16.2	5	37.1	19.3	2.4	-13.0	17.9	0.7
	12 months	10	33.7	23.5	5	38.9	19.0	1.7	-17.1	20.6	0.8
	24 months	10	36.8	20.0	4	27.0	28.2	12.7	-12.7	38.1	0.3
	pre- operative	98	51.6	11.9	99	51.7	11.6				
BCP Canada,	6 weeks	98	43.6	15.0	98	42.1	17.6	1.4	-2.9	5.7	0.5
1999 PLF	3 months	97	31.6	14.8	98	33.4	19.0	-1.9	-6.3	2.5	0.4
Study 13	6 months	97	27.1	16.1	98	28.8	19.1	-1.9	-6.5	2.7	0.4
	12 months	97	28.8	19.3	97	27.6	19.9	1.1	-4.3	6.4	0.7
	24 months	97	28.1	19.4	95	27.9	22.2	0.1	-5.4	5.6	1.0
	pre- operative	239	49.9	13.1	224	51.6	13.3				
Amplify	6 weeks	234	37.3	18.6	215	37.7	16.9	0.2	-3.0	3.4	0.9
Pivotal, 2002 PLF	3 months	232	27.9	17.0	215	30.3	17.3	-1.8	-4.9	1.2	0.2
Study 14	6 months	229	23.8	18.0	208	27.4	17.9	-2.8	-5.9	0.3	0.1
	12 months	226	22.6	19.2	204	26.5	18.5	-3.2	-6.6	0.2	0.1
	24 months	210	22.0	18.3	181	26.0	20.8	-2.6	-6.3	1.0	0.2

Study and Approach	Period		rhBMP-2	2		ICBG		Adjusted Mean Difference	95%	6 CI	<i>P</i> -Value
		n	Mean	SD	Ν	Mean	SD		Lower	Upper	
Infuse-LT-	pre- operative	7	31.6	3.9	3	26.5	5.6				
Cage Pilot,	3 months	7	35.9	8.0	3	29.0	8.7	6.9	-9.7	23.5	0.4
1997 ALIF	6 months	7	41.6	11.3	3	38.8	15.2	8.7	-14.2	31.6	0.4
Study 1	12 months	7	39.6	6.8	3	40.6	10.6	1.7	-13.7	17.0	0.8
-	24 months	7	47.3	3.6	3	37.9	10.6	10.5	-1.9	22.9	0.1
Infuse-LT-	pre- operative	142	27.7	5.7	136	29.4	6.2				
Cage Pivotal,	6 weeks	139	32.4	8.0	130	32.7	7.9	0.7	-1.1	2.5	0.5
1998	3 months	141	36.5	9.8	133	35.9	9.4	1.6	-0.6	3.7	0.2
ALIF	6 months	140	39.2	11.2	132	38.6	10.8	1.9	-0.6	4.4	0.1
ALIF Study 2	12 months	135	41.2	11.1	130	40.4	12.1	2.1	-0.5	4.8	0.1
	24 months	131	41.8	11.9	121	41.4	12.9	1.6	-1.3	4.6	0.3
Infuse-Bone	pre- operative	24	29.6	6.6	22	29.4	9.2				
Dowel Pilot,	6 weeks	23	32.3	8.0	21	31.9	6.7	0.4	-3.9	4.7	0.9
1998	3 months	24	37.5	9.4	21	31.1	8.4	6.0	0.7	11.2	0.0
ALIF	6 months	23	43.0	9.1	20	37.1	11.2	5.8	-0.2	11.8	0.1
Study 4	12 months	24	45.6	10.3	20	39.0	11.0	6.5	0.2	12.9	0.0
	24 months	24	45.1	9.8	20	37.8	11.9	7.1	0.4	13.7	0.0
Infuse-Bone Dowel Pivotal,	pre- operative	54	29.0	5.6	30	26.4	5.1				
2000	6 months	51	43.5	10.8	29	36.8	9.1	5.4	0.6	10.3	0.0
ALIF	12 months	52	44.9	11.2	27	37.8	11.3	4.8	-0.4	10.1	0.1
Study 5	24 months	49	44.5	11.7	25	38.7	14.2	4.6	-2.0	11.1	0.2
Infuse-Interfix	pre- operative	34	26.5	5.9	32	26.6	5.6				
PLIF, 1999	6 weeks	32	31.2	7.3	31	28.3	6.5	3.2	-0.2	6.7	0.1

 Table L-2. IPD Summary Data for SF-36 Physical Component Summary (PCS) Outcomes, Medtronic RCT Studies

Study and Approach	Period		rhBMP-2	2		ICBG		Adjusted Mean Difference	95%	6 CI	<i>P</i> -Value
		n	Mean	SD	Ν	Mean	SD		Lower	Upper	
PLIF	3 months	33	36.0	9.0	32	33.6	9.8	2.4	-2.2	7.1	0.3
Study 6	6 months	32	37.1	10.3	30	34.2	10.2	3.0	-2.2	8.2	0.3
	12 months	31	38.3	11.6	28	34.3	11.7	3.9	-2.3	10.1	0.2
	24 months	28	38.2	12.8	29	36.9	11.4	1.3	-5.2	7.8	0.7
	pre- operative	17	31.2	6.5	15	32.6	6.2				
Infuse-	6 weeks	18	40.4	8.9	15	39.6	10.1	0.9	-6.2	8.0	0.8
Cornerstone ACDF, 1999	3 months	16	44.4	9.4	15	44.6	9.7	1.0	-6.2	8.2	0.8
CERVICAL	6 months	15	45.6	11.7	12	46.5	11.4	1.5	-7.5	10.4	0.7
Study 7	12 months	15	45.7	11.3	14	48.7	8.0	-1.8	-9.6	5.9	0.6
-	24 months	14	48.6	12.3	13	48.2	9.6	2.5	-6.6	11.6	0.6
	pre- operative	25	25.8	7.2	21	26.5	6.9				
Infuse-	6 weeks	25	31.7	6.5	21	31.2	7.0	0.8	-2.8	4.4	0.6
Mastergraft Pilot, 2003	3 months	25	35.1	8.7	21	34.9	8.8	0.4	-4.7	5.5	0.9
PLF	6 months	25	37.7	11.7	21	36.7	9.6	1.5	-4.4	7.4	0.6
Study 8	12 months	23	39.4	10.8	21	36.5	11.5	3.7	-2.8	10.1	0.3
	24 months	23	40.0	12.2	20	37.1	10.9	3.6	-3.4	10.5	0.3
	pre- operative	25	28.3	6.2	19	29.3	7.4				
Infuse-Interfix	6 weeks	25	31.9	7.6	17	32.6	7.8	-0.2	-5.1	4.7	0.9
Pilot, 1999	3 months	24	38.5	10.5	16	37.0	8.1	2.5	-3.6	8.5	0.4
ALIF	6 months	24	39.2	13.0	16	41.0	9.2	-0.8	-8.4	6.7	0.8
Study 9	12 months	22	41.4	14.1	16	42.0	9.6	1.0	-6.8	8.9	0.8
	24 months	21	44.3	11.1	15	42.7	11.9	2.5	-5.2	10.1	0.5
Maverick Disc	pre- operative	172	27.3	5.6	404	27.9	6.1				
Pivotal, 2003	6 weeks	166	31.6	7.2	391	36.6	9.7	-4.7	-6.2	-3.1	0.0
ALIF	3 months	159	36.9	9.0	385	41.4	11.0	-4.3	-6.2	-2.4	0.0

Study and Approach	Period		rhBMP-2	2		ICBG		Adjusted Mean Difference	95%	6 CI	<i>P</i> -Value
		n	Mean	SD	Ν	Mean	SD		Lower	Upper	
Study 10	6 months	158	39.6	10.6	385	43.7	11.3	-3.7	-5.7	-1.7	0.0
	12 months	154	42.0	11.6	389	44.7	11.6	-2.4	-4.5	-0.2	0.0
	24 months	135	42.6	11.9	366	45.3	12.1	-2.5	-4.9	-0.2	0.0
	pre- operative	11	29.1	8.1	5	25.5	9.6				
	6 weeks	11	31.1	6.9	5	26.4	8.9	3.5	-5.1	12.0	0.4
BCP US, 1999	3 months	11	29.2	6.3	5	29.3	9.2	-1.2	-9.5	7.2	0.8
PLF Study 12	6 months	10	35.6	12.1	5	28.0	15.1	2.6	-6.8	12.0	0.6
	12 months	10	34.6	14.2	5	27.9	6.2	3.7	-8.4	15.8	0.5
	24 months	9	33.4	15.2	4	32.9	13.9	-0.8	-16.4	14.8	0.9
	pre- operative	98	26.6	6.0	99	27.3	6.9				
BCP Canada,	6 weeks	98	30.7	6.9	97	30.8	7.4	0.1	-1.9	2.1	0.9
1999	3 months	97	34.9	8.2	98	34.8	8.4	0.3	-2.0	2.6	0.8
PLF	6 months	97	37.5	9.8	98	37.2	10.8	0.7	-2.2	3.5	0.6
Study 13	12 months	97	37.7	10.1	97	38.1	11.2	-0.1	-3.0	2.9	1.0
	24 months	97	38.5	10.5	94	38.7	12.3	0.3	-2.9	3.4	0.9
	pre- operative	236	27.8	6.3	224	27.4	6.7				
Amplify	6 weeks	231	31.6	7.5	213	31.8	7.7	-0.4	-1.8	0.9	0.5
Pivotal, 2002 PLF	3 months	231	37.3	9.8	212	36.1	9.6	1.0	-0.8	2.7	0.3
Study 14	6 months	227	40.8	11.0	207	38.2	10.4	2.3	0.4	4.3	0.0
	12 months	226	41.6	12.0	202	38.8	11.0	2.6	0.5	4.8	0.0
	24 months	209	41.1	11.6	181	39.8	11.8	1.3	-1.0	3.6	0.3

Study and Approach	Period		rhBMP-2	2		ICBG		Adjusted Mean Difference	95%	6 CI	P-Value
		Ν	Mean	SD	n	Mean	SD		Lower	Upper	
Infuse-LT-	Pre- operative	7	39.5	13.3	3	40.5	18.0				
Cage Pilot,	3 months	7	49.3	13.9	3	50.0	10.4	0.0	-12.9	13.0	1.0
1997 ALIF	6 months	7	41.9	13.3	3	49.3	10.1	-6.8	-23.4	9.8	0.4
Study 1	12 months	7	41.1	14.0	3	44.7	5.1	-3.3	-22.3	15.8	0.7
,	24 months	7	52.9	8.6	3	50.9	10.2	1.9	-13.6	17.5	0.8
Infuse-LT-	Pre- operative	142	44.1	13.2	136	41.1	11.7				
Cage Pivotal,	6 weeks	139	47.4	11.8	130	47.1	12.8	-1.2	-3.8	1.3	0.3
1998	3 months	141	50.9	11.8	133	48.5	12.5	0.9	-1.6	3.4	0.5
ALIF	6 months	140	49.2	11.6	132	48.9	11.6	-1.1	-3.6	1.3	0.4
Study 2	12 months	135	49.5	11.7	130	49.5	11.7	-1.2	-3.9	1.5	0.4
	24 months	131	50.4	10.6	121	48.8	12.5	0.7	-2.0	3.5	0.6
Infuse-Bone	Pre- operative	24	42.8	10.0	22	43.1	12.3				
Dowel Pilot,	6 weeks	23	46.7	12.2	21	45.1	10.6	1.6	-3.9	7.0	0.6
1998	3 months	24	48.2	12.0	21	49.2	13.6	0.1	-5.4	5.5	1.0
ALIF	6 months	23	48.5	13.9	20	49.4	10.6	-0.6	-7.0	5.8	0.8
Study 4	12 months	24	46.9	11.5	20	47.1	12.5	0.6	-5.3	6.5	0.8
	24 months	24	51.1	9.6	20	43.7	12.4	8.6	2.7	14.4	0.0
Infuse-Bone Dowel	Pre- operative	54	48.2	12.4	30	41.6	10.9				
Pivotal, 2000	6 months	51	52.7	9.4	29	50.2	11.2	1.0	-3.7	5.6	0.7
ALIF	12 months	52	52.9	11.2	27	48.5	12.1	2.4	-2.9	7.7	0.4
Study 5	24 months	49	51.2	12.3	25	48.1	14.3	0.9	-5.2	7.1	0.8
Infuse-Interfix	Pre- operative	34	44.6	14.9	32	43.6	9.3				

 Table L-3. IPD Summary Data for the SF-36 Health Survey, Mental Component Summary (MCS) Outcomes,

 Medtronic RCT Studies

Study and Approach	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	6 CI	P-Value
		Ν	Mean	SD	n	Mean	SD		Lower	Upper	
PLIF, 1999	6 weeks	32	47.9	10.2	31	45.9	11.8	1.8	-3.0	6.7	0.5
PLIF	3 months	33	49.4	12.4	32	48.6	11.1	0.7	-4.5	6.0	0.8
Study 6	6 months	32	47.7	11.8	30	47.0	12.6	0.5	-5.8	6.8	0.9
	12 months	31	46.5	13.7	28	45.5	12.5	0.9	-5.7	7.5	0.8
	24 months	28	49.5	13.8	29	46.3	12.7	2.1	-4.6	8.8	0.5
	Pre- operative	17	33.4	9.5	15	42.9	10.9				
Infuse-	6 weeks	18	51.2	9.7	15	52.7	10.4	1.7	-6.2	9.6	0.7
Cornerstone ACDF, 1999	3 months	16	48.2	11.3	15	47.8	16.5	7.8	-1.4	16.9	0.1
CERVICAL	6 months	15	55.0	6.7	12	54.6	11.4	3.9	-3.6	11.5	0.3
Study 7	12 months	15	54.1	6.6	14	50.7	10.6	6.2	-1.2	13.6	0.1
	24 months	14	54.9	7.4	13	50.0	12.4	5.1	-4.1	14.4	0.3
	Pre- operative	25	43.8	12.4	21	46.5	9.5				
Infuse-	6 weeks	25	45.8	9.9	21	46.6	11.3	0.2	-5.6	6.1	0.9
Mastergraft Pilot, 2003	3 months	25	47.6	12.9	21	48.6	10.3	-0.1	-6.8	6.6	1.0
PLF	6 months	25	48.9	10.2	21	44.9	14.4	5.3	-1.4	12.0	0.1
Study 8	12 months	23	49.7	10.2	21	49.4	11.5	1.3	-4.8	7.4	0.7
	24 months	23	51.0	8.6	20	46.2	12.1	5.8	-0.3	11.9	0.1
	Pre- operative	25	42.1	10.2	19	44.2	12.4				
Infuse-Interfix	6 weeks	25	47.9	10.6	17	47.9	10.6	1.4	-3.9	6.7	0.6
Pilot, 1999	3 months	24	51.4	11.0	16	51.5	11.7	1.5	-5.6	8.5	0.7
ALIF	6 months	24	52.8	10.0	16	50.3	11.7	4.1	-2.2	10.5	0.2
Study 9	12 months	22	48.8	10.1	16	52.7	11.1	-3.0	-9.3	3.4	0.3
	24 months	21	51.8	9.0	15	49.5	12.0	3.3	-3.4	10.0	0.3
Maverick	Pre- operative	172	41.7	11.9	404	43.2	12.4				
Disc_Pivotal,	6 weeks	166	46.4	11.7	391	48.9	11.2	-1.9	-3.8	-0.1	0.0

Study and Approach	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%		P-Value
		N	Mean	SD	n	Mean	SD		Lower	Upper	
2003	3 months	159	48.6	12.1	385	51.2	11.3	-2.1	-4.0	-0.1	0.0
ALIF	6 months	158	50.0	12.1	385	51.6	10.7	-1.1	-3.0	0.8	0.3
Study 10	12 months	154	49.4	11.8	389	51.3	10.9	-1.3	-3.3	0.6	0.2
	24 months	135	50.4	10.9	366	51.4	11.0	-0.4	-2.4	1.7	0.7
	Pre- operative	11	38.7	13.6	5	49.9	9.6				
BCP US,	6 weeks	11	42.0	8.6	5	52.0	13.2	-9.8	-23.2	3.6	0.1
1999	3 months	11	50.5	10.7	5	49.1	12.3	3.2	-11.3	17.8	0.6
PLF	6 months	10	48.3	15.4	5	49.1	13.1	4.1	-13.8	22.0	0.6
Study 12	12 months	10	49.8	10.4	5	48.0	14.5	4.8	-10.4	19.9	0.5
	24 months	9	50.4	10.6	4	53.8	10.5	-2.9	-18.6	12.8	0.7
	Pre- operative	98	45.2	12.7	99	45.0	12.0				
BCP Canada,	6 weeks	98	48.5	11.6	97	47.7	11.1	0.7	-2.1	3.6	0.6
1999	3 months	97	50.3	11.9	98	50.3	10.2	-0.1	-3.0	2.8	0.9
PLF	6 months	97	50.5	10.7	98	50.3	10.6	0.0	-2.6	2.6	1.0
Study 13	12 months	97	48.6	12.2	97	50.9	10.7	-2.4	-5.3	0.4	0.1
	24 months	97	47.8	12.0	94	50.1	10.0	-2.4	-5.3	0.5	0.1
	Pre- operative	236	43.9	13.1	224	42.9	12.3				
Amplify	6 weeks	231	48.4	11.8	213	47.3	11.5	0.7	-1.1	2.5	0.5
Pivotal, 2002 PLF	3 months	231	49.7	12.4	212	49.3	12.2	-0.1	-2.0	1.8	0.9
Study 14	6 months	227	49.6	12.7	207	49.8	12.1	-0.5	-2.5	1.6	0.7
	12 months	226	49.5	12.9	202	49.0	11.4	0.3	-1.8	2.4	0.8
	24 months	209	51.0	11.6	181	49.3	12.0	1.1	-0.9	3.2	0.3

Study	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	6 CI	P-Value
		n	Mean	SD	n	Mean	SD		Lower	Upper	
	Pre-operative	143	7.4	1.9	136	7.7	1.7				
Infuse-LT-Cage	6 weeks	140	4.3	2.6	132	4.1	2.8	0.2	-0.4	0.9	0.5
Pivotal, 1998	3 months	141	4.0	2.5	134	4.4	2.8	-0.3	-1.0	0.3	0.3
ALIF	6 months	140	4.1	2.8	132	4.1	2.7	0.0	-0.7	0.6	0.9
Study 1	12 months	133	3.7	2.9	130	4.0	3.0	-0.3	-1.0	0.4	0.5
	24 months	132	3.5	2.9	121	3.9	3.2	-0.3	-1.0	0.5	0.5
	Pre-operative	24	7.7	2.0	22	7.5	1.7				
Infuse-Bone	6 weeks	24	4.3	2.5	21	4.8	2.3	-0.6	-2.0	0.9	0.4
Dowel Pilot, 1998	3 months	24	3.5	2.2	21	4.5	2.3	-1.0	-2.4	0.3	0.1
ALIF	6 months	24	3.2	2.1	20	4.3	2.5	-1.2	-2.5	0.1	0.1
Study 4	12 months	24	3.6	2.9	20	4.2	3.0	-0.7	-2.4	1.0	0.4
	24 months	24	3.9	3.3	20	5.4	3.2	-1.6	-3.6	0.3	0.1
	Pre-operative	55	7.0	2.3	30	8.0	1.5				
Infuse-Bone	6 weeks	54	3.8	2.9	29	4.3	2.5	0.0	-1.2	1.2	1.0
Dowel Pivotal, 2000	3 months	55	3.6	2.5	29	4.7	2.9	-0.6	-1.8	0.5	0.3
ALIF	6 months	54	3.2	2.9	30	3.9	3.0	-0.4	-1.8	0.9	0.5
Study 5	12 months	52	2.8	2.8	27	4.8	3.2	-1.6	-2.9	-0.2	0.0
	24 months	49	3.4	3.3	25	4.6	3.9	-0.9	-2.6	0.9	0.3
	Pre-operative	34	8.1	1.4	33	7.1	2.4				
Infuse-Interfix	6 weeks	33	4.8	2.6	30	4.8	2.7	0.0	-1.3	1.4	0.9
PLIF, 1999	3 months	33	3.7	2.6	31	3.8	2.6	-0.3	-1.7	1.0	0.6
PLIF	6 months	32	4.1	2.6	31	3.8	2.4	0.1	-1.2	1.4	0.9
Study 6	12 months	32	4.3	2.9	28	4.6	2.7	-0.5	-2.0	1.0	0.5
	24 months	29	3.9	2.7	30	4.4	3.2	-1.0	-2.5	0.6	0.2
Infuse-	Pre-operative	18	7.4	2.7	15	6.5	2.2				
Cornerstone	6 weeks	18	2.4	2.6	15	2.7	1.8	-0.4	-2.0	1.3	0.7
ACDF, 1999	3 months	17	2.8	2.7	15	3.2	2.5	-0.6	-2.6	1.4	0.5

Table L-4. IPD Summary Data for Back Pain Outcomes, Medtronic RCT Studies

Study	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	6 CI	P-Value
		n	Mean	SD	n	Mean	SD		Lower	Upper	
CERVICAL	6 months	17	2.2	2.3	13	1.8	1.9	0.2	-1.4	1.9	0.8
Study 7*	12 months	15	1.3	1.3	14	2.0	2.6	-0.9	-2.4	0.7	0.3
	24 months	14	1.2	1.6	13	2.2	2.8	-1.3	-3.0	0.4	0.1
	Pre-operative	25	7.5	2.3	21	7.5	1.8				
Infuse-	6 weeks	25	3.6	2.4	21	4.0	2.8	-0.4	-2.0	1.1	0.6
Mastergraft Pilot, 2003	3 months	25	3.2	2.7	21	3.3	3.0	-0.1	-1.8	1.5	0.9
PLF	6 months	25	3.0	2.4	21	4.2	2.9	-1.2	-2.8	0.3	0.1
Study 8	12 months	23	2.9	2.5	21	3.9	3.2	-1.0	-2.8	0.7	0.2
	24 months	23	2.7	2.7	20	3.7	3.4	-1.1	-2.9	0.8	0.2
	Pre-operative	25	8.0	1.4	19	7.3	2.2				
Infuse-Interfix	6 weeks	25	5.2	2.4	16	3.6	1.9	1.3	-0.1	2.7	0.1
Pilot, 1999	3 months	24	3.3	3.0	16	4.4	2.4	-1.5	-3.4	0.3	0.1
ALIF	6 months	24	3.5	2.8	16	3.4	2.7	-0.4	-2.2	1.3	0.6
Study 9	12 months	23	3.6	2.8	16	2.9	2.2	0.3	-1.4	1.9	0.8
	24 months	21	2.9	3.0	15	3.8	3.3	-1.5	-3.4	0.4	0.1
	Pre-operative	172	8.1	1.6	405	8.0	1.5				
Maverick Disc	6 weeks	166	4.9	2.7	394	3.4	2.6	1.5	1.0	2.0	0.0
Pivotal, 2003	3 months	159	4.3	2.6	386	3.1	2.6	1.2	0.8	1.7	0.0
ALIF	6 months	158	3.8	2.7	386	3.0	2.7	0.8	0.3	1.3	0.0
Study 10	12 months	154	3.6	2.8	388	2.8	2.8	0.8	0.3	1.3	0.0
	24 months	137	3.4	2.8	366	2.6	2.8	0.8	0.2	1.3	0.0
	Pre-operative	11	7.1	2.5	5	7.6	2.7				
	6 weeks	11	4.2	2.2	5	4.4	2.8	-0.1	-2.9	2.7	0.9
BCP US, 1999	3 months	11	3.4	1.9	5	4.8	1.9	-1.3	-3.3	0.8	0.2
PLF Study 12	6 months	10	4.5	3.0	5	5.2	3.0	-0.5	-4.2	3.2	0.8
Sludy 12	12 months	10	4.4	3.1	5	5.8	2.2	-1.3	-4.8	2.2	0.4
	24 months	10	5.3	3.3	4	4.3	2.2	1.1	-2.6	4.7	0.5
BCP Canada,	Pre-operative	98	7.1	2.4	99	7.0	2.4				

Study	Period		rhBMP-2			ICBG		Adjusted Mean Difference	95%	k Cl	P-Value
	1 on ou	n	Mean	SD	n	Mean	SD	Dinoronoo	Lower	Upper	i valuo
1999	6 weeks	98	3.6	2.4	98	3.4	2.4	0.1	-0.6	0.8	0.8
PLF	3 months	97	3.3	2.4	98	3.3	2.4	0.0	-0.7	0.6	1.0
Study 13	6 months	97	3.5	2.8	98	3.2	2.8	0.2	-0.6	0.9	0.6
	12 months	97	4.0	3.0	97	3.4	2.9	0.6	-0.2	1.4	0.2
	24 months	97	3.6	3.0	95	3.7	3.0	-0.1	-0.9	0.7	0.8
	Pre-operative	238	7.4	1.9	224	7.6	2.0				
Amplify Pivotal,	6 weeks	234	3.9	2.7	214	3.7	2.6	0.2	-0.3	0.7	0.5
2002	3 months	232	3.3	2.6	215	3.7	2.7	-0.3	-0.8	0.2	0.2
PLF	6 months	229	3.1	2.7	208	3.8	2.9	-0.7	-1.2	-0.2	0.0
Study 14	12 months	226	3.0	2.8	204	3.9	3.0	-0.8	-1.3	-0.2	0.0
	24 months	210	3.2	2.9	181	3.6	3.1	-0.4	-1.0	0.2	0.2

* Infuse-Cornerstone ACDF, 1999 shows results for neck pain.

Study Period			rhBMP-2		ICBG			Adjusted Mean Difference	-		P-Value
Olddy	i chou	n	Mean	SD	N	Mean	SD	Difference	Lower	Upper	i value
Infuse-LT-Cage Pivotal, 1998 ALIF Study 2	pre-operative	143.0	6.1	2.8	136.0	6.2	2.5				
	6 weeks	140.0	3.6	3.0	132.0	4.1	3.5	-0.6	-1.4	0.1	0.1
	3 months	141.0	3.3	3.0	134.0	3.3	3.0	0.1	-0.6	0.8	0.8
	6 months	140.0	3.0	3.2	132.0	3.1	3.1	-0.1	-0.8	0.6	0.8
	12 months	133.0	3.0	3.2	130.0	3.4	3.3	-0.4	-1.1	0.4	0.3
	24 months	132.0	3.1	3.1	121.0	3.4	3.4	-0.2	-1.0	0.5	0.5
Infuse-Bone Dowel Pilot, 1998 ALIF Study 4	pre-operative	24.0	6.3	2.9	22.0	6.9	2.4				
	6 weeks	24.0	3.5	3.0	21.0	4.0	3.0	-0.4	-2.2	1.4	0.7
	3 months	24.0	2.7	2.0	21.0	3.8	2.7	-1.0	-2.4	0.4	0.2
	6 months	24.0	2.3	2.3	20.0	2.5	1.8	0.1	-1.2	1.3	0.9
	12 months	24.0	2.7	2.6	20.0	4.4	3.2	-1.6	-3.4	0.2	0.1
	24 months	24.0	3.1	3.0	20.0	5.0	3.1	-1.7	-3.4	0.0	0.1
Infuse-Bone Dowel Pivotal, 2000 ALIF Study 5	pre-operative	55.0	6.1	2.7	30.0	6.7	2.9				
	6 weeks	54.0	2.7	2.8	29.0	3.8	2.8	-0.8	-2.0	0.4	0.2
	3 months	55.0	3.2	2.8	29.0	4.1	3.4	-0.7	-2.0	0.7	0.3
	6 months	54.0	2.6	2.9	30.0	3.8	3.5	-0.9	-2.2	0.4	0.2
	12 months	52.0	2.6	3.1	27.0	3.9	3.4	-0.9	-2.3	0.5	0.2
	24 months	49.0	2.8	3.2	25.0	4.0	3.8	-1.0	-2.6	0.6	0.2
Infuse-Interfix PLIF, 1999 PLIF Study 6	pre-operative	34.0	7.2	2.2	33.0	6.9	2.2				
	6 weeks	33.0	3.8	3.1	30.0	4.3	3.6	-0.5	-2.1	1.2	0.6
	3 months	33.0	3.1	2.8	31.0	3.6	3.4	-0.5	-2.1	1.1	0.5
	6 months	32.0	3.2	3.2	31.0	3.8	3.3	-0.6	-2.2	1.0	0.4
	12 months	32.0	3.8	3.3	28.0	5.0	3.4	-1.2	-2.9	0.5	0.2
	24 months	29.0	3.8	3.5	30.0	3.8	3.6	0.0	-1.8	1.7	1.0

Table L-5. IPD Summary Data for Leg Pain Outcomes, Medtronic RCT Studies

Study	Period		hBMP-2			ICBG		Adjusted Mean Difference	95%	% CI	P-Value
		n	Mean	SD	N	Mean	SD		Lower	Upper	
	pre-operative	18.0	8.3	2.1	15.0	5.6	3.2				
Infuse-	6 weeks	18.0	1.6	2.8	15.0	1.2	2.1	0.1	-1.9	2.2	0.9
Cornerstone ACDF, 1999	3 months	17.0	1.6	2.6	15.0	1.3	2.8	0.0	-2.4	2.4	1.0
CERVICAL	6 months	17.0	1.2	2.1	13.0	0.3	0.8	0.7	-0.8	2.2	0.3
Study 7*	12 months	15.0	1.5	2.6	14.0	0.7	2.4	1.0	-1.3	3.2	0.4
	24 months	14.0	1.6	2.4	13.0	0.8	2.2	0.3	-1.9	2.4	0.8
	pre-operative	25.0	7.7	1.6	21.0	7.0	2.2				
Infuse-	6 weeks	25.0	2.7	2.9	21.0	3.0	3.3	-0.4	-2.3	1.4	0.6
Mastergraft Pilot, 2003	3 months	25.0	2.7	2.7	21.0	2.6	3.0	-0.2	-1.9	1.4	0.8
Pliot, 2003 PLF	6 months	25.0	2.6	2.7	21.0	3.0	3.1	-0.8	-2.5	0.9	0.4
Study 8	12 months	23.0	2.6	3.1	21.0	2.9	3.2	-0.8	-2.6	1.0	0.4
	24 months	23.0	2.2	2.5	20.0	3.1	3.4	-1.0	-2.9	0.9	0.3
	pre-operative	25.0	6.4	3.1	19.0	5.6	3.8				
Infuse-Interfix	6 weeks	25.0	3.8	3.4	16.0	3.5	2.7	-0.1	-1.8	1.6	0.9
Pilot, 1999	3 months	24.0	2.5	2.8	16.0	3.1	3.1	-0.8	-2.6	1.0	0.4
ALIF	6 months	24.0	2.8	3.2	16.0	2.8	2.6	-0.3	-2.0	1.5	0.7
Study 9	12 months	23.0	3.5	3.0	16.0	2.7	2.9	0.4	-1.2	2.1	0.6
	24 months	21.0	2.5	3.5	15.0	2.7	2.9	-0.4	-2.5	1.6	0.7
	pre-operative	172.0	5.9	2.8	405.0	5.7	3.0				
Maverick Disc	6 weeks	166.0	3.9	3.0	394.0	3.4	3.2	0.4	-0.2	0.9	0.2
Pivotal, 2003	3 months	159.0	3.0	2.7	386.0	2.8	3.0	0.1	-0.4	0.6	0.7
ALIF	6 months	158.0	2.8	2.8	386.0	2.4	2.9	0.3	-0.2	0.8	0.2
Study 10	12 months	154.0	3.0	3.0	388.0	2.4	2.9	0.6	0.1	1.1	0.0
	24 months	137.0	2.9	3.1	366.0	2.4	2.9	0.4	-0.1	1.0	0.1
	pre-operative	11.0	6.3	3.6	5.0	4.8	3.0				
BCP US, 1999	6 weeks	11.0	3.4	3.4	5.0	2.2	2.0	0.9	-2.8	4.6	0.6
PLF Study 12	3 months	11.0	3.6	3.2	5.0	4.8	3.7	-1.7	-5.5	2.2	0.4
,	6 months	10.0	5.1	4.3	5.0	4.6	2.4	0.0	-4.4	4.4	1.0

Study	Period	rhBMP-2				ICBG		Adjusted Mean Difference	95% CI		P-Value
		n	Mean	SD	N	Mean	SD		Lower	Upper	
	12 months	10.0	3.8	3.3	5.0	5.0	3.0	-1.6	-5.4	2.1	0.4
	24 months	10.0	3.4	2.7	4.0	3.3	1.3	0.0	-2.7	2.7	1.0
	pre-operative	98.0	6.8	2.7	99.0	7.0	2.6				
BCP Canada,	6 weeks	98.0	3.2	2.8	98.0	2.8	2.9	0.4	-0.4	1.2	0.3
1999	3 months	97.0	2.4	2.4	98.0	3.2	2.9	-0.8	-1.5	0.0	0.0
PLF	6 months	97.0	2.8	2.8	98.0	3.1	3.0	-0.3	-1.1	0.5	0.4
Study 13	12 months	97.0	2.9	2.9	97.0	3.3	3.1	-0.3	-1.2	0.5	0.4
	24 months	97.0	3.4	3.2	95.0	3.5	3.3	-0.1	-1.0	0.9	0.9
	pre-operative	238.0	6.9	2.5	223.0	6.9	2.7				
Amplify Pivotal,	6 weeks	234.0	2.9	3.1	214.0	2.7	2.9	0.2	-0.4	0.7	0.5
2002	3 months	232.0	2.7	2.9	215.0	2.9	3.1	-0.2	-0.8	0.3	0.4
PLF	6 months	229.0	2.8	3.0	208.0	3.0	3.1	-0.2	-0.8	0.4	0.5
Study 14	12 months	226.0	2.9	3.1	204.0	3.1	3.2	-0.2	-0.7	0.4	0.6
	24 months	210.0	2.9	3.1	181.0	3.4	3.3	-0.4	-1.0	0.2	0.2

* Infuse-Cornerstone_ACDF, 1999 shows results for arm pain.

Table L-6. IPD Data for Adverse Events* at 4 Weeks, Medtronic RCT studies

	LT-C Pi	ise- Cage lot LIF		,	Bo Do	use- one wel ot, LIF	Bo Do Pive	use- one wel otal, LIF	Infu Inte PL PL	IF,	Cori oi	use- nerst ne DF,	Mas	aft ot,	Inte Pil	use- erfix lot, _IF	Di Piv	erick isc otal, LIF		P US, LF	Can	CP ada, LF		plify otal, LF
	Stu	dy 1	Stu	dy 2	Stu	dy 4	Stu	dy 5	Stu	dy 6	Stu	dy 7	Stu	dy 8	Stu	dy 9	Stud	dy 10	Stuc	ly 12	Stuc	ly 13	Stud	ly 14
CATEGORY	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG†	IG	CG	IG	CG	IG	CG
Anatomical/ Technical Difficulty	0	1	0	2			1	2	0	0					1	1	1	9			3	0	1	0
Back and/or Leg Pain			6	4	2	0	2	2	8	8	1	0	2	2	0	1	18	44			9	6	18	8
Cancer													1	0										
Cardiovascular			2	5			3	1	7	10	1	0	0	1	0	1	2	3			11	9	45	43
Death															0	1	0	1			0	1		
Dural Injury									3	2			1	1					1	0	5	7	14	18
Dysphagia/Dysphonia											1	2												
Gastrointestinal	1	1	21	21	1	3	8	6	10	8	1	0	1	4	2	1	14	45	0	1	8	15	19	16
Graft Site Related			0	8			0	1	0	2			0	1							0	2	0	4
Headache											0	1									1	0		
Implant Displacement/ Loosening/ Malposition	0	1	1	0	1	0							1	0	1	2					1	1	4	1
Infection			11	9	0	1	4	2	6	6	2	0	1	1			3	7			15	8	20	27
Neck and/or Arm Pain											0	0					0	1			1	2		
Neurological			5	5			3	1	9	9	1	0	2	2	0	1	12	53	2	0	5	3	9	6
Other	2	1	12	16	1	0	2	8	19	16	2	1	3	5			19	65	1	0	29	33	52	39
Other Pain			2	1	1	0	0	1	8	7	0	0	1	0			1	8			3	0	2	3
Respiratory			2	2			2	3	0	2	1	0	0	1			2	4			5	1	8	7
Retrograde Ejaculation			3	1													1	3						
Spinal Event			0	2	0	1			2	2	0	0					2	11	2	0	0	1	3	3
Subsidence			3	2													3	2						
Trauma	1	0	1	5			2	0	4	3	1	0					7	10					2	2
Urogenital	0	1	13	4	1	0	4	2	1	4	0	1	1	0			6	13	0	1	14	17	10	6
Vascular Intra-Op			6	5	2	3	1	0									8	14			3	1		
Vertebral Fracture			1	0											1	0	0	2			1	0	3	3

CG =comparator group (ICBG or artificial disc); IG = investigational group (rhBMP-2)

*The number of adverse events represents the number of events and one patient may have more than one of the same event.

† The comparator group is artificial disc.

	LT-C Pi	use- Cage Iot _IF	LT C Pive	use Cage otal, _IF	Bo			otal,	Inte PL		Corr	use- nerst DF,	Mas ra Pil	ft	Infu Inte Pil AL	erfix ot,	D Piv	verick visc votal, LIF		P US, LF	Can	CP lada, LF	Amı Pivo Pl	
	Stu	dy 1	Stu	dy 2	Stu	dy 4	Stu	dy 5	Stu	dy 6	Stu	dy 7	Stu	dy 8	Stud	ly 10	Stu	dy 10	Stuc	ly 12	Stuc	dy 13	Stud	ly 14
CATEGORY	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG†	IG	CG	IG	CG	IG	CG
Allergic Reaction													1	0			4	12						
Anatomical/ Technical Difficulty	0	1	0	2			1	2	0	0					1	1	1	9			3	0	1	0
Back and/or Leg Pain	3	0	45	37	9	1	10	15	13	11	4	1	15	7	5	5	96	203	6	0	92	81	136	105
Cancer			2	1	1	0	1	0					1	0			3	3			1	2	11	2
Cardiovascular			9	14	1	0	3	2	9	11	2	1	2	5	2	1	8	14	1	0	19	18	70	68
Death			0	1	0	1			1	1			1	0	0	1	1	3			1	2	3	4
Dural Injury			0	1					3	2			2	2					2	0	5	7	14	18
Dysphagia/Dysphonia											2	2							1	0				
Gastrointestinal	2	1	38	31	1	3	8	8	11	11	5	0	4	10	3	2	20	99	2	1	18	27	46	43
Graft Site Related			0	8	0	1	0	1	0	2			0	4	0	1					0	11	0	17
Headache											0	2									4	0		
Implant Displacement/ Loosening/ Malposition	1	1	3	0	1	0	1	0					2	0	1	2	1	1			2	2	6	4
Infection			22	17	0	1	5	4	8	6	4	0	4	5	1	0	15	29			31	21	52	51
Neck and/or Arm Pain											1	0	2	1	1	0	5	12			10	12		
Neurological			24	24	2	1	16	4	16	18	7	2	5	4	2	2	74	185	3	0	19	14	93	77
Other	6	3	35	40	3	3	7	14	21	23	6	1	18	14	2	6	57	195	4	2	69	68	129	111
Other Pain			23	16	7	2	16	5	14	11	2	1	4	0			24	79	1	1	15	7	30	31
Respiratory			3	4			2	4	0	2	1	0	2	2			4	9			8	3	18	13
Retrograde Ejactulation			5	1													2	4						
Spinal Event			26	18	6	3	4	1	5	5	3	1	4	3	1	2	29	64	5	0	3	4	29	31
Subsidence			6	2			1	0									14	14						

	LT-C Pi	use- Cage lot _IF dy 1	LT (Pivo Al	use Cage otal, _IF dy 2	Bo Do Pil Al	use- one wel lot, _IF dy 4	Bo Do Pivo AL	ise- ne wel otal, .IF dy 5	Inte PL PL	use- erfix IF, IF dy 6	Corr	ne DF,	Mas ra Pil Pl	use- sterg aft lot, LF dy 8	Infu Inte Pil AL	erfix ot, .IF	D Piv A	verick isc otal, LIF dy 10	P	P US, LF iv 12	Can Pl	,	Amp Pivo PL Stud	otal, .F
CATEGORY	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG	IG	CG†	IG	CG	IG	CG	IG	CG
Trauma	4	0	43	39	5	5	12	14	8	9	3	1	1	0	8	2	66	145	2	0	19	29	89	69
Urogenital	0	1	24	13	2	0	7	2	1	5	2	1	2	2			17	41	0	1	22	21	28	25
Vascular Intra-Op			6	5	2	3	1	0									8	15			3	1		
Vertebral Fracture			1	0											1	0	0	3			1	0	3	4

CG =comparator group (ICBG or artificial disc); IG = investigational group (rhBMP-2) *The number of adverse events represents the number of events and one patient may have more than one of the same event.

† The comparator group is artificial disc.

	INFUSE/ LT-CAGE lap pivotal	INFUSE/TELAMON PEEK PLIF pilot	rhBMP-2/CRM 2-level pilot	rhBMP-2/BCP Mexico pilot
	Study 3	Study 11	Study 15	Study 16
CATEGORY	Frequency	Frequency	Frequency	Frequency
Anatomical/ Technical Difficulty	9			
Back and/or Leg Pain	11	3		
Cancer	1			
Cardiovascular	6	2		
Dural Injury		1	1	
Gastrointestinal	22	2	2	1
Hematological		1	1	
Implant Displacement/ Loosening/ Malposition	5			1
Incision Related			5	
Infection	8	2		
Neurological	8			
Other	21	3	3	
Other Pain	10			
Respiratory	2		1	
Retrograde Ejactulation	2			
Spinal Event	4			
Trauma	13			
Upper Extremity Pain			1	
Urogenital	14	1	1	
Vascular Intra-Op	8			
Vertebral Fracture				1

Table M-8. IPD Data for Adverse Events* at 4 Weeks, Medtronic Intervention Series

*The number of adverse events represents the number of events and one patient may have more than one of the same event.

	INFUSE/ LT-CAGE lap pivotal	INFUSE/TELAMON PEEK PLIF pilot	rhBMP-2/CRM 2-level pilot	rhBMP-2/BCP Mexico pilot
	Study 3	Study 11	Study 15	Study 16
CATEGORY	Frequency	Frequency	Frequency	Frequency
Accidental Injury/Muscle Strain		8	7	
Anatomical/ Technical Difficulty	9			
Back and/or Leg Pain	41	20	12	3
Cancer	2			
Cardiovascular	13	2	1	
Dural Injury		1	1	
Gastrointestinal	37	5	6	1
Hemotological		1	1	
Implant Displacement/ Loosening	2			1
Incision Related		1	5	
Infection	18	3	1	
Lower Extremity Pain, Not of Back Etiology		8	6	
Malpositioned Implant	4			
Neurological	29	6	6	
Other	50	11	7	1
Other Pain	24	1	2	
Respiratory	3	2	1	
Retrograde Ejactulation	6			
Spinal Event (all levels)	14	6	7	
Trauma	48	3	2	
Upper Extremity Pain		2	5	
Urogenital	25	1	4	
Vascular Intra-Op	9			
Vertebral Fracture				1

Table M-9. IPD Data for Adverse Events* at 24 Months, Medtronic Intervention Series

*The number of adverse events represents the number of events and one patient may have more than one of the same event.

Appendix M. Evidence Tables

For Medtronic-sponsored randomized controlled trials (RCTs), we abstracted data from internal documents Medtronic had provided to the U.S. Food and Drug Administration (FDA data summary) in order to compare the data with published results. For unpublished RCTs, we did not abstract information on results but relied on individual patient data (IPD) provided by Medtronic.

The information provided in the evidence tables for the rhBMP-2 (BMP) and control groups include percentages, followed by the total sample size (N) from which that percentage is derived.

NR = not reportedNA = not applicable

Evidence Table 1.	RCT Abstraction (Medtronic)
Evidence Table 2.	RCT Risk of Bias (Medtronic)
Evidence Table 3.	Intervention Series Abstraction (Medtronic)
Evidence Table 4.	Intervention Series Risk of Bias (Medtronic)
Evidence Table 5.	RCT Abstraction (Non-Medtronic)
Evidence Table 6.	RCT Risk of Bias (Non-Medtronic)
Evidence Table 7.	Cohort Studies Abstraction (Non-Medtronic)
Evidence Table 8.	Cohort Studies Risk of Bias (Non-Medtronic)
Evidence Table 9.	Intervention Series Abstraction (Non-Medtronic)
Evidence Table 10.	Intervention Series Risk of Bias (Non-Medtronic)
Evidence Table 11.	Case Series/Case Reports (Non-Medtronic)

Author Year Country Trial # or Name	<u>v</u>	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions					
Baskin, 2003* USA	pilot trial)	Inclusion Criteria: -Cervical disk disease -Preoperative Neck Disability score ≥ 30 -20 20 ± 27 ± 4 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5	A. Cervical discectomy and anterior	Randomized=33; BMP=18;	Soft collar	BMP 1 level 90.0	BMP 2 level 37.5	BMP Comb 66.7	Control 1 level 75.0	Control 2 level 28.6
Conerstone ACDF-Pilot study		-C2-C3 to C7-T1 disc level involvement -1 or 2 treatment levels -At least 18 years of age	implantation of BMP-2 applied to ACS placed inside	ICBG=15	Hard collar Other	0 0	62.5 0	27.8 0	25.0 0	57.1 0
Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)		-No response to 6 weeks of nonsurgical treatment or presence of progressive symptoms <u>Exclusion Criteria</u> : -Cervical spinal condition requiring surgical treatment other than symptomatic cervical disc disease at the involved level(s) -Has received drugs which may interfere with metabolism within 2 weeks prior to surgery (e.g. steroids, methotrexate) -Has osteopenia, osteoporosis, or osteomalacia to a degree that anterior plating would be contraindicated -Substance abuser -Previous exposure to BMP	the Cornerstone- SR fibular allograft with ATLANTIS Anterior Cervical Plate System B. Cervical discectomy and anterior implantation of autogenous iliac crest bone graft placed inside the Cornerstone-SR fibular allograft with ATLANTIS Anterior Cervical Plate System	Withdrawn=0 Lost to Followup: BMP=3; Control=1 but absent for most 24 month outcomes: BMP=4; Control=3 Fewer patients included in fusion outcome	None	10.0	0	5.6	0	14.3

Author Year Country Trial # or Name	
Baskin, 2003* USA	Control Comb
Conerstone ACDF-Pilot study	53.3 40.0 0
Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)	6.7

Author Year Country Trial # or Name	Nonmedical History Baseline Character from FDA data sum	istics						Medical history Baseline characteristics from FDA data summary						
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb
Conerstone	N=	10	8	18	8	7	15							
ACDF-Pilot study	Age:	46.3	57.5	51.3	43.7	51.1	47.1	Prior Tobacco:	40.0	12.5	27.8	50.0	42.9	46.7
	Height:	67.9	66.8	67.4	67.9	68.1	68.0	Alcohol use:	50.0	25.0	38.9	37.5	28.6	33.3
Cornerstone	Weight:	165.3	175.0	169.6	176.3	170.7	173.7	Prior Back Surgery:	10.0	0	5.6	0	0	0
Allograft Ring and	% Male:	60.0	25.0	44.4	50.0	42.9	46.7	Diabetic:	0	0	0	0	0	0
the ATLANTIS	% White:	80.0	100.0	88.9	100.0	100.0	100.0	% not taking Non Narcotic:	NR	NR	NR	NR	NR	NR
Anterior Cervical	% Married:	70.0	50.0	61.1	87.5	85.7	86.7	% not taking Weak Narcotic:	NR	NR	NR	NR	NR	NR
Plate	% ED>HS:	50.0	62.5	55.6	50.0	28.6	40.0	% not taking Strong Narcotic:	NR	NR	NR	NR	NR	NR
	% Working:	80.0	50.0	66.7	100.0	14.3	60.0	% not taking Muscle Relaxer:	NR	NR	NR	NR	NR	NR
(Study 7)	% Worker's Comp:	0	0	0	0	0	0	5						
	% Spinal Litigation:	0	12.5	5.6	0	0	0	Characteristics of Degenerative Disc Disease:						
								%Instability:	NR	NR	NR	NR	NR	NR
								%Osteophytes:	NR	NR	NR	NR	NR	NR
								%⊥Disc Height:	NR	NR	NR	NR	NR	NR
								%Thick Ligaments:	NR	NR	NR	NR	NR	NR
								%Disc Herniation:	NR	NR	NR	NR	NR	NR
								%Facet Joint Degeneration:	NR	NR	NR	NR	NR	NR
								$\% \ge 3$ of above:	NR	NR	NR	NR	NR	NR

Author Year Country Trial # or Name	ODI Results from FDA data summary	ODI results from published study
Baskin, 2003* USA		
Conerstone ACDF-Pilot study	Not Relevant	Not Relevant
Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)		

Author

Year Country

Trial # or Name	SF-36 results from FDA data summarv
I I I al # UI INallie	SF-30 results in one FDA data summary

		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP	Control
Baskin, 2003* USA Conerstone ACDF-Pilot study Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)	SF-36 MCS: Preop 6 weeks 3 months 6 months 12 months 24 months 48 months 72 months SF-36 PCS: Preop 6 weeks 3 months 6 months 12 months 24 months 48 months 72 months							SF-36 MCS: Preop 6 weeks 3 months 6 months 12 months 24 months 48 months 72 months SF-36 PCS: Preop 6 weeks 3 months 6 months 12 months 24 months 48 months 72 months	BMP 32.4 (16) 51.4 (18) 48.4 (16) 54.9 (15) 54.1 (15) 54.6 (14) NR NR 31.7 (16) 40.4 (18) 44.4 (16) 45.6 (15) 45.7 (15) 48.6 (14) NR NR	Control 42.5 (15) 52.6 (15) 47.6 (15) 54.4 (12) 50.4 (14) 49.0 (12) NR NR 32.6 (15) 39.6 (15) 44.6 (15) 46.5 (12) 48.7 (14) 48.7 (12) NR NR
				NR NR						

SF-36 results from published study

Author Year Country Trial # or Name	Back pain results from FDA data summary	Back pain results from published study
Baskin, 2003* USA		
Conerstone ACDF-Pilot study	Not Relevant	Not Relevant
Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)		

Author Year Country Trial # or Name	Leg pain results from FDA data summary	Leg pain results from published study
Baskin, 2003* USA		
Conerstone ACDF-Pilot study	Not Relevant	Not Relevant
Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)		

Author Year Country

Country Trial # or Name	Neck disability index from FDA summary							Neck disability index from published study		
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP	Control
Conerstone	NDI Scores (n):							NDI Scores (n):		
ACDF-Pilot study	Preop	57.0 (10)	66.8 (8)	61.3 (18)	49.1 (8)	62.6 (7)	55.4 (15)	Preop	61.3 (18)	55.4 (15)
ACDI -Filot Study	6 weeks	23.8 (10)	24.0 (8)	23.9 (18)	21.5 (8)	24.3 (7)	22.8 (15)	6 weeks	23.9 (17)	22.8 (15)
Cornerstone	3 months	23.2 (10)	18.6 (7)	21.3 (17)	16.0 (8)	28.6 (7)	21.9 (15)	3 months	21.3 (17)	21.9 (15)
Allograft Ring and	6 months	11.1 (9)	15.0 (8)	12.9 (17)	11.7 (7)	15.3 (6)	13.4 (13)	6 months	12.9 (17)	13.4 (13)
the ATLANTIS Anterior Cervical Plate	12 months	10.3 (7)	21.5 (8)	16.3 (15)	9.5 (8)	16.0 (6)	12.3 (14)	12 months	16.3 (15)	12.3 (14)
	24 months	12.3 (6)	8.5 (8)	10.1 (14)	11.1 (7)	16.0 (6)	13.4 (13)	24 months	10.1 (14)	14.5 (12)
	48 months	NR	NR	NR	NR	NR	NR	48 months	NR	NR
(Study 7)	72 months	NR	NR	NR	NR	NR	NR	72 months	NR	NR

Author Year Country Neck pain score from FDA Trial # or Name summary

I rial # or Name	summary						
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb
Conerstone	Neck Pain Scores (n):						
ACDF-Pilot study	Preop	16.3 (10)	15.9 (8)	16.1 (18)	15.0 (8)	13.4 (7)	14.3 (15)
ACDF-Pliot Study	6 weeks	6.7 (10)	3.3 (8)	5.2 (18)	7.4 (8)	6.3 (7)	6.9 (15)
Cornerstone	3 months	6.4 (10)	6.0 (7)	6.2 (17)	6.6 (8)	6.7 (7)	6.7 (15)
Allograft Ring and	6 months	3.9 (9)	5.4 (8)	4.6 (17)	4.3 (7)	3.8 (6)	4.1 (13)
the ATLANTIS	12 months	3.0 (7)	3.9 (8)	3.5 (15)	3.6 (8)	7.8 (6)	5.4 (14)
Anterior Cervical Plate	24 months	3.0 (6)	2.6 (8)	2.8 (14)	4.1 (7)	5.8 (6)	4.9 (13)
	48 months	NR	NR	NR	NR	NR	NR
(Study 7)	72 months	NR	NR	NR	NR	NR	NR

Author Year Country Trial # or Na Arm pain scores from FDA

Country Trial # or Name	Arm pain scores from FDA summary							Arm pain scores from published study		
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP	Control
Conerstone	Arm Pain Scores (n):							Arm Pain Scores (n):		
ACDF-Pilot study	Preop	17.0 (10)	17.8 (8)	17.3 (18)	12.6 (8)	10.1 (7)	11.5 (15)	Preop	17.3 (18)	11.5 (15)
ACDI -Filot Study	6 weeks	4.0 (10)	2.6 (8)	3.4 (18)	2.3 (8)	3.0 (7)	2.6 (15)	6 weeks	3.4 (18)	2.6 (15)
Cornerstone	3 months	3.8 (10)	3.3 (7)	3.6 (17)	0.9 (8)	5.3 (7)	2.9 (15)	3 months	3.6 (17)	2.9 (15)
Allograft Ring and	6 months	1.9 (9)	3.4 (8)	2.6 (17)	0.0 (7)	1.7 (6)	0.8 (13)	6 months	2.6 (17)	0.8 (13)
the ATLANTIS	12 months	2.1 (7)	3.6 (8)	2.9 (15)	0.4 (8)	3.0 (6)	1.5 (14)	12 months	2.9 (15)	1.5 (14)
Anterior Cervical	24 months	3.0 (6)	3.5 (8)	3.3 (14)	0.6 (7)	2.7 (6)	1.5 (13)	24 months	3.3 (14)	1.7 (12)
Plate	48 months	NR	NR	NR	NR	NR	NR	48 months	NR	NR
(Study 7)	72 months	NR	NR	NR	NR	NR	NR	72 months	NR	NR

Author

Year Country

Trial # or Name	Neurological Status Results from FDA data summary

Trial # or Name	Neurological Status Results fro	m FDA data	summary					Neurological results from put	lished sum	nary
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP	Control
Conerstone	% Overall Neuro Success (n):							% Overall Neuro Success (n):		
ACDF-Pilot study	6 weeks	100.0 (10)	87.5 (8)	94.4 (18)	100.0 (8)	100.0 (7)	100.0 (15)	6 weeks	94 (18)	100 (15)
ACDI -Filot Study	3 months	100.0 (10)	100.0 (8)	100.0 (18)	100.0 (8)	100.0 (7)	100.0 (15)	3 months	100 (18)	100 (15)
Cornerstone	6 months	77.8 (9)	100.0 (8)	88.2 (17)	100.0 (7)	100.0 (6)	100.0 (13)	6 months	88 (17)	100 (13)
Allograft Ring and	12 months	100.0 (7)	100.0 (8)	100.0 (15)	87.5 (8)	100.0 (6)	92.9 (14)	12 months	100 (15)	93 (14)
the ATLANTIS	24 months	100.0 (6)	100.0 (8)	100.0 (14)	100.0 (7)	100.0 (6)	100.0 (13)	24 months	100 (14)	100 (12)
Anterior Cervical	48 months	NR	NR	NR	NR	NR	NR	48 months	NR	NR
Plate (Study 7)	72 months	NR	NR	NR	NR	NR	NR	72 months	NR	NR

Author Year

Country Trial # or Name Radiologic fusion results from FDA data summary Radiologic fusion results from published study Baskin, 2003* BMP BMP BMP Control Control Control USA 2 level 1 level 2 level Comb BMP N=18 Control N=15 1 level Comb % Radiographic Fusion (n): % Radiographic Fusion (n): Conerstone 100.0 (9) 100.0 (6) 100.0 (15) 100.0 (7) 100.0 (6) 100.0 (13) 6 months 100 (13) 6 months 100 (15) ACDF-Pilot study 12 months 100.0 (6) 100.0 (8) 100.0 (14) 100.0 (7) 100.0 (6) 100.0 (13) 12 months 100 (14) 100 (12) 100.0 (4) 100.0 (7) 100.0 (11) 100.0 (6) 100.0 (5) 100.0 (11) 24 months 100 (10) 100 (10) 24 months Cornerstone Allograft Ring and 48 months NR NR NR NR NR NR NR 48 months 72 months NR NR NR NR NR NR 72 months NR the ATLANTIS Anterior Cervical No significant differences Plate between groups. (Study 7)

Author Year Country Trial # or Name	Overall success FDA sun	nmary data						Overall success in published study
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb	
ACDF-Pilot study	% Overall Success (n): 6 months 12 months 24 months 48 months 72 months	77.8 (9) 100.0 (6) NR NR NR	83.3 (6) 87.5 (8) NR NR NR	80.0 (15) 92.9 (14) NR NR NR	85.7 (7) 71.4 (7) NR NR NR	100.0 (6) 100.0 (6) NR NR NR	92.3 (13) 84.6 (13) NR NR NR	Not Reported

Author Year Country <u>Trial # or Name</u> Additional surgeries from FDA summary data Baskin, 2003*

Additional surgeries in published study

USA		BMP	Control		BMP	Control
Conerstone	Number of patients with surgeries:			Number of patients with surgeries:		
ACDF-Pilot study	Revisions	0	0	Revisions	0	0
ACDF-Pliot study	Removals	1	0	Removals	1	0
Cornerstone	Supplemental Fixations	0	0	Supplemental Fixations	0	0
Allograft Ring and	Reoperations	1	0	Reoperations	0	0
he ATLANTIS Anterior Cervical Plate Study 7)				One patient in the BMP groups requestion of the surgical intervention at a segment a the original 2-level fusion, unrelated original procedure, requiring removancervical plate.	idjacent to I to the	

Author Year Country Trial # or Name	Employed postoperatively FDA d	ata summary		Employed postoperatively from published study	
Baskin, 2003* USA					
USA		BMP	Control		
Conerstone ACDF-Pilot study	% Working (n) Preop	66.7 (18)	60.0 (15)	Not reported	
Cornerstone	6 weeks 3 months	38.9 (18) 55.6 (18)	40.0 (15) 60.0 (15)		
Allograft Ring and the ATLANTIS	6 months 12 months	64.7 (18) 66.7 (17)	69.2 (13) 71.4 (14)		
Anterior Cervical Plate (Study 7)	24 months 48 months 72 months	57.1 (14) NR NR	69.2 (13) NR NR		

Author Year										
Country Trial # or Name	Hospitalization days							Hospitalization days from p	ublished study	
Baskin, 2003* USA		BMP 1 level	BMP 2 level	BMP Comb	Control 1 level	Control 2 level	Control Comb		BMP	Control
Conerstone ACDF-Pilot study Cornerstone Allograft Ring and the ATLANTIS Anterior Cervical Plate (Study 7)	Hospitalization days Not a significant difference. One patient in control group stayed 56 days. Maximum stay in BMP group was 7 days.	1.2 (10)	1.8 (8)	1.4 (18)	1.0 (8)	1.1 (7)	1.1 (15)	Hospitalization days	1.4	1.1

Author

Year

Country Trial # or Name FDA adverse events

Trial # or Name	FDA adverse events			Selected adverse events from case histories		istories	Adverse events from pu	blished stu	ıdy
Baskin, 2003*									
USA		BMP	Control		BMP	Control		BMP	Control
Conerstone	Adverse Events* (n):			Patients Reporting Event (n):			There were no device-	NR	NR
ACDF-Pilot study	Anatomic Difficulty	NR	NR	Wound Infection			related adverse events.		
ACDI -Filot Study	Back and/or Leg Pain	4	2	Wound Dehiscence	2	0			
Cornerstone	Cancer	NR	NR	Urinary Retention	0	0			
Allograft Ring and	Cardiovascular	3	1	Cancer	0	1			
the ATLANTIS	Death	1	0	Dysphagia	0	0			
Anterior Cervical	Dural Injury	NR	NR		1	0			
Plate	Gastrointestinal	5	0						
(Study 7)	Implant Displaced	NR	NR						
(Study 7)	Infection	4	0						
	Malpositioned Implant	NR	NR						
	Neurological	8	2						
	Non-Union	NR	NR						
	Other	7	1						
	Other Pain	2	1						
	Respiratory	1	0						
	Retrograde Ejaculation	NR	NR						
	Spinal Event	3	1						
	Subsidence	NR	NR						
	Trauma	3	1						
	Urogenital	2	1						
	Vascular Intra-Op	NR	NR						
	Vertebral Fracture	NR	NR						
	Dysphagia/dysphonia	2	2						
	Headache	0	2						
	Neck/Arm Pain	1	1						
	Total Events	46	15						

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Boden, 2000 USA	ALIF (Randomized pilot trial)	Inclusion Criteria: -Discogenic back pain -≤ Grade 1 spondylolisthesis	A. BMP-2/ACS/TIF (1.5mg/ml of BMP- 2) in an open ALIF			ВМР	Control
1-Infuse-LT- Cage_Pilot (Study 1)	24 months	-S Grade T spondyloitstresis -Single-level DDD from L2-S1 -18-65 years old -No response to 6 months of conservative treatment <u>Exclusion Criteria:</u> -Other spine disease or surgery at level of surgery -Requires steroids or NSAIDs ->40% over ideal weight -On worker's comp or has unresolved spinal litigation -Has psychogenic magnification of pain -Tobacco user at time of surgery -Substance abuser -Previous exposure to BMP	 2) In an open ALIF surgical approach (However, 4 patients had laparoscopic surgery) B. TIF device filled with autogenous bone taken from the patient's iliac crest, which will also be implanted using an open ALIF surgical approach 	14 patients randomized 3:1, 11 in BMP group (of which 7 had an open procedure and 4 had a laparoscopic procedure) and 3 in the control group (all had open procedure) 14 patients analyzed (11 in the BMP group and 3 in the control group) Withdrawn: NR Lost to follow-up:0	% Brace: % Corset: % Other:	72.7 27.3 0	66.7 0 33.3

Author Year Country Trial # or Name Boden, 2000 USA

1-Infuse-LT-Cage_Pilot

(Study 1)

Author Year Country Trial # or Name	Nonmedical His Baseline Charac from FDA data s	cteristics		Medical history Baseline characteristics from FDA data summary	Baseline characteristics			
Boden, 2000 USA		BMP	Control		BMP	Control		
I-Infuse-LT-	Age:	42.5	40.2	Prior Tobacco:	9.1	33.3		
Cage_Pilot	Height:	68.5	71.3	Alcohol use:	36.4	33.3		
Jaye_Filot	Weight:	166.4	211.3	Pain Meds:	63.6	100		
Study 1)	% Male:	45.5	66.7	Prior Back Surgery:	45.5	0		
Study I)	% White:	100	66.7	Diabetic:	0	0		
	% Married:	54.6	66.7	% not taking Non Narcotic:	81.8	66.7		
	% Ed > HS:	54.5	66.7	% not taking Weak Narcotic:	63.6	66.7		
	% Working:	54.5	66.7	% not taking Strong Narcotic:	90.9	100		
	0			% not taking Muscle Relaxer:	72.7	33.3		

Author Year

Country

-	
Trial # or Name	ODI Results from FDA data summary

Trial # or Name	ODI Results from FDA	data summary			ODI results from publ	lished study		
Boden, 2000 USA		BMP	BMP					
004		open	lap	Control		BMP	Control	
1-Infuse-LT-	ODI Scores (n):				ODI Scores:			
Cage_Pilot	Preop:	41.1 (7)	34.9 (4)	34.7 (3)	Pre-operation	38.9	34.7	
Caye_Filot	6 weeks:	53.0 (2)		72.0 (1)	3 months	29.8	42.7	
(Study 1)	3 months:	38.0 (7)	15.4 (4)	42.7 (3)	6 months	26.9	28.0	
(Study I)	6 months:	30.9 (7)	19.9 (4)	28.0 (3)	12 months	17.7	27.3	
	12 months:	23.1 (7)	8.1 (4)	27.3 (3)	24 months	13.5	20.0	
	24 months:	17.0 (7)	7.2 (4)	8.0 (2)				
		.,			ODI scores for the BMI	⊃ group		
					Sector de la deservación de la seconda de			

included those who underwent both an open and a laparoscopic procedure.

Author

Year Country

Trial # or Name SF-36 results from FDA data summary

oden, 2000 SA		BMP -						
0/1		open	BMP - lap	Control		BMP	Control	
Infuse-LT-	SF-36 Physical				SF-36 Physical			
age_Pilot	Function:				Function:			
ugo_i liot	Preop	46.4 (7)	51.3 (4)	30.0 (3)	Preop	48.2	30.0	
Study 1)	6 weeks	47.5 (2)		0.0 (1)	3 months	57.7	43.3	
iddy i)	3 months	52.9 (7)	66.3 (4)	43.3 (3)	6 months	65.5	56.7	
	6 months	59.3 (7)	76.3 (4)	56.7 (3)	12 months	75.0	66.7	
	12 months	68.6 (7)	86.6 (4)	66.7 (3)	24 months	85.9	66.7	
	24 months	80.2 (7)	95.8 (4)	91.7 (2)				
					SF-36 Pain Index:			
	SF-36 Pain				Preop	25.9	17.7	
	Index:				3 months	47.5	37.7	
	Preop	25.7 (7)	26.3 (4)	17.7 (3)	6 months	53.0	57.3	
	6 weeks	16.5 (2)		0.0 (1)	12 months	51.6	45.7	
	3 months	43.6 (7)	54.3 (4)	37.7 (3)	24 months	69.4	44.7	
	6 months	54.4 (7)	50.5 (4)	57.3 (3)				
	12 months	41.6 (7)	69.3 (4)	45.7 (3)	SF-36 Mental Heal	th:		
	24 months	69.6 (7)	69.0 (4)	51.2 (2)	Preop	61.1	58.7	
			. ,		3 months	74.5	70.7	
	SF-36 Mental				6 months	64.2	72.0	
	Health:				12 months	68.8	65.3	
	Preop	55.4 (7)	71.0 (4)	58.7 (3)	24 months	76.7	72.0	
	6 weeks	86.0 (2)		88.0 (1)				
	3 months	69.7 (7)	83.0 (4)	70.7 (3)	SF-36 scores for the	ne		
	6 months	57.4 (7)	76.0 (4)	72.0 (3)	BMP group include	ed		
	12 months	57.9 (7)	88.0 (4)	65.3 (3)	those who underwa	ent		
	24 months	74.3 (7)	81.0 (4)	78.0 (2)	an open and a			
		. ,	. ,		laparoscopic proce	dure.		
	Data at 6 weeks							
	was not							
	required. MCS							
	and PCS results							
	were given but							
	not reported							
	here.							

SF-36 results from published study

Author Year Country Trial # or Name Boden, 2000 USA	Back pain results from FDA data summary	Back pain results from published study
1-Infuse-LT- Cage_Pilot	Not reported	Not reported
(Study 1)		

Author Year Country Trial # or Name Boden, 2000 USA	Leg pain results from FDA data summary	Leg pain results from published study	
1-Infuse-LT- Cage_Pilot	Not reported	Not reported	
(Study 1)			

Author Year Country Trial # or Name Boden, 2000 USA	Neck disability index from FDA summary	Neck disability index from published study
1-Infuse-LT- Cage_Pilot	Not Relevant	Not Relevant
(Study 1)		

Author Year	
Country	Neck pain score from FDA
Trial # or Name	summary
Boden, 2000 USA	
1-Infuse-LT- Cage_Pilot	Not Relevant
(Study 1)	

Author Year Country Trial # or Name Boden, 2000 USA	Arm pain scores from FDA summary	Arm pain scores from published study
1-Infuse-LT- Cage_Pilot	Not Relevant	Not Relevant
(Study 1)		

Author

Year Country

Trial # or Name Neurological Status Results from FDA data summary

al # or Name	Neurological Status Results from FDA data summary				Neurological results from published summary	
Boden, 2000 JSA		BMP	BMP			
		open	lap	Control		
e-LT-					Mean scores for all neurologic parameters were ≥ preop values at 3, 6, 12, and 24	
ge_Pilot	Sensory Function:				months with the exception of one patient who was normal to slightly hyporeflexic	
	Preop	98.8 (7)	93.8 (4)	97.2 (3)	24 months.	
tudy 1)	6 weeks	100.0 (4)	NR	91.7 (2)		
	3 months	100.0 (7)	100.0 (4)	100.0 (3)		
	6 months	100.0 (7)	100.0 (4)	100.0 (3)		
	12 months	100.0 (7)	100.0 (4)	100.0 (3)		
	24 months	100.0 (7)	100.0 (4)	100.0 (2)		
	Straight Leg Raise:					
	Preop	92.9 (7)	100.0 (4)	75.0 (3)		
	6 weeks	100.0 (4)	NR	100.0 (2)		
	3 months	96.4 (7)	100.0 (4)	100.0 (3)		
	6 months	96.4 (7)	100.0 (4)	83.3 (3)		
	12 months	100.0 (7)	100.0 (4)	100.0 (3)		
	24 months	71.9 (7)	100.0 (4)	66.7 (3)		
	Reflexes:					
	Preop	85.7 (7)	93.8 (4)	66.7 (3)		
	6 weeks	81.3 (4)	NR	100.0 (2)		
	3 months	85.7 (7)	100.0 (4)	91.7 (3)		
	6 months	85.7 (7)	100.0 (4)	66.7 (3)		
	12 months	92.9 (7)	100.0 (4)	66.7 (3)		
	24 months	71.4 (7)	100.0 (4)	100.0 (2)		
	Neurological Status: Motor					
	Function mean score was 100.0					
	for all groups at all time periods.					

Author Year Country Trial # or Name Radiologic fusion results from FDA data summary

rial # or Name	Radiologic fusion results from FDA data	summary			Radiologic fusion results from published study
oden, 2000		BMP	BMP		
SA		open	lap	Control	
-Infuse-LT-	Radiographic Fusion:				3 months post-operation: 10 of 11 (90.9%) patients in the BMP group had
age_Pilot	Angulation Stability <5degrees:				solid fusions compared with 2 of 3 (66.7%) of control group. 11 of 11 in th
age_Fliot	3 months	1/1	4/4	1/1	BMP groups were fused by 6 months and thereafter; at 6, 12, and 24 mor
Study 1)	6 months	7/7	4/4	2/3	2 of 3 control patients were fused.
itudy 1)	12 months	7/7	4/4	3/3	·
	24 months	7/7	4/4	3/3	
	Number of lines covering 50% of implant 1:				
	3 months	4/4	1/1	1/1	
	6 months	7/7	4/4	2/3	
	12 months	7/7	4/4	3/3	
	24 months	7/7	4/4	3/3	
	Number of lines covering 50% of implant 2:				
	3 months	4/4	1/1	1/1	
	6 months	7/7	4/4	2/3	
	12 months	7/7	4/4	2/3	
	24 months	7/7	4/4	3/3	
	Fused:				
	3 month radiograph	0/0	1/1	1/1	
	6 month radiograph	7/7	4/4	2/3	
	12 month radiograph	7/7	4/4	3/3	
	24 month radiograph	7/7	4/4	2/3	
	6 month CT, (number of 3 radiologists out o	f			
	3)	11/11 (3)		2/3 (2), 3/3 (1)	
	12 month CT	11/11 (3)		2/3 (1), 3/3 (2)	
	24 month CT	11/11 (3)		2/3 (3)	

Author Year Country	,		
Trial # o	r Name	Overall success FDA summary data	Overall success in published study
Boden, 2 USA	2000		
1-Infuse- Cage_Pi		3 months post-operation: 10 of 11 (90.9%) patients in the BMP group had solid fusions compared with 2 of 3 (66.7%) of control group. 11 of 11 in the BMP groups were fused by 6 months and thereafter; at 6, 12, and 24 months 2 of 3 control patients were fused.	Not Reported
(Study 1))		

Author Year				
Country				
Trial # or Name	Additional surgeries from FDA summary data			Additional surgeries in published study
Boden, 2000				
USA		BMP	Control	
1-Infuse-LT-	Number of patients with surgeries:			Not reported
Cage_Pilot	Revisions	0	0	
Cage_1 liot	Removals	0	0	
(Study 1)	Supplemental Fixations	0	1	
	Reoperations	0	0	

Author

Year

Country

Trial # or Name Employed postoperatively FDA data summary Boden 2000

Employed postoperatively from published study

2000		BMP - open	BMP - lap	Control		BMP	Control
		2 0001	2 iap				
se-LT-	%Working Preop	71.4	25.0	66.7	% Working preop	54.5	66.7
Pilot	%Working 6 weeks	14.3	25.0	0	% Working 3 months	54.5	0
h. 1)	%Working 3 months	57.1	50.0	0	% Working 6 months	72.7	66.7
y 1)	%Working 6 months	71.4	75.0	66.7	% Working 12 months	81.8	66.7
	%Working 12 months	57.1	100.0	66.7	% Working at 24 months	81.8	66.7
	%Working 24 months	71.4	100.0	66.7	5		
	ő				Those working in the BMP group included those		
	"At 24 months following surgery, 9 of 11				who underwent an open and a laparoscopic		
	(81.8%) investigational patients had returned				procedure.		
	to work. Of the						
	two investigational patients not working at 24						
	months, one was not working prior to						
	surgery. The other patient had been working						
	preoperatively and had returned to work at						
	both the 3and 6 month visits. However, at the	9					
	12 and 24 month visits, the patient was						
	incarcerated and was, therefore, unable to						
	-,						

work."

Author						
Year						
Country						
Trial # or Name	Hospitalization days			Hospitalization days from public	shed study	
Boden, 2000						
USA		BMP	Control		BMP	Control
1-Infuse-LT- Cage_Pilot	Hospitalization Days	1.4	1.1	Hospitalization Days	2	3.3
(Study 1)						

Author

Year

Country Trial # or Name FDA adverse events

rial # or Name	FDA adverse events			Selected adverse events	from case h	nistories	Adverse events from p	oublished st	udy
oden, 2000 ISA		BMP	Control		BMP	Control		BMP	Control
-Infuse-LT-	Event:			Patients Reporting Event (r	า):		Event:		
Cage_Pilot	lleus	1	1	Wound Infection	0	0	lleus	1	1
age_Fliot	Wound dehiscence	1	0	Wound Dehiscence	1	0	Wound dehiscence	1	0
Study 1)	Back Pain	2	0	Urinary Retention	0	1	Low Back Pain	1	0
	Postop Trauma	4	0	Retrograde Ejaculation	0	0	Urinary Retention	0	1
	Back Strain	1	0	Cancer	0	0	Postop Trauma	3	0
	Endcap Event	3	2				Back and leg pain	1	0
	Urinary Retention	0	1				0.		
	Fracture	2	0						
	Pseudoarthrosis	1	1						
	Shortness of Breath	1	0						
	Numbness/SLE	1	0						
	Drug Use	1	0						
	Facet Joint Pain	1	0						
	Rectal Bleeding/ Hemorrhoids	1	1						
	Removals	0	0						
	Revisions	0	0						
	Reoperations	0	0						
	Supplemental Fixation	0	1						

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions			
Boden, 2002 USA	PLF (Prospective	Inclusion Criteria: -Discogenic back pain	A. Bilateral posterolateral			BMP Only	BMP/ TSRH	Control
rhBMP-2/BCP US Pilot RCT (Study 12)	randomized trial) 24 months	 -Preoperative Oswestry score ≥ 30 -≤ Grade 1 spondylolisthesis -Single-level DDD from L1-S1 -At least 18 years of age -No response to 6 months of conservative treatment <u>Exclusion Criteria</u>: -Previous fusion surgery at same level -Requires medications that might interfere with fusion or bone metabolism -Has osteopenia, osteoporosis, or osteomalacia -Weight > 40% over ideal for age/height -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser -Previous exposure to BMP 	implantation of the rhBMP-2/BCP device B. Bilateral posterolateral implantation of the rhBMP- 2/BCP/TSRH Spinal System C. Bilateral posterolateral implantation of autogenous bone harvested from the iliac crest with the TSRH Spinal System	Number Randomized: 27 (BMP=22, Control=5) Number Analyzed: BMP=18 to 22, Control=4 to 5 Number Withdrawn: 2 were excluded from analysis Number Lost to follow-up: None	% Low Profile Brace: % High Profile Brace: % Corset: % Other:	27.3	36.4 0.0 36.4 27.3	40.0 0.0 20.0 40.0

Author Year Country Trial # or Name Boden, 2002 USA

rhBMP-2/BCP US Pilot RCT

(Study 12)

Year Country Trial # or Name	Nonmedical History Baseline Character from FDA data sum	istics			Medical history Baseline characteristics from FDA data summary	Baseline characteristics				
Boden, 2002 USA		BMP On	BMP/ Ily TSRH	Control		BMP On	BMP/ Ily TSRH	Control		
rhBMP-2/BCP US	Age	50.1	57.6	52.9	Prior Tobacco:	18.2	0.0	20.0		
Pilot RCT	Height	67.7	66.0	66.8	Alcohol use:	27.3	54.5	40.0		
	Weight	185.2	173.6	162.2	Prior Back Surgery:	18.2	27.3	0.0		
(Study 12)	% Male	54.5	27.3	40.0	Diabetic:	9.1	0.0	40.0		
%	% White	90.9	90.9	100.0	% not taking Non Narcotic:	54.5	27.3	60.0		
	% Married	81.8	90.9	60.0	% not taking Weak Narcotic:	72.7	72.7	60.0		
	% ED>HS*	80.0	100.0	40.0	% not taking Strong Narcotic:	100.0	72.7	100.0		
	% Working				% not taking Muscle Relaxer:	90.9	90.9	80.0		
	% Worker's Comp	18.2	9.1	20.0						
	% Spinal Litigation	0.0	9.1	0.0	Characteristics of Degenerative					
					Disc Disease:					
	*p=0.021				%Instability:	NR	NR	NR		
					%Osteophytes:	NR	NR	NR		
					%↓Disc Height:	NR	NR	NR		
					%Thick Ligaments:	NR	NR	NR		
					%Disc Herniation:	NR	NR	NR		
					%Facet Joint Degeneration:	NR	NR	NR		
					% ≥ 3 of above:	NR	NR	NR		

Author	
Year	
Country	
Trial # or Name	ODI Results from FDA data summary

USA		BMP Only	BMP/TSRH	Control		BMP Only	BMP/TSRH	Control
rhBMP-2/BCP US	ODI Scores (n):				ODI Scores (n):			
Pilot RCT	Preop	39.8 (11)	47.9 (11)	54.5 (5)	Preop			
	6 weeks	21.6 (11)	44.8 (11)	43.0 (5)	6 weeks	-17.6		
(Study 12)	3 months	18.7 (10)	30.9 (11)	39.6 (5)	3 months		-17.0	
(Olddy 12)	6 months	18.1 (10)	28.7 (10)	37.1 (5)	6 months			-17.3
	12 months	15.6 (10)	33.7 (10)	38.9 (5)	12 months			
	24 months	13.1 (8)	36.8 (10)	27.0 (4)	24 months			

Only improvements from baseline given; no difference between groups

ODI results from published study

Values provided here represent significant improvement from baseline

Author

Year Country

Trial # or Name	SF-36 results from FDA data summary	
Boden, 2002 USA	BMP/	
USA	BMP Only TSRH	Control

Boden, 2002 USA			BMP/				BMP/	
00/1		BMP Only	TSRH	Control		BMP Only	TSRH	Control
rhBMP-2/BCP US	SF-36 MCS:				SF-36 MCS:			
Pilot RCT	Preop	43.7 (11)	38.7 (11)	49.9 (5)	Preop			
	6 weeks	53.4 (11)	42.0 (11)	52.0 (5)	6 weeks			
Study 12)	3 months	54.9 (10)	50.5 (11)	49.1 (5)	3 months			
51449 12)	6 months	55.8 (9)	55.8 (9)	49.1 (5)	6 months			
	12 months	51.3 (10)	49.8 (10)	48.0 (5)	12 months			
	24 months	53.6 (8)	50.4 (9)	53.8 (4)	24 months			
	SF-36 PCS:				SF-36 PCS:			
	Preop	32.9 (11)	29.1 (11)	25.5 (5)	Preop			
	6 weeks	34.4 (11)	31.1 (11)	26.4 (5)	6 weeks			
	3 months	41.7 (10)	29.2 (11)	29.3 (5)	3 months	9.1		
	6 months	44.4 (9)	35.6 (10)	28.0 (5)	6 months		6.2	
	12 months	46.1 (10)	34.6 (10)	27.9 (5)	12 months			
	24 months	48.9 (8)	33.4 (9)	32.9 (4)	24 months			
					C			
					Scores represent			
					significant			
					improvements from			
					baseline; no difference	S		
					in improvement from			
					baseline between			
					groups.			

SF-36 results from published study

rial # or Name	Back pain results from	FDA data sumr	nary		Back pain results from published study					
3oden, 2002 JSA		BMP Only	BMP/TSRH	Control		BMP Only	BMP/TSRH	Control		
hBMP-2/BCP US	Back Pain Scores (n)				Decrease in back pain at the most	(-10.4)	(-5.1)	(-6.2)		
Pilot RCT	Preop	13.2 (11)	15.8 (11)	16.8 (5)	recent followup assessment, as					
	6 weeks	4.8 (11)	10.5 (11)	9.4 (5)	compared with preoperative values was					
	3 months	4.1 (10)	7.9 (11)	10.6 (5)	significant for each group and the					
Study 12)	6 months	5.0 (10)	9.2 (10)	11.6 (5)	lowest mean back pain score was in the)				
	12 months	4.3 (10)	9.2 (10)	13.6 (5)	BMP only group, mean=2.9. The					
	24 months	4.9 (8)	12.2 (10)	9.3 (4)	differences among the groups was					
					statistically significant (p=0.025) (but					
					not sure if this refers to the mean being					
					different or the degree of improvement					
					from baseline being different)					

No differences in improvement from baseline between groups.

outhor /ear Country /rial # or Name	Leg pain results from	FDA data summ	ary		Leg pain results from published study		
oden, 2002 ISA		BMP Only	BMP/TSRH	Control	BMP Only	BMP/TSRH	Control
BMP-2/BCP US ilot RCT	Leg Pain Scores (n) Preop 6 weeks	13.4 (11) 4.5 (11)	12.2 (11) 8.4 (11)	11.8 (5) 4.6 (5)	Decrease at most recent follow- (-9.9) up; between-group differences, p=0.042	NR	NR
Study 12)	3 months 6 months 12 months 24 months	4.2 (10) 7.5 (10) 4.5 (10) 6.6 (8)	8.0 (11) 10.7 (10) 8.0 (10) 8.0 (10)	9.2 (5) 9.0 (5) 9.8 (5) 7.0 (4)			

No differences in improvement in leg pain between groups.

Author Year		
Country	Neck disability index	Neck disability index
Trial # or Name	from FDA summary	from published study
Boden, 2002		
USA		
rhBMP-2/BCP US	Not Relevant	Not Relevant
Pilot RCT		
(Study 12)		

 Author

 Year

 Country
 Neck pain score from FDA

 Trial # or Name
 summary

 Boden, 2002
 USA

 rhBMP-2/BCP US
 Not Relevant

 Pilot RCT
 Not Relevant

(Study 12)

Author Year Country Trial # or Name Boden, 2002 USA	Arm pain scores from FDA summary	Arm pain scores from published study
rhBMP-2/BCP US Pilot RCT	Not Relevant	Not Relevant
(Study 12)		

Author Year Country

Trial # or Name	Neurological Status Results fi	rom FDA data	summary		Neurological results from published summary					
Boden, 2002 USA			BMP/							
USA		BMP Only	TSRH	Control		BMP Only	TSRH	Control		
rhBMP-2/BCP US	%Overall Neuro Success (n):				%Overall Neuro Success (n):					
Pilot RCT	6 weeks	100 (11)	100 (11)	100 (5)	6 weeks					
	3 months	90.9 (11)	100 (11)	100 (5)	3 months	NR	NR	NR		
(Study 12)	6 months	100 (11)	100 (10)	100 (5)	6 months					
(Study 12)	12 months	100 (10)	90.0 (10)	100 (5)	12 months					
	24 months	87.5 (8)	100 (10)	100 (4)	24 months					

Author

Year Country Trial # or Name	Radiologic fusion results from FDA	A data summary			Radiologic fusion results fr	om published s	study	
Boden, 2002 USA		BMP Only	BMP/ TSRH	Control		BMP Only	BMP/ TSRH	Control
hBMP-2/BCP US Pilot RCT	% Radiographic Fusion (n): 6 months 12 months	88.9 (9) 80.0 (10)	100 (9) 100 (10)	40.0 (5) 40.0 (5)	% Radiographic Fusion (n): 6 months 12 months			
Study 12)	24 months	70.0 (10)	90.9 (11)	100 (3)	24 months	100 (9)	100 (11)	40 (5)

Author Year Country					
Trial # or Name	Overall success FDA sumn	nary data			Overall success in published study
Boden, 2002 USA		BMP Only	BMP/ TSRH	Control	
rhBMP-2/BCP US Pilot RCT (Study 12)	% Overall Success (based on success from ODI, Neurological status, Fusion, Second Surgery Failure, Serious Associated Adverse Events) (n)				Not Reported
	6 months 12 months 24 months	70.0 (10) 70.0 (10) 60.0 (10)	55.6 (9) 40.0 (10) 45.5 (11)	20.0 (5) 20.0 (5) 66.7 (3)	

Author Year Country

Trial # or Name Additional surgeries from FDA summary data

Trial # or Name	Additional surgeries from FDA summary data				Additional surgeries in published study			
Boden, 2002 USA			BMP/				BMP/	
USA		BMP Only	TSRH	Control		BMP Only	TSRH	Control
hBMP-2/BCP US	Number of patients with surgeries:				Number of patients with surgeries:			
ilot RCT Re	Revisions	2	0	0	Revisions	2	1	0
	Removals	0	1	0	Removals	0	1	0
Study 12)	Supplemental Fixations	0	0	0	Supplemental Fixations	0	0	0
(Study 12)	Reoperations	0	0	0	Reoperations	1	1	0
					One patient in the BMP/TSRH group had a revision decompression involving removal of the internal fixation and is counted as 1 revision and 1 removal. Two patients, one in the BMP Only group and one in the			

BMP/TSRH group had evacuation of hematomas in the immediate post operative

period, which are counted as reoperations.

Author

Year									
Country									
Trial # or Name	Employed postoperatively FI	DA data summary			Employed postoperatively from published study				
Boden, 2002									
USA		BMP Only	BMP/TSRH	Control					
	% Working (n)				% Working (n)	NR	NR		
	Preop	54.5 (11)	54.5 (11)	0 (5)	Preop				
	6 weeks	9.1 (11)	0 (11)	0 (5)	6 weeks				
Study 12)	3 months	9.1 (11)	18.2 (11)	0 (5)	3 months				
Study 12)	6 months	40.0 (10)	30.0 (10)	20.0 (5)	6 months				
	12 months	40.0 (10)	30.0 (10)	20.0 (5)	12 months				
	24 months	50.0 (8)	40.0 (10)	25.0 (4)	24 months				

Author							
Year							
Country							
Trial # or Name Hospitalization days				Hospitalization days from publis	hed study		
Boden, 2002		BMP/				BMP/	
USA	BMP Only	TSRH	Control		BMP Only	TSRH	Control
rhBMP-2/BCP US Hospitalization Days	4	3.3	4.4	Hospitalization Days	4	3.3	4.4
Pilot RCT							
(Study 12)							

Author

Year Countr

Trial # or Name	FDA adverse events				Selected adverse events fro	Selected adverse events from case histories					Adverse events from published study			
Boden, 2002 USA		BMP Only	BMP/ TSRH	Control		BMP Only	BMP/ TSRH	Control		BMP Only	BMP/ TSRH	Contro		
hBMP-2/BCP US	Patients Reporting Event (n):		-		Patients Reporting Event (n):		_		Patients Reporting Event		_			
Pilot RCT	Anatomic Difficulty	0	0	0	Wound Infection	1	0	0	(n):					
	Back and/or Leg Pain	3	5	0	Wound Dehiscence	0	0	0	Anatomic Difficulty					
(Ctudy 10)	Cancer	0	0	0	Urinary Retention	0	0	1	Back and/or Leg Pain	1	1			
(Study 12)	Cardiovascular	0	1	0	Retrograde Ejaculation	0	0	0	Cancer					
	Death	0	0	0	Cancer	0	0	0	Cardiovascular					
	Dural Injury	0	2	0					Death					
	Dysphagia/Dysphonia	0	1	0					Dural Injury					
	Gastrointestinal	1	2	1					Dysphagia/Dysphonia					
	Graft Site Related	0	0	0					Gastrointestinal					
	Implant Displaced/ Loosened	0	0	0					Graft Site Related					
	Infection	2	0	0					Displaced/Loosened					
	Malpositioned Implant	0	0	0					Infection					
	Neurological	2	0	0					Malpositioned Implant					
	Non-Union	1	0	1					Neurological		1			
	Other	2	4	2					Non-Union					
	Other Pain	2	1	0					Other	1	1			
	Respiratory	1	0	0					Other Pain					
	Retrograde Ejaculation	0	0	0					Respiratory					
	Spinal Event	0	2	0					Retrograde Ejaculation					
	Subsidence	0	0	0					Spinal Event					
	Trauma	1	1	0					Subsidence					
	Urogenital	0	0	1					Trauma					
	Vascular Intra-Op	0	0	0					Urogenital					
	Vertebral Fracture	0	0	0					Vascular Intra-Op Vertebral Fracture					

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Burkus, 2002 USA 2-Infuse-LT- Cage_ Open_Pivotal (Study 2)	ALIF (multicenter, prospective, randomized, nonblinded, trial) 24 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score ≥ 35 -≤ Grade 1 spondylolisthesis -Single-level DDD from L4-S1 -At least 18 years of age -No response to 6 months of conservative treatment <u>Exclusion Criteria:</u> -Other fusion surgery at same level -Requires steroids or other medications that might interfere with fusion ->40% over ideal weight -Has osteopenia, osteoporosis, or osteomalacia to a degree that spinal instrumentation would be contraindicated -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser	 A. Open anterior interbody implantation of the rhBMP-2/ACS/LT device B. Open anterior interbody implantation of the LT-CAGE device filled with autogenous bone 	Randomized: Total N = 279, BMP=143, Control=136 Analyzed: BMP 125 to 143, Control 111 to 136 Failures: BMP 9 (3 additional failures after 24 months), Control 12 (2 additional failures after 24 months) Not analyzed at 24 months: BMP 6.3%, Control 8.8%	% Low Profile Brace: % High Profile Brace: % Corset: % Other	BMP 51.4 7.1 34.3 7.1	Control 51.9 3.8 35.3 9.0

Author Year Country Trial # or Name	
Burkus, 2002 USA	
2-Infuse-LT- Cage_ Open_Pivotal	

(Study 2)

Author Year	Nonmedical Histor	v		Medical history			
Country Baseline Characteristics			Baseline characteristics				
Trial # or Name	from FDA data sum			from FDA data summary			
Burkus, 2002							
JSA		BMP	Control		BMP	Control	
-Infuse-LT-	Age	43.3	42.3	Prior Tobacco:	32.9	36.0	
	Height	68.1	68.1	Alcohol use:	27.3	31.6	
age_	Weight	179.1	181.1	Prior Back Surgery:	37.8	40.4	
Open_Pivotal	% Male	54.5	50.0	Diabetic:	4.2	0.7	
Otrada (0)	% White	88.8	81.6	% not taking Non Narcotic:	44.1	44.9	
Study 2)	% Married	66.4	66.9	% not taking Weak Narcotic:	46.2	50.7	
	% ED>HS	59.4	58.5	% not taking Strong Narcotic:	78.3	75.7	
	% Working	46.9	36.8	% not taking Muscle Relaxer:	68.5	72.8	
	% Worker's Comp	32.9	34.6	3			
	% Spinal Litigation	11.9	16.2	Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	7.7	7.4	
				%Osteophytes:	28.7	21.3	
				%↓Disc Height:	88.8	94.1	
				%Thick Ligaments:	21.0	17.6	
				%Disc Herniation:	55.9	47.8	
				%Facet Joint Degeneration:	25.2	20.6	
				% ≥ 3 of above:	31.1	32.4	

Author Year Country

Trial # or Name ODI Results from FDA data summary
Burkus, 2002

	BMP	Control		BMP	Control	
ODI Scores (n):			ODI Scores:			
Preop	53.7 (143)	55.1 (136)	Preop	53.7 (143)	55.1 (136)	
6 weeks	42.1 (140)	41.4 (131)	6 weeks	42.1 (140)	41.4 (131)	
3 months	33.4 (141)	34.2 (134)	3 months	33.5 (141)	34.2 (134)	
6 months	29.3 (136)	29.4 (131)	6 months	29.3 (136)	29.4 (131)	
12 months	25.5 (130)	25.6 (125)	12 months	25.5 (130)	25.6 (125)	
24 months	23.9 (124)	23.7 (111)	24 months	23.9 (122)	23.8 (108)	
	Preop 6 weeks 3 months 6 months 12 months	ODI Scores (n): Preop 53.7 (143) 6 weeks 42.1 (140) 3 months 33.4 (141) 6 months 29.3 (136) 12 months 25.5 (130)	ODI Scores (n): 53.7 (143) 55.1 (136) Preop 53.7 (143) 55.1 (136) 6 weeks 42.1 (140) 41.4 (131) 3 months 33.4 (141) 34.2 (134) 6 months 29.3 (136) 29.4 (131) 12 months 25.5 (130) 25.6 (125)	ODI Scores (n): ODI Scores: Preop 53.7 (143) 55.1 (136) Preop 6 weeks 42.1 (140) 41.4 (131) 6 weeks 3 months 33.4 (141) 34.2 (134) 3 months 6 months 29.3 (136) 29.4 (131) 6 months 12 months 25.5 (130) 25.6 (125) 12 months	ODI Scores (n): ODI Scores: Preop 53.7 (143) 55.1 (136) Preop 53.7 (143) 6 weeks 42.1 (140) 41.4 (131) 6 weeks 42.1 (140) 3 months 33.4 (141) 34.2 (134) 3 months 33.5 (141) 6 months 29.3 (136) 29.4 (131) 6 months 29.3 (136) 12 months 25.5 (130) 25.6 (125) 12 months 25.5 (130)	ODI Scores (n): ODI Scores: Preop 53.7 (143) 55.1 (136) 6 weeks 42.1 (140) 41.4 (131) 3 months 33.4 (141) 34.2 (134) 6 months 29.3 (136) 29.4 (131) 12 months 25.5 (130) 25.6 (125)

ODI results from published study

Author Year Country Trial # or Name	SF-36 results	from EDA dat		SF-36 results from published study
Burkus, 2002	SI-SU lesuits	ITOIN FDA dat	a Summary	Sr-30 results nom published study
USA		ВМР	Control	
2-Infuse-LT-	SF-36 MCS:			None Reported
Cage_	Preop	44.1 (142)	41.1 (136)	
Open_Pivotal	6 weeks	47.6 (138)	47.1 (130)	
open_r wotar	3 months	50.9 (140)	48.5 (133)	
(Study 2)	6 months	49.6 (136)	49.0 (131)	
(Olddy Z)	12 months	49.8 (131)	49.7 (125)	
	24 months	50.6 (123)	49.8 (111)	
	SF-36 PCS:			
	Preop	27.2 (142)	29.4 (136)	
	6 weeks	32.5 (138)	32.7 (130)	
	3 months	36.6 (140)	35.9 (133)	
	6 months	39.4 (136)	38.6 (131)	
	12 months	41.3 (131)	40.8 (125)	
	24 months	42.4 (123)	42.2 (111)	

Author Year Country Trial # or Name Back pain results from FDA data summary Back pain results from published study Burkus, 2002 USA BMP Control BMP Control Back Pain Scores (n) Back Pain Scores (n) 2-Infuse-LT-15.8 (143) 16.1 (136) 16.1 (136) Preop Preop 15.8 (143) Cage_ 6 weeks 9.3 (139) 8.8 (132) 6 weeks 9.3 (139) 8.8 (132) Open_Pivotal 8.7 (140) 9.0 (134) 8.7 (140) 9.0 (134) 3 months 3 months 8.6 (136) 8.9 (131) 8.6 (136) 8.9 (131) 6 months 6 months (Study 2) 8.4 (125) 8.0 (129) 8.4 (125) 12 months 8.0 (129) 12 months 24 months 7.4 (124) 7.9 (111) 24 months 7.3 (122) 7.9 (108)

Author Year Country Trial # or Name Leg pain results from FDA data summary Leg pain results from published study Burkus, 2002 USA BMP Control BMP Control Leg Pain Scores (n) Leg Pain Scores (n) 2-Infuse-LT-Preop 12.5 (143) 12.4 (136) 12.5 (143) 12.5 (136) Preop Cage_ 6 weeks 7.5 (139) 8.4 (132) 6 weeks 7.5 (139) 8.4 (132) Open_Pivotal 3 months 6.8 (140) 6.8 (134) 3 months 6.8 (140) 6.8 (134) 6.3 (136) 6.3 (136) 6.3 (131) 6 months 6.3 (131) 6 months (Study 2) 6.6 (125) 12 months 6.3 (129) 6.6 (125) 12 months 6.3 (129) 24 months 6.3 (124) 6.2 (111) 24 months 6.3 (122) 6.3 (108)

Author Year Country Trial # or Name Burkus, 2002 USA	Neck disability index from FDA summary	Neck disability index from published study
2-Infuse-LT- Cage_ Open_Pivotal (Study 2)	Not Relevant	Not Relevant

Author Year Country Trial # or Name Burkus, 2002	Neck pain score from FDA summary
USA 2-Infuse-LT- Cage_ Open_Pivotal	Not Relevant
(Study 2)	

Author Year Country Trial # or Name Burkus, 2002 USA	Arm pain scores from FDA summary	Arm pain scores from published study
2-Infuse-LT- Cage_ Open_Pivotal	Not Relevant	Not Relevant
(Study 2)		

Author Year

Country

Trial # or Name	Neurological Status Results from FDA data summary
Burkus, 2002	

	Banka0, 2002						
	USA		BMP	Control		BMP	Control
	2-Infuse-LT-	% Overall Neuro Success (n):			% Overall Neuro Success (n):		
Cage		6 weeks	80.3 (137)	83.7 (129)			
	Open_Pivotal	3 months	84.4 (141)	77.4 (133)	6 weeks		
	open_i wotai	6 months	77.9 (136)	80.9 (131)		80.3 (137)	83.7 (129)
	(Study 2)	12 months	81.8 (132)	84.7 (124)			
	(Olddy Z)	24 months	82.3 (124)	83.8 (111)	3 months	84.4 (141)	77.4 (133)
						77.9 (136)	80.9 (131)
					6 months	11.9 (130)	00.9 (131)
					o montais	81.8 (132)	84.7 (124)
						,	
					12 months	82.8 (122)	83.8 (108)

Neurological results from published summary

24 months

ntry # or Name	Radiologic fusion results from FD	A data summary		Radiologic fusion results fr	om nublished sti	ıdv
, 2002		, ruuta ourinnary				
		BMP	Control		BMP	Control
se-LT-	%Radiographic Fusion (n):			% (n) Radiographic Fusion:		
	6 months	97.0 (132)	95.8 (120)	6 months	97.0 (128/132)	95.8 (115/120)
_ Pivotal	12 months	96.9 (131)	92.6 (121)			
_FIVOlai	24 months	94.6 (130)	89.1 (119)		96.9 (127/131)	92.6 (112/121)
(2)				12 months		
Z)					94.5 (120/127)	88.7 (102/115)

24 months

Author Year Country						
Trial # or Name	Overall success FDA summ	nary data		Overall success in published study		
Burkus, 2002 USA						
	% Overall Success (n)	BMP	Control	Not reported		
2-Infuse-LT- Cage_ Open_Pivotal				Not reported		
(Study 2)	6 months 12 months 24 months	51.9 (135) 59.7 (134) 58.6 (133)	53.7 (121) 60.8 (125) 56.6 (122)			
	Intent to treat analysis with all missing data considered as failure and serious AEs and second surgery failures not taken into account:					
	6 months 12 months 24 months	NR 55.9 (143) 54.5 (143)	NR 55.9 (136) 50.7 (136)			

Author Year Country <u>Trial # or Name</u> Additional surgeries from FDA summary data Burkus, 2002

Burkus, 2002						
USA		BMP	Control		BMP	Control
2-Infuse-LT- Cage_	Number of patients with surgeries:			Number of patients with surgeries:		
	Revisions	0	0	Revisions	0	0
Dpen_Pivotal	Removals	2	0	Removals	2	0
Open_Fivolai	Supplemental Fixations	10	15	Supplemental Fixations	9	15
(Study 2)	Reoperations	6	4	Reoperations	NR	NR
	1 BMP patient had both a removal and a supp fixation during the second surgery.	plemental		In 90% of these patients (7/7 in the group and 11/13 in the Control grou fusion was radiographically solid at before the supplemental fixation, bu instrumentation was inserted by the physician based on clinical symptor persistent pain. In 53.3% of these p pain improved after the second pos surgical procedure.	ip) the the visit it posterior treating ns of patients,	

Additional surgeries in published study

Author

Year Country Trial # or Name Employed postoperatively FDA data summary Employed postoperatively from published study Burkus, 2002 USA BMP Control BMP Control % Working (n) % Working (n) 2-Infuse-LT-46.9 (67) 36.8 (50) 47.6 (68) 36.8 (50) Preop Preop Cage_ 6 weeks 15.6 (22) 12.0 (16) 6 weeks NR NR Open_Pivotal 3 months 39.0 (55) 28.4 (38) 3 months 38.8 (54) 28.4 (38) 50.7 (69) 55.0 (72) 45.5 (60) 50.4 (63) 45.5 (60) 6 months 50.7 (69) 6 months (Study 2) 51.2 (64) 12 months 55.0 (72) 12 months 24 months 66.1 (82) 56.8 (63) 24 months 66.1 (80) 56.1 (60)

Author Year Country Trial # or Name	Hospitalization days	Hospitalization days from published study
Burkus, 2002 USA		
2-Infuse-LT- Cage_ Open_Pivotal	Not reported	Not reported
(Study 2)		

Author

Year

Country Trial # or Name FDA adverse events

al # or Name	FDA adverse events			Selected adverse events f	rom case h	istories	Adverse events from pub	lished study		
rkus, 2002										
SA		BMP	Control		BMP	Control		BMP	Control	
nfuse-LT-	Patients Reporting Event (n):			Patients Reporting Event (n):		Event:			
ge_	Anatomic Difficulty			Wound Infection			Vascular event	6	5	
en_Pivotal	Back and/or Leg Pain	0	2	Wound Dehiscence	8	10				
	Cancer	41	34	Urinary Retention	2	0	Retrograde Ejaculation- 6	NR	NR	
Study 2)	Cardiovascular	3	1	Retrograde Ejaculation	11	2	total, treatment groups not			
uuy 2)	Death	8	12	Cancer	5	1	specified			
	Dural Injury	1	2	Leg Swelling/Edema	3	1				
	Gastrointestinal	0	1	Osteopenia/Osteoporosis	6	6	Iliac Crest Graft events	NA	8	
	Graft Site Related	31	26		2	5				
	Implant Displaced/	0	8							
	Loosened	2	0							
	Infection									
	Malpositioned Implant	18	16							
	Neurological	1	0							
	Non-Union	19	24							
	Other	1	3							
	Other Pain	26	36							
	Respiratory	18	14							
	Retrograde Ejaculation	3	4							
	Spinal Event	5	1							
	Subsidence	23	20							
	Trauma	6	2							
	Urogenital	34	35							
	Vascular Intra-Op	20	12							
	Vertebral Fracture	6	5							
		1	0							
	Total Patients with ≥ 1 Event									
		122	114							

Author Year Country Trial # or Name		Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Burkus, 2002 USA Infuse Bone Dowel Pilot RCT (Study 4)	ALIF (Prospective, nonblinded, multicenter trial) 24 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score ≥ 35* -S Grade 1 spondylolisthesis -Single-level DDD from L4-S1 -At least 18 years of age -No response to 6 months of conservative treatment <u>Exclusion Criteria:</u> -Other fusion surgery at same level -Requires steroids or other medications that might interfere with fusion ->40% over ideal weight -Has osteopenia, osteoporosis, or osteomalacia to a degree that spinal instrumentation would be contraindicated -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser -Previous exposure to BMP	 A. Open anterior interbody implantation of the rhBMP-2/ACS /allograph bone dowels B. Open anterior interbody implantation of allograph bone dowels in which the intramedullary cavity is filled with autogenous bone 	Randomized 47 Analyzed in BMP group = 17-24 Analyzed in control group = 15-22 analyzed 1 patient in control group did not receive implant due to sizing issues. 0 patients lost to follow-up in control group where LTF is defined as not being seen for two or more consecutive time periods 1 control patient died in house fire 6 months after surgery.	% Low Profile Brace: % High Profile Brace: % Corset: % Other:	BMP NR NR NR	Control NR NR NR NR

Author Year Country Trial # or Name Burkus, 2002 USA

Infuse Bone Dowel Pilot RCT (Study 4)

Author Year	Nonmedical History			Medical history			
Country	Baseline Character			Baseline characteristics			
Trial # or Name	from FDA data sum	nmary		from FDA data summary			
Burkus, 2002							
USA		BMP	Control				
		n=24	n=22		BMP	Control	
Infuse Bone	Age	41.5	45.6				
Dowel Pilot RCT	Height	67.2	67.0	Prior Tobacco:	33.3	27.3	
(Study 4)	Weight	172.7	175.9	Alcohol use:	25.0	27.3	
	% Male	33.3	45.5	Prior Back Surgery:	45.8	31.8	
	% White	83.3	81.8	Diabetic:	8.3	4.5	
	% Married	58.3	63.6	% not taking Non Narcotic:	54.2	31.8	
	% ED>HS	50.0	50.0	% not taking Weak Narcotic:	50.0	50.0	
	% Working	NR	NR	% not taking Strong Narcotic:	83.3	90.9	
	% Worker's Comp	20.8	31.8	% not taking Muscle Relaxer:	70.8	63.6	
	% Spinal Litigation	16.7	18.2				
				Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	NR	NR	
				%Osteophytes:	NR	NR	
				%↓Disc Height:	NR	NR	
				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				% ≥ 3 of above:	NR	NR	

Author Year Country

Trial # or Name ODI Results from FDA data summary

ODI results from published study

Burkus, 2002

USA							
		BMP	Control		BMP	Control	
Infuse Bone	ODI Scores (n):			ODI Scores:			
Dowel Pilot RCT	Preop	52.4 (24)	55.3 (22)	Preop	52.4	55.3	
(Study 4)	6 weeks	39.9 (24)	47.2 (21)	6 weeks	39.9	47.2	
	3 months	29.0 (24)	42.0 (21)	3 months	29.0	42.0	
	6 months	21.4 (24)	34.4 (20)	6 months	21.4	34.4	
	12 months	20.8 (24)	30.0 (19)	12 months	20.8	30.0	
	24 months	18.9 (24)	32.8 (17)	24 months	18.9	32.8	
	48 months	30.3 (18)	36.4 (18)	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

Author

Year Country

Trial # or Name SF-36 results from FDA data summary

SF-36 results from published study

USA		BMD	Control		DMD	Control
Infuse Bone		BMP	Control		BMP	Control
	SF-36 MCS:			SF-36 MCS:	shown in figure	shown in figure
Dowel Pilot RCT	Preop	42.8 (24)	43.1 (22)	Preop	form	form
(Study 4)	6 weeks	46.7 (23)	45.1 (21)	6 weeks		
	3 months	48.2 (24)	49.2 (21)	3 months		
	6 months	48.5 (23)	49.4 (20)	6 months		
	12 months	46.9 (24)	47.1 (19)	12 months		
	24 months	51.1 (24)	44.8 (17)	24 months		
	48 months	46.2 (18)	44.3 (18)	48 months		
	72 months	NR	NR	72 months		
	SF-36 PCS:			SF-36 PCS:	shown in figure	shown in figure
	Preop	29.6 (24)	29.4 (22)	Preop	form	form
	6 weeks	32.3 (23)	31.9 (21)	6 weeks		
	3 months	37.5 (24)	31.1 (21)	3 months		
	6 months	43.0 (23)	37.1 (20)	6 months		
	12 months	45.6 (24)	40.0 (19)	12 months		
	24 months	45.1 (24)	39.8 (17)	24 months		
	48 months	39.9 (18)	33.8 (18)	48 months		
	72 months	NR	NR	72 months		
	12 months					

Author Year

Country

Trial # or Name Back pain results from FDA data summary

Back pain results from published study

USA							
		BMP	Control		BMP	Control	
Infuse Bone	Back Pain Scores (n)			Back Pain Scores			
Dowel Pilot RCT	Preop	16.3 (24)	16.3 (22)	Preop	16.3	16.3	
(Study 4)	6 weeks	8.9 (24)	10.4 (21)	6 weeks	8.9	10.4	
	3 months	7.9 (24)	10.9 (21)	3 months	7.9	10.9	
	6 months	6.8 (24)	9.9 (20)	6 months	6.8	9.9	
	12 months	7.4 (24)	9.2 (19)	12 months	7.4	9.2	
	24 months	7.4 (24)	10.9 (17)	24 months	7.4	10.9	
	48 months	10.3 (18)	11.2 (18)	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

Author Year

Country

Trial # or Name Leg pain results from FDA data summary

Leg pain results from published study

USA							
		BMP	Control		BMP	Control	
Infuse Bone	Leg Pain Scores (n)			Back Pain Scores			
Dowel Pilot RCT	Preop	12.8 (24)	14.6 (22)	Preop	12.8	14.6	
(Study 4)	6 weeks	7.0 (24)	8.8 (21)	6 weeks	7.0	8.8	
	3 months	6.2 (24)	8.3 (21)	3 months	6.2	8.3	
	6 months	5.0 (24)	6.1 (20)	6 months	5.0	6.1	
	12 months	5.5 (24)	8.1 (19)	12 months	5.5	8.1	
	24 months	6.3 (24)	11.5 (17)	24 months	6.3	11.5	
	48 months	9.8 (18)	10.4 (18)	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

Author Year			
Country	Neck disability index	Neck disability index	
Trial # or Name	from FDA summary	from published study	
Burkus, 2002 USA			
Infuse Bone Dowel Pilot RCT (Study 4)	Not Relevant	Not Relevant	

 Author

 Year

 Country
 Neck pain score from FDA

 Trial # or Name
 summary

 Burkus, 2002
 usA

 Infuse Bone
 Not Relevant

 Dowel Pilot RCT (Study 4)
 Not Relevant

Author Year		
Country	Arm pain scores from FDA	Arm pain scores from
Trial # or Name	summary	published study
Burkus, 2002 USA		
Infuse Bone Dowel Pilot RCT (Study 4)	Not Relevant	Not Relevant

Author Year Country

Trial # or Name Neurological Status Results from FDA data summary

Burkus, 2002 USA

00/1						
		BMP	Control		BMP	Control
Infuse Bone	%Overall Neuro Success (n):			%Overall Neuro Success:		
Dowel Pilot RCT	6 weeks	87.5 (24)	90.0 (20)	6 weeks	87.5 (24)	90.0 (20)
(Study 4)	3 months	87.5 (24)	95.2 (21)	3 months	87.5 (24)	95.2 (21)
	6 months	87.5 (24)	89.5 (19)	6 months	87.5 (24)	89.5 (19)
	12 months	95.8 (24)	84.2 (19)	12 months	95.8 (24)	84.2 (19)
	24 months	91.3 (23)	73.3 (15)	24 months	87.5 (24)	73.3 (15)
	48 months	84.2 (19)	77.8 (18)	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

Neurological results from published summary

Author Year Country Trial # or Name Radiologic fusion results from FDA data summary Burkus, 2002

USA		BMP	Control		BMP	Control
Infuse Bone	%Radiographic Fusion (n):			%Radiographic Fusion:		
Dowel Pilot RCT	6 months	90.5 (21)	65.0 (20)	6 months	90.5	65.0
(Study 4)	12 months	100.0 (24)	89.5 (19)	12 months	100.0	89.5
	24 months	100.0 (24)	68.4 (19)	24 months	100.0	68.4
	48 months	94.1 (17)	70.6 (17)	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

Radiologic fusion results from published study

Author Year Country Trial # or Name Overall success FDA summary data Overall success in published study Burkus, 2002 USA BMP Control BMP Control Infuse Bone %Overall Success (n): Not Reported NR NR Dowel Pilot RCT 6 months 63.6 (22) 40.0 (20) (Study 4) 79.2 (24) 12 months 45.0 (20) 70.8 (24) 31.6 (19) 24 months 48 months 42.1 (19) 26.3 (19) 72 months NR NR

Author Year Country <u>Trial # or Name</u> Additional surgeries from FDA summary data Burkus, 2002

Additional surgeries in published study

Burkus,	4
USA	

		BMP	Control		BMP	Control
Infuse Bone	Number of patients with surgeries:			Number of patients with surgeries:		
Dowel Pilot RCT	Revisions	0	0	Revisions	0	0
(Study 4)	Removals	0	0	Removals	0	0
	Supplemental Fixations	1	4	Supplemental Fixations	1	3
	Reoperations	0	1	Reoperations	0	1

"One investigational patient had a supplemental fixation with the 24 month time period, but is not classified as a second surgery failure until the 48 month time period because the second surgery occurred after the 24 month evaluation."

Author

Year Country

Trial # or Name Employed postoperatively FDA data summary Employed postoperatively from published study

USA							
		BMP	Control		BMP	Control	
Infuse Bone	Working (n)			% Working (n)			
Dowel Pilot RCT	Preop	11	9	Preop	45.8	40.9	
(Study 4)	6 weeks	3	2	6 weeks	12.5	9.5	
	3 months	10	4	3 months	41.7	18.2	
	6 months	14	6	6 months	58.3	30.0	
	12 months	15	7	12 months	62.5	36.8	
	24 months	16	7	24 months	66.7	35.0	
	48 months	14	7	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

Author							
Year							
Country							
Trial # or Name	Hospitalization days			Hospitalization days from p	ublished study		
Burkus, 2002							
USA							
		BMP	Control		BMP	Control	
Infuse Bone	Hospitalization days	3.4	3.7	Hospitalization days	3.4	3.7	
Dowel Pilot RCT							
(Study 4)							

Author Year

Country

Trial # or Name FDA adverse events

Selected adverse events from case histories

Adverse events from published study

		BMP	Control		BMP	Control		BMP	Control
nfuse Bone	Adverse Events* (n):			Patients Reporting Event (n):			"No unanticipated adverse	NR	NR
Dowel Pilot RCT	Anatomic Difficulty	0	0	Wound Infection	0	1	events that were related to		
(Study 4)	Back and/or Leg Pain	9	3	Wound Dehiscence	0	0	the use of InFUSE Bone		
	Cancer	1	0	Urinary Retention	0	0	Graft (rhBMP-2 and the		
	Cardiovascular	1	0	Retrograde Ejaculation	0	0	collagen sponge carrier)		
	Death	0	1	Cancer*	2	0	occurred during the course		
	Dural Injury	0	0	Leg Swelling/Edema	0	2	of the study."		
	Gastrointestinal	2	3	Osteopenia/Osteoporosis	0	1			
	Implant Displaced	1	0				No adverse events were		
	Infection	0	1	Medtronic reports not learning			reported.		
	Malpositioned Implant	0	0	of a breast cancer patient					
	Neurological	4	1	until approximately 4 years					
	Non-Union	1	6	following the original surgery.					
	Other	3	6	One patient developed thyroid					
	Other Pain	7	3	cancer which was reported by					
	Respiratory	0	0	Medtronic.					
	Retrograde Ejaculation	0	0						
	Spinal Event	5	4						
	Subsidence	0	0						
	Trauma	5	8						
	Urogenital	3	1						
	Vascular Intra-Op	2	3						
	Vertebral Fracture	0	0						
	Total Events	44	40						
	*Number of events instead of								
	number of patients with								
	events is reported here as								
	data reported to FDA does								
	not allow calculation of								
	cumulative patients.								

Author Year Country Trial # or Name		Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions			
Dawson, 2009 USA	PLF (Prospective, randomized,	Inclusion Criteria: -Discogenic back pain -preoperative Oswestry score ≥ 30	A. INFUSE bone graft/ACS/MasterGr aft granules as a			BMP	Control	
Mastergraft Pilot	multicenter, pilot trial)	-Single-level DDD from L1-S1	bulking agent to provide	Randomized: Total N=50; BMP=27; Control = 23	% Low Profile Brace: % High Profile Brace:		23.8 42.9	
CD HORIZON	2-year	-At least 18 years of age -No response to 6 months of	compression resistance in	Analyzed: BMP=22; Control=18	% Corset: % Other % None	36.0 12.0 4.0	23.8 9.5 0.0	
(Study 8)		conservative treatment <u>Exclusion Criteria:</u> -Other fusion surgery at same level -Requires steroids or other medications that might interfere with fusion	posterolateral fusion with titanium CD Horizon Spinal System	Withdrawn: BMP=2 (did not have surgery); Control=2 (had different procedure)		4.0	0.0	
		-Has osteopenia, osteoporosis, or osteomalacia	 B. Autogenous iliac crest bone graft in 	Failures: BMP=2: Control=2				
		-Has Waddel signs ≥ 3 -Tobacco user at time of surgery	conjunction with titanium CD	Death: BMP=1				
		-Substance abuser -Previous exposure to BMP	Horizon Spinal System	Lost to follow-up: BMP=0; Control=1 patient without 24 month evaluation				

Author Year Country Trial # or Name Dawson, 2009 USA

Mastergraft Pilot

CD HORIZON

(Study 8)

Author Year Country Trial # or Name	Nonmedical History Baseline Character from FDA data sum	istics		Medical history Baseline characteristics from FDA data summary			
Dawson, 2009	ITOITI FDA data Suiti	inary		nom PDA data summary			
USA		ВМР	Control		ВМР	Control	
Mastergraft Pilot	Age	55.9	56.9				
Mastergrant Filot	Height	65.6	66.8	Prior Tobacco:	24.0	23.8	
CD HORIZON	Weight	176.0	184.9	Alcohol use:	20.0	28.6	
	% Male	40.0	42.9	Prior Back Surgery:	24.0	28.6	
(Cturdy 0)	% White	92.0	90.5	Diabetic:	0	14.3	
(Study 8)	% Married	80.0	66.7	% not taking Non Narcotic:	48.0	52.4	
	% ED>HS	52.0	52.4	% not taking Weak Narcotic:	40.0	38.1	
	% Working	28.0	42.9	% not taking Strong Narcotic:	80.0	90.5	
	% Worker's Comp*	0	19.0	% not taking Muscle Relaxer:	64.0	76.2	
	% Spinal Litigation	12.0	0	Ű			
	* p=0.037			Characteristics of Degenerative Disc Disease:			
	1			%Instability:	24.0	9.5	
				%Osteophytes:	36.0	38.1	
				%↓Disc Height:	76.0	81.0	
				%Thick Ligaments:	48.0	38.1	
				%Disc Herniation:	92.0	100	
				%Facet Joint Degeneration:	40.0	38.1	
				$\% \ge 3$ of above:	64.0	52.4	

Author

Year Country

Trial # or Name	ODI Results from FDA	data summary		ODI results from publishe	d study	
Dawson, 2009 JSA		BMP	Control		BMP	Control
Vastergraft Pilot	ODI Scores (n):			ODI Scores (n):		
Mastergran Filot	Preop	52.1 (25)	49.7 (21)	Preop	NR	NR
CD HORIZON	6 weeks	39.0 (24)	37.1 (21)	6 weeks	12	13
CD HORIZON	3 months	30.0 (24)	30.1 (21)	3 months	21	20
(Study 9)	6 months	28.7 (24)	30.2 (21)	6 months	22	20
Sluuv o)	12 months	24.1 (23)	27.9 (21)	12 months	27	22
	24 months	22.8 (23)	26.1 (20)	24 months	28	23
	36 months	29.7	15.3 (21)	36 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR
				Mean improvements from baseline		
				p=0.953	Improved 28.3 points over preop	Improved 23 points at over preop at 24

24 months

months

Author

Year Country

Trial # or Name SF-36 results from FDA data summary

Dawson, 2009

JSA		BMP	Control		BMP	Control
Aastergraft Pilot	SF-36 MCS:			SF-36 MCS:		
laotorgraft i liot	Preop	43.8 (25)	46.5 (21)	Preop	NR	NR
D HORIZON	6 weeks	45.5 (24)	46.6 (21)	6 weeks	NR	NR
	3 months	47.1 (24)	48.6 (21)	3 months	NR	NR
Study 8)	6 months	48.5 (24)	44.9 (21)	6 months	NR	NR
Study Of	12 months	48.2 (23)	49.4 (21)	12 months	NR	NR
	24 months	49.6 (23)	45.5 (20)	24 months	NR	NR
	36 months	46.8 (5)	54.1 (3)	36 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR
	SF-36 PCS:			SF-36 PCS:		
	Preop	25.8 (25)	26.5 (21)	Preop	NR	NR
	6 weeks	31.8 (24)	31.2 (21)	6 weeks	NR	NR
	3 months	34.5 (24)	34.9 (21)	3 months	NR	NR
	6 months	37.0 (24)	36.7 (21)	6 months	NR	NR
	12 months	37.9 (23)	36.5 (21)	12 months	NR	NR
	24 months	38.4 (23)	36.6 (20)	24 months	NR	NR
	36 months	33.0 (5)	39.1 (3)	36 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR
				mean improvement in		
				PCS is reported at 24		
				mo only BMP=13.9,		
				Control=9.9, p=0.927)		
				mean improvement in		
				physical functioning		
				subscale at 24 mo		
				BMP=36.3,		
				Control=18.5, p=0.200))	

SF-36 results from published study

Author

Year Country

Trial # or Name Back pain results from FDA data summary

Back pain results f	om published study
---------------------	--------------------

Dawson, 2009

USA		BMP	Control		BMP	Control	
Mastergraft Pilot	Back Pain Scores (n)			Back Pain Scores (n)			
Mastergrant i not	Preop	66.1 (25)	62.2 (21)	Preop	NR	NR	
CD HORIZON	6 weeks	19.0 (24)	22.2 (21)	6 weeks	NR	NR	
OD HORIZON	3 months	21.8 (24)	22.0 (21)	3 months	NR	NR	
	6 months	16.7 (24)	24.0 (21)	6 months	NR	NR	
(Study 8)	12 months	21.2 (23)	22.9 (21)	12 months	NR	NR	
	24 months	17.3 (23)	25.7 (20)	24 months	NR	NR	
	36 months	30.4 (5)	20.0 (3)	36 months	NR	NR	
	48 months	NR	NR	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

mean improvement in back pain scores at 24 mo, BMP=9.6 24 mo, Control=7.2 (p=0.664)

Author

Year Country

Leg pain results from published study
Eog pain recuite ir eni publicitea etaay

USA		BMP	Control		ВМР	Control	
Mastergraft Pilot	Leg Pain Scores (n)			Leg Pain Scores (n)			
	Preop	57.2 (25)	52.8 (21)	Preop	NR	NR	
CD HORIZON	6 weeks	13.0 (24)	19.9 (21)	6 weeks	NR	NR	
CD HORIZON	3 months	14.5 (24)	17.1 (21)	3 months	NR	NR	
(Study 8)	6 months	15.6 (24)	20.7 (21)	6 months	NR	NR	
(Study 8)	12 months	20.2 (23)	20.0 (21)	12 months	NR	NR	
	24 months	15.1 (23)	22.0 (20)	24 months	NR	NR	
	36 months	42.8 (5)	7.0 (3)	36 months	NR	NR	
	48 months	NR	NR	48 months	NR	NR	
	72 months	NR	NR	72 months	NR	NR	

mean improvement	mean improvement
in leg pain scores at	in leg pain scores at
24 mo, BMP=9.3	24 mo, Control=7.2
	(p=0.892)

Author Year Country Trial # or Name Dawson, 2009 USA	Neck disability index from FDA summary	Neck disability index from published study
Mastergraft Pilot	Not Relevant	Not Relevant
CD HORIZON		
(Study 8)		

Author Year Country Trial # or Name	Neck pain score from FDA summary
Dawson, 2009 USA	
Mastergraft Pilot	Not Relevant
CD HORIZON	
(Study 8)	

Author Year		
Country Trial # or Name	Arm pain scores from FDA	Arm pain scores from published study
Dawson, 2009 USA	Summary	
Mastergraft Pilot	Not Relevant	Not Relevant
CD HORIZON		
(Study 8)		

Author

Year Country

Trial # or Name Neurological Status Results from FDA data summary

Dawson, 2009 USA						
USA		BMP	Control		BMP	Control
Mastergraft Pilot	%Overall Neuro Success (n):			%Overall Neuro Success (n):		
maotorgrant i not	6 weeks	91.7 (24)	95.2 (21)	6 weeks	NR	NR
CD HORIZON	3 months	87.5 (24)	90.5 (21)	3 months	NR	NR
OD HORIZON	6 months	100 (24)	85.7 (21)	6 months	NR	NR
(Study 8)	12 months	91.3 (23)	85.7 (21)	12 months	NR	NR
(Olddy O)	24 months	95.7 (23)	90.0 (20)	24 months	NR	NR
	36 months	80.0 (5)	100 (3)	36 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

Neurological results from published summary

Author Year Country Trial # or Name Radiologic fusion results from FDA data summary Dawson, 2009

Radiologic fusion results from published study

A		BMP	Control		BMP	Control
stergraft Pilot	%Radiographic Fusion (n):			%Radiographic Fusion (n):		
istorgrant i not	6 months	81.8 (22)	60.0 (20)	6 months	18/22 (81.8)	12/20 (60.0)
CD HORIZON	12 months	81.0 (21)	65.0 (20)	12 months	17/21 (81.0)	13/20 (65.0)
DHORIZON	24 months	94.7 (19)	70.0 (20)	24 months	18/19 (94.7)	14/20 (70.0)
tudy 8)	36 months	100 (3)	0 (0)	36 months	NR	NR
luuy 0)	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

months, 0.359 at 12 months, and 0.174 at 24 months

Author (ear						
Country Trial # or Name	Overall success FDA su	ummary data		Overall success in published study		
Dawson, 2009		annary data				
ISA		BMP	Control		BMP	Control
astergraft Pilot	%Overall Success (n)			%Overall Success (n)		
astergraft Filot	6 months	62.5 (24)	45.0 (20)	6 months	NR	NR
D HORIZON	12 months	60.9 (23)	52.4 (21)	12 months	NR	NR
DHORIZON	24 months	81.0 (21)	55.0 (20)	24 months	81 (21)	55 (20)
Study 9)	36 months	NR	NR	36 months	NR	NR
Study 8)	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

p=0.345 at 24 months

Author						
Year Country						
Trial # or Name	Additional surgeries from FDA summary dat	а		Additional surgeries in published stud	ły	
Dawson, 2009					-	
JSA		BMP	Control		BMP	Control
Mastergraft Pilot	Number of patients with surgeries:			Number of patients with surgeries:		
viastergrant Filot	Revisions	2	2	Revisions	1	2
CD HORIZON	Removals	1	0	Removals	1	0
CD HORIZON	Supplemental Fixations	0	0	Supplemental Fixations	0	0
Study 8)	Reoperations	0	1	Reoperations	0	0

Author Year

Country

Trial # or Name Employed postoperatively FDA data summary

Dawson, 2009						
USA		BMP	Control		BMP	Control
Mastergraft Pilot	Working (n)			Working (n)		
Mastergran Filot	Preop	28.0 (25)	42.9 (21)	Preop	NR	NR
CD HORIZON	6 weeks	0 (24)	9.5 (21)	6 weeks	NR	NR
	3 months	12.5 (24)	14.3 (21)	3 months	NR	NR
(Study 8)	6 months	16.7 (24)	28.6 (21)	6 months	NR	NR
(Study 8)	12 months	26.1 (23)	23.8 (21)	12 months	NR	NR
	24 months	34.8 (23)	30.0 (21)	24 months	35% (23)	30% (20)
	36 months	60.0 (5)	33.3 (3)	36 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR

Employed postoperatively from published study

Author							
Year							
Country							
Trial # or Name	Hospitalization days			Hospitalization days from	published study		
Dawson, 2009							
USA		BMP	Control		BMP	Control	
Mastergraft Pilot	Hospitalization days	4.0 (25)	4.1 (21)	Hospitalization days	4.0 (25)	4.1 (21)	
CD HORIZON				p=0.844			
(Study 8)							

Author

Year

Country

rial # or Name	FDA adverse events		Selected adverse events from case histories		nistories	Adverse events from published study	
Dawson, 2009							
USA		BMP	Control		BMP	Control	
Mastergraft Pilot	Adverse Events* (n):			Patients Reporting Event (r	n):		None reported
Mastergrant Filot	Accidental Injury/Muscle	12	4	Wound Infection	໌ 1	2	
CD HORIZON	Strain			Wound Dehiscence	1	1	There was one reported
	Allergic Reaction	1	0	Urinary Retention	2	0	death in the BMP group but
(Study 8)	Back and/or Leg Pain	16	7	Retrograde Ejaculation	0	0	the reason for the death not
(Olddy O)	Cancer	1	0	Cancer	1	0	given.
	Cardiovascular	2	5				
	Dural Injury	2	2				
	Electrolyte Imbalance	0	1				
	Endocrine	0	1				
	Gastrointestinal	4	11				
	Incision Related	1	1				
	Implant Displaced	1	0				
	Infection	5	6				
	Malpositioned Implant	1	0				
	Neck/Arm Pain	3	3				
	Neurological	5	4				
	Non-Union	0	2				
	Other	4	6				
	Other Pain	5	0				
	Respiratory	2	2				
	Skin Disorder	0	2				
	Spinal Event other levels	3	4				
	Spinal Event Target levels	2	0				
	Trauma	1	0				
	Urogenital	2	2				
	Total Events	73	63				
	*Number of events instead of						
	number of patients						

Author Year Country Trial # or Name		Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Dimar, 2009 (2- year results) USA Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	PLF (Multicenter, prospective, randomized, controlled trial) 60 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score ≥ 30 -S Grade 1 spondylolisthesis -Single-level DDD from L1-S1 -≥ 18 years of age -No response to 6 months of conservative treatment Exclusion Criteria: -Previous fusion surgery at same level -Requires steroids or other medications that might interfere with fusion or bone metabolism -Previous diagnosis of osteopenia or osteomalacia -DEXA scan-confirmed osteoporosis -Has Waddel signs ≥ 3 -History of endocrine or metabolic disorder known to affect osteogenesis -Currently undergoing substance abuse treatment	A. Open bilateral posterolateral implantation of the rhBMP-2 2.0 mg/mL (Amplify)/CRM/CD HORIZON® Spinal System B. Bilateral posterolateral implantation of the autogenous bone harvested from the iliac crest with the CD HORIZON® Spinal System	Total (BMP/Control): 518 (262/256) randomized 463 patients had surgery: Analyzed: BMP=239; Control=224 Deaths=7	% Low Profile Brace: % High Profile Brace: % Corset: % Other Note: Protocol recommends use of external orthosis approximately 6 weeks following surgery (pg 34).	BMP 32.6 14.6 32.6 15.1	Control 32.1 11.2 31.3 19.6

Author Year Country Trial # or Name Dimar, 2009 (2year results) USA

Amplify (rhBMP-2/CRM) Pivotal RCT (Study 14)

Author Year Country	Nonmedical History Baseline Characteris			Medical history Baseline characteristics			
Trial # or Name	from FDA data sum			from FDA data summary			
Dimar, 2009 (2-	inoini i Dir data baim	inary		nom i britata ounnary			
year results) USA		BMP	Control		BMP	Control	
USA	Age	53.2	52.3	Prior Tobacco:	26.4	26.3	
Amplify (rhBMP-	Height	67.1	66.8	Alcohol use:	37.7	34.8	
2/CRM) Pivotal	Weight	187.2	188.5	Prior Back Surgery:	30.5	27.7	
RCT	% Male	45.2	42.4	Diabetic:	7.1	12.1	
(Study 14)	% White	91.2	90.6	% not taking Non Narcotic:	35.3	37.5	
(Study 14)	% Married	73.9	69.2	% not taking Weak Narcotic:	51.5	48.2	
	% ED>HS	63.2	54.1	% not taking Strong Narcotic:	84.0	81.6	
	% Working	34.7	41.1	% not taking Muscle Relaxer:	76.9	75.3	
	% Worker's Comp	11.3	12.5				
	% Unresolved spinal	2.5	6.7	Characteristics of Degenerative			
	Litigation			Disc Disease:			
				%Instability:	12.6	10.7	
				%Osteophytes:	23.0	26.8	
				%↓Disc Height:	59.8	60.7	
				%Thick Ligaments:	20.1	21.9	
				%Disc Herniation:	86.2	89.7	
				%Facet Joint Degeneration:	41.0	47.3	
				% ≥ 3 of above:	39.3	42.8	

Author

Year Country Trial # or Name ODI Results from FDA data summary ODI results from published study Dimar, 2009 (2year results) BMP BMP Control Control **ÚSA** ODI Scores (n): Improvement in mean ODI 49.9 (239) Scores plotted on a graph for 5 Preop 51.6 (224) Amplify (rhBMPtime points between 2 months 6 weeks 37.1 (231) 37.5 (214) 2/CRM) Pivotal 27.8 (229) 30.2 (213) and 24 months. Scores were 3 months RCT 24.2 (226) 27.0 (206) 6 months similar in both groups over all (Study 14) 23.2 (223) 26.0 (203) 12 months time intervals. 24 months 22.9 (208) 26.4 (183) 27.0 (164) 36 months 24.8 (172) 29.1 (95) 48 months 28.4 (104) 60 months 24.5 (169) 27.0 (149)

Author Year				
Country				
Trial # or Name	SF-36 results	from FDA data	a summarv	SF-36 results from published study
Dimar, 2009 (2-		-		
year results) USA		BMP	Control	
	SF-36 PCS:			Only reported mean
Amplify (rhBMP-	Preop	27.8 (236)	27.4 (224)	PCS Scores plotted on
2/CRM) Pivotal	6 weeks	31.6 (228)	31.9 (212)	a graph. Scores were
RCT	3 months	37.4 (239)	36.1 (210)	similar in both groups
(Study 14)	6 months	40.7 (224)	38.4 (206)	over all time intervals
(,	12 months	41.5 (223)	39.1 (201)	between 0 and 25
	24 months	40.9 (207)	39.7 (183)	months.
	36 months	39.6 (171)	37.8 (162)	
	48 months	37.9 (103)	36.8 (94)	
	60 months	40.4 (168)	37.8 (148)	
	SF-36 MCS:			
	Preop	43.9 (236)	42.9 (224)	
	6 weeks	48.4 (228)	47.4 (212)	
	3 months	49.6 (228)	49.4 (210)	
	6 months	49.4 (224)	49.8 (206)	
	12 months	49.4 (223)	49.0 (201)	
	24 months	50.7 (207)	49.2 (183)	
	36 months	50.3 (171)	49.6 (162)	
	48 months	48.8 (103)	48.7 (94)	
	60 months	49.9 (168)	50.1 (148)	

Author Year

Country

•	
Trial # or Name	Back pain results from FDA data summary

Back	pain	results	from	published	study
------	------	---------	------	-----------	-------

Dimar, 2009 (2-

year results) USA		BMP	Control		BMP	Control	
Amplify (rhBMP-	Preop	15.6 (238)	15.8 (224)	Preop	15.6	15.8	
2/CRM) Pivotal	6 weeks	8.7 (231)	8.1 (213)	6 weeks	NR	NR	
RCT	3 months	7.0 (228)	7.8 (213)	3 months	NR	NR	
(Study 14)	6 months	6.8 (226)	7.9 (206)	6 months	NR	NR	
(Study 14)	12 months	6.6 (223)	8.1 (203)	12 months	NR	NR	
	24 months	7.1 (208)	7.8 (183)	24 months	7.1	7.8	
	36 months	7.8 (171)	8.8 (164)	36 months	NR	NR	
	48 months	8.7 (104)	9.6 (94)	48 months	NR	NR	
	60 months	8.0 (169)	9.0 (149)	60 months	NR	NR	

Both groups showed similar improvements over all time intervals (Figure 3)

Author Year Country

Trial # or Name Dimar, 2009 (2- year results) USA	Leg pain results f	from FDA data summ	ary	Leg pain results fro	m published study		
		BMP	Control		BMP	Control	
Amplify (rhBMP-	Preop	14.0 (238)	14.0 (238)	Preop	14.0	14.0	
2/CRM) Pivotal	6 weeks	6.1 (231)	5.6 (213)	6 weeks	NR	NR	
RCT	3 months	5.6 (229)	5.8 (213)	3 months	NR	NR	
(Study 14)	6 months	5.8 (226)	5.9 (206)	6 months	NR	NR	
(Study 14)	12 months	6.1 (223)	6.3 (203)	12 months	NR	NR	
	24 months	6.2 (208)	6.7 (183)	24 months	6.2	6.7	
	36 months	7.1 (171)	7.1 (164)	36 months	NR	NR	
	48 months	7.9 (104)	7.2 (94)	48 months	NR	NR	
	60 months	6.9 (169)	7.2 (149)	60 months	NR	NR	

Both groups showed similar improvements over all time intervals (Figure 4)

Author Year Country Trial # or Name	Neck disability index from FDA summary	Neck disability index from published study
Dimar, 2009 (2- year results) USA	Not Delevent	Not Delevent
Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	Not Relevant	Not Relevant

Author Year Country Trial # or Name	Neck pain score from FDA summary
Dimar, 2009 (2- year results) USA	
USA	Not Relevant
Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	

Author Year Country Trial # or Name	Arm pain scores from FDA summary	Arm pain scores from published study
Dimar, 2009 (2- year results) USA		······
Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	Not Relevant	Not Relevant

Author Year Country Trial # or Name Neurological Status Results from FDA data summary Neurological results from published summary Dimar, 2009 (2year results) BMP Control **ÚSA** % Overall Neuro Success (n): NR Not reported NR 6 weeks NR NR Amplify (rhBMP-3 months NR NR 2/CRM) Pivotal 87.3 (200) 87.9 (182) 6 months RCT 87.6 (197)88.7 (180)87.0 (180)84.2 (154) 12 months (Study 14) 24 months 36 months 87.8 (151) 82.2 (134) 87.6 (92) 80.2 (77) 48 months 87.6 (148) 83.2 (124) 60 months

Author Year

Country

Trial # or Name Radiologic fusion results from FDA data summary Dimar, 2009 (2-

Radiologic fusion results from published study

year results) USA		BMP	Control		BMP	Control
00/1	% Radiographic Fusion (n):			% Radiographic Fusion (n):		
2/CRM) Pivotal RCT	6 weeks	NR	NR	6 weeks	NR	NR
	3 months	NR	NR	3 months	NR	NR
	6 months	79.1 (196)	65.3 (176)	6 months	79 (196)	65 (176)
	12 months	87.5 (208)	82.5 (183)	12 months	88 (208)	83 (183)
Study 14)	24 months	95.9 (194)	89.3 (169)	24 months	96 (194)	89 (169)
	36 months	97.0 (135)	92.6 (122)	36 months	NR	NR
	48 months	95.7 (94)	87.5 (72)	48 months	NR	NR
	60 months	97.1 (138)	92.0 (113)	60 months	NR	NR
				p=0.002 at 6 months		
				p=0.107 at 12 months		

. p=0.014 at 24 months

Author Year						
Country						
Trial # or Name	Overall success FDA sum	mary data		Overall success in published study		
Dimar, 2009 (2-						
year results) USA		BMP	Control			
004	% Overall Success (n):			Not Reported	NR	NR
Amplify (rhBMP-	6 weeks					
	3 months	NR	NR			
2/CRM) Pivotal	6 months	NR	NR			
(Study 14)	12 months	50.0 (204)	40.2 (189)			
	24 months	54.7 (214)	53.8 (197)			
	36 months	60.0 (200)	55.5 (182)			
	48 months	50.0 (152)	44.8 (143)			
	60 months	48.5 (103)	32.5 (83)			

Author								
Year								
Country								
Trial # or Name	Additional surgeries from FDA summary data			Additional surgeries in published study				
Dimar, 2009 (2-								
year results) USA		BMP	Control		BMP	Control		
USA	Number of patients with surgeries (total through 60			Number of patients with surgeries through 24				
Amplify (rhBMP-	months):			months:				
2/CRM) Pivotal	Revisions	6	6	Revisions	4	4		
RCT	Removals	26	37	Removals (nonelective)	10	23		
(Study 14)	Supplemental Fixations	6	11	Supplemental Fixations	6	9		
	Reoperations	14	15	Reoperations	NR	NR		

Author

Year Country										
Trial # or Name	Employed postoperatively	FDA data summary		Employed postoperatively from published study						
Dimar, 2009 (2- vear results) JSA —		BMP	Control		ВМР	Control				
	Working (n)									
Amplify (rhBMP- 2/CRM) Pivotal	Preop	83	92	% Return to work at 24 months (N)	42 (207)	48 (184)				
	6 weeks	22	17							
	3 months	53	57							
	6 months	77	86							
Study 14)	12 months	93	95							
	24 months	89	89							
	36 months	73	78							
	48 months	47	45							
	60 months	75	72							

Author							
Year							
Country							
Trial # or Name	Hospitalization days			Hospitalization days from pu	ublished study		
Dimar, 2009 (2-							
year results) USA		BMP	Control		BMP	Control	
00/1	Hospital stay (days)	4.1	4	Hospital stay (days)	4.1	4	
Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)							

Author

Year

Country Trial # or Name FDA adverse events

Trial # or Name FDA adverse events			Selected adverse events	Selected adverse events from case histories			lished st	udy	
Dimar, 2009 (2-									
year results) USA		BMP	Control		BMP	Control		BMP	Control
USA	Adverse Events* (n):			Patients Reporting Event (r	n):		Any Adverse Events ≤ 24		
Amplify (rhBMP-	Anatomic Difficulty	1	0	Wound Infection			Months (n):		
2/CRM) Pivotal	Back and/or Leg Pain	216	183	Wound Dehiscence	2	24	Anatomic Difficulty	1	0
RCT	Cancer	15	5	Urinary Retention	0	2	Back and/or Leg Pain	104	90
(Study 14)	Cardiovascular	108	88	Retrograde Ejaculation	1	4	Cancer	8	2
	Death	7	8	Cancer	0	0	Cardiovascular	52	54
	Dural Injury	15	20		4	5	Death	3	4
	Gastrointestinal	86	74				Dural Injury	14	18
	Implant Displaced	1	2				Gastrointestinal	37	33
	Infection	64	67				Implant Displaced and/or	1	3
	Malpositioned Implant	5	2				loosening		
	Neurological	120	97				Infection	39	45
	Non-Union	6	19				Malpositioned Implant	5	2
	Other	193	157				Neurological	70	60
	Other Pain	58	59				Non-Union	6	18
	Respiratory	21	20				Other	70	62
	Retrograde Ejaculation	NR	NR				Other Pain	29	28
	Spinal Event	50	45				Respiratory	15	12
	Subsidence	NR	NR				Retrograde Ejaculation	NR	NR
	Trauma	145	108				Spinal Event	17	18
	Urogenital	42	35				Subsidence	NR	NR
	Vascular Intra-Op	NR	NR				Trauma	67	59
	Vertebral Fracture	3	4				Urogenital	26	21
	Total Events	1215	1067				Vascular Intra-Op	NR	NR
							Vertebral Fracture	3	5
	*Number of events instead o	of							
	number of patients with								
	events is reported here as								
	data reported to FDA does								
	not allow calculation of								
	cumulative patients.								

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
USA	ALIF (Randomized, controlled,	Inclusion Criteria: -Discogenic back pain -Has modic changes, high intensity zones in	A. Open anterior interbody implantation of the			BMP	Control Maverick
MAVERICK™ Disc Pivotal	multicenter trial) ≥ 24 months	 This moule changes, high intensity 20res in the annulus, loss of disc height, decreased hydration of the disc Intact facet joints of involved vertebrae Preoperative Back and Leg Pain Questionnaire score ≥ 20 Preoperative Oswestry score ≥ 30 Single-level DDD from L4-S1 18 to 70 years No response to 6 months of conservative treatment Exclusion Criteria: Any previous anterior lumbar spinal surgery at involved level (including fusion) Requires steroids or other medications that might interfere with fusion At involved level: severe pathology of facet joints or rotatory scoliosis Any posterior element insufficiency Has osteoporosis Has spondylolisthesis or spinal canal stenosis Has Waddel signs ≥ 3 Substance abuser Previous exposure to BMP 	INFUSE bone Graft 4.2- 12.0 mg/ml/LT- CAGE Lumbar Tapered Fusion Device A. Open anterior interbody implantation of the MAVERICK Total Disc Replacement	577 randomized (172/405) BMP/Maverick: Number analyzed: 38- 172/80-405 Number death: 2/6 Number lost to follow-up: NR	% Low Profile Brace: % High Profile Brace: % Corset: % Other	47.1 4.1 31.2 0.6	NR NR NR

Author Year Country Trial # or Name Gornet, 2011 USA MAVERICK™ Disc Pivotal

RCT (Study 10)

Year Country Trial # or Name	Nonmedical History Baseline Characteristics from FDA data summary			Medical history Baseline characteristics from FDA data summary	Baseline characteristics				
Gornet, 2011 JSA	Control BMP Maverick			non i bradad sammary	BMP				
IAVERICK™	A ===	40.0	20.0	Drive Tabaaaa	22.0	20.0			
isc Pivotal	Age	40.2 67.9	39.9 68.0	Prior Tobacco:	32.6	28.9 47.7			
RCT	Height Weight	67.9 176.2	177.1	Alcohol use: Prior Back Surgery:	41.9 27.9	28.4			
Study 10)	% Male	50.0	50.6	Diabetic:	27.9 NR	NR			
	% White	90.1	89.9	% not taking Non Narcotic:	39.0	28.2			
	% Married	73.3	70.6	% not taking Weak Narcotic:	48.0	55.4			
	% ED>HS	62.2	63.5	% not taking Weak Narcotic:	40.0 69.2	71.0			
	% Working	55.8	61.2	% not taking Muscle Relaxer:	57.6	66.0			
	% Worker's Comp	17.4	17.8		57.0	66.0			
	% Spinal Litigation	18.0	15.6						
		10.0	10.0	Characteristics of Degenerative Disc Disease:					
				%Instability:	NR	NR			
				%Osteophytes:	NR	NR			
				%↓Disc Height:	NR	NR			
				%Thick Ligaments:	NR	NR			
				%Disc Herniation:	NR	NR			
				%Facet Joint Degeneration:	NR	NR			
				% ≥ 3 of above:	NR	NR			

Author Year

Country

Trial # or Name	ODI Results from FDA data summary

al # or Name	ODI Results from FDA	data summary		ODI results from publis	shed study	
ornet, 2011 SA		ВМР	Control Maverick		BMP	Control Maverick
IAVERICK™ isc Pivotal	ODI Scores (n):			ODI Scores (n):		
CT	Preop	54.5 (172)	53.3 (405)	Preop	54.5 (172)	53.3 (405)
Study 10)	6 weeks	41.4 (166)	31.2 (395)	6 weeks	41.4 (NR)	31.2 (NR)
study (0)	3 months	32.0 (159)	23.4 (386)	3 months	32.0 (NR)	23.4 (NR)
	6 months	26.8 (158)	20.1 (385)	6 months	26.8 (NR)	20.1 (NR)
	12 months	25.3 (156)	19.2 (389)	12 months	25.3 (NR)	19.2 (NR)
	24 months	24.8 (138)	19.4 (370)	24 months	24.8 (NR)	19.4 (NR)
	36 months	22.2 (108)	18.4 (283)	36 months	NR	NR
	48 months	26.3 (47)	20.4 (94)	48 months	NR	NR
	60 months	22.6 (118)	17.9 (302)	60 months	NR	NR
	84 months	26.6 (37)	19.6 (79)	84 months	NR	NR

Author

Year Country

rial # or Name	SF-36 results	from FDA dat	a summary	SF-36 results from	SF-36 results from published study				
ornet, 2011 SA		BMP	Control Maverick		BMP	Control Maverick			
IAVERICK™	SF-36 PCS:			SF-36 PCS:					
Disc Pivotal	Preop	27.3 (172)	27.9 (404)	Preop	27.3 (NR)	27.9 (NR)			
CT	6 weeks	31.6 (166)	36.6 (391)	6 weeks	31.6 (NR)	36.6 (NR)			
Study 10)	3 months	36.9 (159)	41.4 (385)	3 months	36.9 (NR)	41.4 (NR)			
	6 months	39.6 (158)	43.7 (385)	6 months	39.6 (NR)	43.7 (NR)			
	12 months	41.6 (156)	44.7 (389)	12 months	41.6 (NR)	44.7 (NR)			
	24 months	42.1 (136)	45.1 (370)	24 months	42.1 (NR)	45.1 (NR)			
	36 months	42.7 (108)	44.6 (285)	36 months	NR	NR			
	48 months	40.6 (47)	44.7 (93)	48 months	NR	NR			
	60 months	42.2 (117)	45.4 (301)	60 months	NR	NR			
	84 months	39.0 (37)	45.2 (79)	84 months	NR	NR			
	SF-36 MCS:			SF-36 MCS:					
	Preop	41.7 (172)	43.2 (404)	Preop	41.7 (NR)	43.2 (NR)			
	6 weeks	46.4 (166)	48.9 (391)	6 weeks	46.4 (NR)	48.9 (NR)			
	3 months	48.5 (159)	51.3 (385)	3 months	48.5 (NR)	51.3 (NR)			
	6 months	49.9 (158)	51.5 (385)	6 months	49.9 (NR)	51.5 (NR)			
	12 months	49.3 (156)	51.3 (389)	12 months	49.3 (NR)	51.3 (NR)			
	24 months	50.0 (136)	51.4 (370)	24 months	50.0 (NR)	51.4 (NR)			
	36 months	51.4 (108)	52.5 (285)	36 months	NR	NR			
	48 months	48.8 (47)	52.8 (93)	48 months	NR	NR			
	60 months	51.9 (117)	52.7 (301)	60 months	NR	NR			
	84 months	48.5 (37)	51.2 (79)	84 months	NR	NR			

Author

Year Country

Trial # or Name Back pain results from FDA data summary

Trial # or Name	Back pain results from FDA data summary			Back pain results from	Back pain results from published study				
Gornet, 2011 USA		BMP	Control Maverick		ВМР	Control Maverick			
MAVERICK™ Disc Pivotal RCT (Study 10)	Preop 6 weeks 3 months 6 months 12 months 24 months 36 months 48 months 60 months 84 months	73.3 (172) 35.1 (165) 27.0 (159) 24.1 (158) 24.7 (156) 23.6 (138) 21.0 (108) 30.1 (47) 22.7 (118) 31.7 (37)	71.7 (405) 21.0 (394) 17.8 (386) 18.1 (386) 17.6 (388) 18.0 (370) 20.0 (284) 22.4 (93) 18.9 (301) 18.7 (78)	Preop 6 weeks 3 months 6 months 12 months 24 months 36 months 48 months 60 months 84 months	73.3 (NR) 35.1 (NR) 27.0 (NR) 24.1 (NR) 24.7 (NR) 23.6 (NR) NR NR NR NR NR	71.7 (NR) 21.0 (NR) 17.8 (NR) 18.1 (NR) 17.6 (NR) 18.0 (NR) NR NR NR NR			

Author

Year Country

Trial # or Name Leg pain results from FDA data summary

Trial # or Name	Leg pain results f	rom FDA data summ	ary	Leg pain results from pu	ublished study		
Gornet, 2011 USA		BMP	Control Maverick		ВМР	Control Maverick	
MAVERICK™				Leg Pain Scores (n)			
Disc Pivotal	Preop	42.4 (172)	42.7 (405)	Preop	42.4 (NR)	42.7 (NR)	
RCT	6 weeks	24.5 (166)	21.9 (394)	6 weeks	24.5 (NR)	21.9 (NR)	
(Study 10)	3 months	17.4 (159)	18.0 (386)	3 months	17.4 (NR)	18.0 (NR)	
(Study TO)	6 months	16.8 (158)	15.0 (386)	6 months	16.8 (NR)	15.0 (NR)	
	12 months	19.8 (156)	14.7 (388)	12 months	19.8 (NR)	14.7 (NR)	
	24 months	19.5 (138)	15.9 (370)	24 months	19.5 (NR)	15.9 (NR)	
	36 months	15.3 (108)	16.7 (285)	36 months	NR	NR	
	48 months	19.2 (47)	20.3 (93)	48 months	NR	NR	
	60 months	16.6 (118)	15.7 (302)	60 months	NR	NR	
	84 months	18.4 (37)	18.5 (77)	84 months	NR	NR	

Author Year Country Trial # or Name Gornet, 2011 USA	Neck disability index from FDA summary	Neck disability index from published study
MAVERICK™ Disc Pivotal RCT (Study 10)	Not Relevant	Not Relevant

Author Year Country	Neck pain score from FDA
Trial # or Name	summary
Gornet, 2011 USA	
MAVERICK™ Disc Pivotal RCT (Study 10)	Not Relevant

Author Year		
Country	Arm pain scores from FDA	Arm pain scores from
Trial # or Name	summary	published study
Gornet, 2011		
USA		
MAVERICK™ Disc Pivotal RCT (Study 10)	Not Relevant	Not Relevant

Author

Year

Country Trial # or Na

Trial # or Name	Neurological Status Results fr	om FDA data	summary	Neurological results from pu	blished sumr	nary
Gornet, 2011 USA			Control			Control
USA		BMP	Maverick		BMP	Maverick
MAVERICK™	% Overall Neuro Success (n)			% Overall Neuro Success (n)		
Disc Pivotal	6 weeks	87.0 (169)	88.3 (400)	6 weeks	87.0 (169)	88.3 (400)
RCT	3 months	89.2 (166)	89.8 (391)	3 months	89.2 (166)	89.8 (391)
(Study 10)	6 months	90.7 (161)	92.0 (387)	6 months	90.7 (161)	92.0 (387)
(Olddy 10)	12 months	91.7 (157)	90.5 (391)	12 months	91.7 (157)	90.5 (391)
	24 months	89.2 (139)	90.8 (370)	24 months	89.2 (139)	90.8 (370)
	36 months	87.2 (109)	90.7 (291)	36 months	NR	NR
	48 months	91.3 (46)	91.6 (95)	48 months	NR	NR
	60 months	87.3 (118)	91.1 (302)	60 months	NR	NR
	84 months	37 (86.5)	96.2 (79)	84 months	NR	NR

uthor 'ear Country							
Frial # or Name	Radiologic fusion results from FD	A data summary		Radiologic fusion results fr	om publishe	d study	
Gornet, 2011 JSA		BMP	Control Maverick		BMP	Control Maverick	
AVERICK™	% Radiographic Fusion (n)		NA	% Radiographic Fusion (n)		NA	
sc Pivotal	6 weeks	NR		6 weeks	NR		
CT	3 months	NR		3 months	NR		
tudy 10)	6 months	100 (78)		6 months	NR		
luuy IO)	12 months	100 (123)		12 months	100%		
	24 months	100 (103)		24 months	100%		
	36 months	100 (78)		36 months	NR		
	48 months	96.6 (29)		48 months	NR		
	60 months	98.6 (73)		60 months	NR		
	84 months	100 (22)		84 months	NR		

Maverick not fused

Author Year Country Trial # or Nam

Frial # or Name	Overall success FDA sur	nmary data		Overall success in published study		
Gornet, 2011 JSA		BMP	Control Maverick		BMP	Control Maverick
MAVERICK™	% Overall Success (n):			% Overall Success (n):		
Disc Pivotal	3 months	59.3 (135)	69.9 (332)	3 months	59.3 (135)	69.3 (332)
RCT	6 months	65.6 (128)	76.7 (322)	6 months	65.1 (129)	76.4 (322)
Study 10)	12 months	63.9 (119)	74.5 (330)	12 months	63.3 (120)	74.2 (330)
Study TO)	24 months	55.9 (102)	73.7 (312)	24 months	55.3 (103)	73.5 (313)
	36 months	56.8 (74)	70.1 (241)	36 months	NR	NR
	48 months	28.6 (35)	68.7 (83)	48 months	NR	NR
	60 months	62.5 (80)	68.3 (249)	60 months	NR	NR
	84 months	25.0 (16)	64.1 (64)	84 months	NR	NR

Author

Year Country Trial # or Name Additional surgeries from FDA summary data Additional surgeries in published study Gornet, 2011 Control Control USA BMP Maverick BMP Maverick Number of patients with surgeries: Number of patients with surgeries: MAVERICK™ 0 2 Revisions 0 0 Revisions 0 Disc Pivotal Removals 0 2 Removals 0 RCT Supplemental Fixations 15 16 Supplemental Fixations 12 15 (Study 10) Reoperations 5 25 Reoperations 3 23

Author

Year

Country

Trial # or Name Employed postoperatively FDA data summary

Trial # or Name	Employed postoperatively F	DA data summary		Employed postoperatively from publish	ned study	
Gornet, 2011 USA		ВМР	Control Maverick		BMP	Control Maverick
MAVERICK™	Working (n)			Working (% patients, number NR)		
Disc Pivotal	Preop	96	248	Preop	55.8	61.2
RCT	6 weeks	44	126	6 weeks	26.0	31.5
(Study 10)	3 months	69	213	3 months	41.6	54.3
(Study TO)	6 months	102	268	6 months	63.4	68.7
	12 months	105	282	12 months	66.9	72.1
	24 months	102	274	24 months	73.4	74.1
	36 months	83	224	36 months	NR	NR
	48 months	31	71	48 months	NR	NR
	60 months	86	229	60 months	NR	NR
	84 months	26	51	84 months	NR	NR

Author Year Country Trial # or Name	Hospitalization days			Hospitalization days from pu	blished study	
Gornet, 2011 JSA		ВМР	Control Maverick		ВМР	Control Maverick
AVERICK™ sc Pivotal CT tudy 10)	Hospital stay (days)	2.3	2.2	Hospital stay (days)	2.3	2.2

Author

Year Country

C	υ	ur	IU	У
-				

Trial # or Name	FDA adverse events			Selected adverse events fr	Selected adverse events from case histories			Adverse events from published study		
Gornet, 2011 USA		ВМР	Control Maverick		BMP	Control Maverick		вмр	Control Maverick	
MAVERICK™	Number of patients with			Patients Reporting Event (n)	:		Any Adverse Events ≤ 24			
Disc Pivotal	Adverse Events up to 24			Wound Infection			months (n):			
RCT	months/total			Wound Dehiscence	6	19	Anatomic Difficulty	1	9	
(Study 10)	Anatomic Difficulty	1/1	9/10	Urinary Retention	1	5	Back and/or Leg Pain	14	34	
(Study TO)	Back and/or Leg Pain	14/25	34/48	Retrograde Ejaculation	4	9	Cancer	2	3	
	Cancer	3/3	3/7	Cancer	2	4	Cardiovascular	7	14	
	Cardiovascular	8/12	14/27		3	7	Death	1	3	
	Death	1/2	3/7				Dural Injury	NR	NR	
	Dural Injury	NR	NR				Gastrointestinal	19	80	
	Gastrointestinal	19/27	80/137				(ileus+other)			
	(ileus+other)						Implant Displacement/	1	1	
	Implant Displacement/	1/1	1/1				loosening/malposition			
	loosening/malposition						Infection	12	24	
	Infection	12/17	24/37				Malpositioned Implant	NR	NR	
	Malpositioned Implant	NR	NR				Neurological	59	138	
	Neurological	59/76	138/153				Non-Union	7	0	
	Non-Union	7/8	0/0				Other	25	75	
	Other	24/60	75/119				Other Pain	11	60	
	Other Pain	11/19	60/80				Respiratory	3	8	
	Respiratory	3/7	8/14				Retrograde Ejaculation	2	4	
	Retrograde Ejaculation	2/2	4/4				Spinal Event	1	14	
	Spinal Event	2/3	14/15				Subsidence	14	13	
	Subsidence	14/17	14/21				Trauma	53	109	
	Trauma	53/69	110/143				Urogenital	16	38	
	Urogenital	16/29	39/54				Vascular Intra-Op	8	15	
	Vascular Intra-Op	8/8	15/15				Vertebral Fracture	0	3	
	Vertebral Fracture	0/9	3/3				Any Events	153	345	
	Any Events	153/165	345/370				-			

Trial # or Name L		Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions			
USA (I ra Interfix Device for n Posterior Lumbar p	PLIF Prospective, andomized, nonblinded, bilot trial) 24 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score ≥ 35* -≤ Grade 1 spondylolisthesis -Single-level DDD from L2-S1 -At least 18 years of age -No response to 6 months of conservative treatment <u>Exclusion Criteria:</u> -Other fusion surgery at same level -Requires steroids or other medications that might interfere with fusion ->40% over ideal weight -Has osteopenia, osteoporosis, or osteomalacia to a degree that spinal instrumentation would be contraindicated -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser	A. Open posterior interbody implantation of the rhBMP-2/ACS/ NOVUS LC (INTERFIX) B. Open posterior interbody implantation of INOVUS LC (NTERFIX) filled with autogenous bone	16 patients withdrawn after randomization with no data on group assigned (4 patient caged mind, 5 insurance denials, 2 obesity, 2 surgery cancelled due to hold on study, 1 allergic reaction to Ancef, 1 cortico-steroids within one week of surgery, 1 Oswestry score too low). 1 BMP patient did not receive device at surgery; 3 control patients did not received device at surgery.	% Low Profile Brace: % High Profile Brace: % Corset: % Other:	BMP 32.4 14.7 32.4 20.6	Control 18.2 21.2 45.5 15.2	

Author Year Country Trial # or Name Haid, 2004 USA Interfix Device for Posterior Lumbar Interbody Fusion in Patients with Degenerative Disc Disease

Author Year Country Trial # or Name	Nonmedical Histor Baseline Character from FDA data sum	ristics		Medical history Baseline characteristics from FDA data summary			
Haid, 2004 USA							
		BMP	Control		BMP	Control	
nterfix Device for	Age	46.3	46.1				
Posterior Lumbar	Height	67.7	67.0	Prior Tobacco:	52.9	45.5	
nterbody Fusion	Weight	180.5	172.8	Alcohol use:	44.1	27.3	
n Patients with	% Male	50.0	45.5	Prior Back Surgery:	35.3	39.4	
Degenerative Disc	% White	79.4	93.9	Diabetic:	2.9	3.0	
Disease	% Married	61.8	72.7	% not taking Non Narcotic:	47.1	48.5	
0136036	% ED>HS	41.2	51.6	% not taking Weak Narcotic:	47.1	30.3	
	% Working	26.5	45.5	% not taking Strong Narcotic:	82.4	78.8	
0()	% Worker's Comp	23.5	27.3	% not taking Muscle Relaxer:	58.8	51.5	
Study 6)	% Spinal Litigation	8.8	3.0	5			
	/• • • • • • • • • • • • • • • • • • •			Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	NR	NR	
				%Osteophytes:	NR	NR	
				%Osteophytes. %↓Disc Height:	NR	NR	
				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				$\% \ge 3$ of above:	NR	NR	

Author Year Country Trial # or Name ODI Results from FDA data summary

Haid, 2004 USA BMP BMP Control Control ODI Scores (n): ODI Scores (n): Interfix Device for 54.6 (34) NR NR Preop 52.7 (33) Preop Posterior Lumbar 6 weeks 45.5 (33) 39.4 (31) 6 weeks less improved more improved Interbody Fusion 32.8 (33) 33.6 (32) 3 months 3 months more improved less improved in Patients with Degenerative Disc 6 months 31.8 (31) less improved 30.2 (32) 6 months more improved 25.9 (29) 31.7 (27) less improved 12 months 12 months more improved Disease 24 months 26.4 (25) 27.5 (28) improved 29.6 improved 24.9 24 months 48 months NR NR 48 months NR NR NR NR 72 months NR NR 72 months (Study 6)

more/less improved is relative to the contrasting group; Differences not significant.

ODI results from published study

Author

Year Country

Trial # or Name SF-36 results from FDA data summary Haid, 2004 SF-36 results from published study

USA		-	Operational		D 110	Operational
	05 00 1000	BMP	Control		BMP	Control
Interfix Device for	SF-36 MCS:			SF-36 MCS:		
Posterior Lumbar	Preop	44.6 (34)	43.6 (32)	Preop	NR	NR
Interbody Fusion	6 weeks	47.9 (32)	45.9 (31)	6 weeks	NR	NR
in Patients with	3 months	49.4 (33)	48.6 (32)	3 months	NR	NR
Degenerative Disc	6 months	47.7 (32)	47.0 (30)	6 months	NR	NR
Disease	12 months	47.4 (28)	45.8 (27)	12 months	NR	NR
Discuse	24 months	50.9 (24)	46.1 (27)	24 months	NR	NR
	48 months	NR	NR	48 months	NR	NR
(Study 6)	72 months	NR	NR	72 months	NR	NR
	SF-36 PCS:			SF-36 PCS:		
	Preop	26.5 (34)	26.6 (32)	Preop	more improved	less improved
	6 weeks	31.2 (32)	28.3 (31)	6 weeks	more improved	less improved
	3 months	36.0 (33)	33.6 (32)	3 months	more improved	less improved
	6 months	37.1 (32)	34.2 (30)	6 months	more improved	less improved
	12 months	39.6 (28)	34.2 (27)	12 months	more improved	less improved
	24 months	39.8 (24)	37.3 (27)	24 months	more improved	less improved
	48 months	NR	NR	48 months	NR	NR
	72 months	NR	NR	72 months	NR	NR
				More/less improved i	is	

relative to the contrasting group.

Author Year Country Trial # or Name Back pain results from FDA data summary Haid, 2004

Back pain results from published	studv	
----------------------------------	-------	--

ISA		BMP	Control		BMP	Control	
nterfix Device for	Back Pain Scores (n)			Back Pain Scores (n)			
osterior Lumbar	Preop	16.8 (34)	14.8 (33)	Preop	NR	NR	
terbody Fusion	6 weeks	10.0 (33)	10.0 (30)	6 weeks	more improved	less improved	
Patients with	3 months	7.8 (33)	8.5 (31)	3 months	more improved	less improved	
egenerative Disc	6 months	9.1 (32)	8.1 (31)	6 months	more improved	less improved	
sease	12 months	8.7 (29)	9.6 (27)	12 months	more improved	less improved	
36436	24 months	7.9 (25)	10.0 (28)	24 months	improved 9.0	improved 4.5	
	48 months	NR	NR	48 months	NR	NR	
(Study 6)	72 months	NR	NR	72 months	NR	NR	
	BMP group had greater pain reduction at 3 and 2			Significant difference in improv 24 months (p<0.05)	rement at		

pain reduction at 3 and 24 months from preoperative scores (p=0.048 and 0.009, respectively)

Author Year Country Trial # or Name Leg pain results from FDA data summary Haid, 2004

Leg pain results from published study

JSA		BMP	Control		BMP	Control
Interfix Device for	Leg Pain Scores (n)			Leg Pain Scores (n)		
Posterior Lumbar	Preop	15.5 (34)	14.3 (33)	Preop	NR	NR
nterbody Fusion	6 weeks	7.2 (33)	8.6 (30)	6 weeks	more improved	less improved
in Patients with	3 months	6.2 (33)	7.5 (31)	3 months	more improved	less improved
Degenerative Disc	6 months	7.1 (32)	7.7 (31)	6 months	more improved	less improved
Disease	12 months	7.7 (29)	10.1 (27)	12 months	more improved	less improved
136436	24 months	7.5 (25)	7.8 (28)	24 months	improved 7.7	improved 6.5
	48 months	NR	NR	48 months	NR	NR
(Study 6)	72 months	NR	NR	72 months	NR	NR
	No significant difference	es		No significant differences		
				h a transmission a		

between groups

between groups

Author Year Country <u>Trial # or Name</u> Haid, 2004 USA	Neck disability index from FDA summary	Neck disability index from published study
Interfix Device for Posterior Lumbar Interbody Fusion in Patients with Degenerative Disc Disease	Not Relevant	Not Relevant

Year		
Country	Neck pain score from FDA	
Trial # or Name	summary	
Haid, 2004		
USA		
Interfix Device for	Not Relevant	
Posterior Lumbar		
Interbody Fusion		
in Patients with		
Degenerative Disc	>	
Disease		

-	Arm pain scores from FDA summary	Arm pain scores from published study
Interfix Device for Posterior Lumbar Interbody Fusion in Patients with Degenerative Disc Disease		Not Relevant

Author Year Country Trial # or Name Neurological Status Results from FDA data summary

Haid, 2004 USA BMP Control BMP Control %Overall Neuro Success (n): %Overall Neuro Success (n): Interfix Device for 93.8 (32) 100.0 (31) ND ND 6 weeks 6 weeks Posterior Lumbar 3 months 93.8 (32) 96.9 (32) 3 months ND ND Interbody Fusion 96.8 (31) 96.9 (32) ND ND 6 months 6 months in Patients with Degenerative Disc 12 months 92.9 (28) 92.9 (28) ND ND 12 months 24 months 100.0 (26) 100.0 (28) 24 months 100% 100% Disease 48 months NR NR NR 48 months NR 72 months NR NR 72 months NR NR (Study 6) No significant differences between ND = there was no difference groups. Note: Hyporeflexia between groups counted as "normal".

Neurological results from published summary

Author Year Country <u>Trial # or Name</u> Radiologic fusion results from FDA data summary Haid, 2004

Radiologic fusion results from published study

24 months could not be evaluated at 12 months because of the unavailability of reconstructed CT views of poor-quality films."

	ВМР	Control		BMP	Control
%Radiographic Fusion (n):			%Radiographic Fusion (n):		
6 months	93.1 (29)	93.1 (29)	6 months	93.1	93.1
12 months	85.2 (27)	92.0 (25)	12 months	85.2	92.0
24 months	92.3 (26)	77.8 (27)	24 months	92.3	77.8
48 months	NR	NR	48 months	NR	NR
72 months	NR	NR	72 months	NR	NR
No significant differences between group	S.		No significant differences		
			between groups.		
			"This decrease in fusion ra	te in	
			the investigational group at	12	
			months appears to be		
			,		
			patients who were evaluate	ed at	
	6 months 12 months 24 months 48 months 72 months	%Radiographic Fusion (n): 93.1 (29) 6 months 93.1 (29) 12 months 85.2 (27) 24 months 92.3 (26) 48 months NR	%Radiographic Fusion (n): 93.1 (29) 93.1 (29) 6 months 93.1 (29) 92.0 (25) 12 months 92.3 (26) 77.8 (27) 48 months NR NR 72 months NR NR	%Radiographic Fusion (n): %Radiographic Fusion (n): 6 months 93.1 (29) 93.1 (29) 12 months 85.2 (27) 92.0 (25) 12 months 24 months 92.3 (26) 77.8 (27) 24 months 48 months NR NR 48 months 72 months NR NR 72 months No significant differences between groups. No significant differences between groups. No significant differences between groups.	%Radiographic Fusion (n): %Radiographic Fusion (n): 6 months 93.1 (29) 93.1 (29) 12 months 85.2 (27) 92.0 (25) 12 months 85.2 24 months 92.3 (26) 77.8 (27) 24 months 92.3 48 months NR NR 48 months NR 72 months NR NR NR NR No significant differences between groups. No significant differences between groups. No significant differences between groups. "This decrease in fusion rate in the investigational group at 12

Author Year Country Trial # or Name Overall success FDA summary data

Haid, 2004 USA BMP Control %Overall Success (n): Not Reported Interfix Device for 6 months 60.0 (30) 50.0 (30) Posterior Lumbar 50.0 (26) 12 months 55.2 (29) Interbody Fusion 24 months 60.7 (28) 42.9 (28) in Patients with Degenerative Disc 48 months NR NR 72 months NR NR Disease (Overall success means that (Study 6) a patient had successes in fusion, (No Suggestions) pain, and neurological status and had no additional surgery classified as 'failure' and no serious, device or device/surgery associated, adverse event.")

Overall success in published study

Author Year					
Country					
Trial # or Name	Additional surgeries from FDA summary data			Additional surgeries in published study	
Haid, 2004					
USA		BMP	Control		
Interfix Device for	Number of patients with surgeries:			Not Reported	
Posterior Lumbar	Revisions	1	0		
	Removals	0	0		
Interbody Eusion					
Interbody Fusion in Patients with Degenerative Disc	Supplemental Fixations	2	3		

Author Year

Country

Trial # or Name Employed postoperatively FDA data summary

Haid, 2004						
USA		BMP	Control		BMP	Control
Interfix Device for	Working (n)			Working %		
Posterior Lumbar	Preop	9	15	Preop	26.5%	45.5%
Interbody Fusion	6 weeks	5	3	6 weeks	NR	NR
in Patients with	3 months	6	7	3 months	NR	NR
Degenerative Disc	6 months	12	13	6 months	NR	NR
Disease	12 months	14	15	12 months	NR	NR
Disease	24 months	12	14	24 months	35.3% = 12 pts	42.4% = 14 pts
	48 months	NR	NR	48 months	NR	NR
(Study 6)	72 months	NR	NR	72 months	NR	NR

No significant differences between groups.

Employed postoperatively from published study

Author Year							
Country							
Trial # or Name	Hospitalization days			Hospitalization days from p	ublished study		
Haid, 2004							
USA		BMP	Control		BMP	Control	
Interfix Device for	Hospitalization days	3.4 (34)	5.2 (33)	Hospitalization days	3.4	5.2	_
Posterior Lumbar Interbody Fusion in Patients with Degenerative Disc Disease	Not a significant difference. One patient in control group stayed 56 days. Maximum stay in BMP group was 7 days.						

Author

Year

Country Trial # or Name FDA adverse events

Selected adverse events from case histories

Adverse events from published study

Haid,	2004
1101	

USA		BMP	Control		BMP	Control		BMP	Control
Interfix Device for	Adverse Events* (n):			Patients Reporting Event (n):			Patients Reporting Event		
Posterior Lumbar	Anatomic Difficulty	1	3	Wound Infection	3	1	(n):	0	1
Interbody Fusion	Back and/or Leg Pain	13	11	Wound Dehiscence	1	1	Deep Vein Thrombosis	3	2
in Patients with	Cancer	NR	NR	Urinary Retention	0	4	Dural Tears	16	18
Degenerative Disc	Cardiovascular	9	11	Retrograde Ejaculation	0	0	Neurological complications	24	4
Disease	Death	1	1	Cancer	0	0			
2100000	Dural Injury	3	2	Leg Swelling/Edema	1	0	New bone formation		
	Gastrointestinal	11	11	Osteopenia/Osteoporosis	0	0	extending outside the disc		
(Study 6)	Implant Displaced	NR	NR				space and into the spinal		
(etady e)	Infection	8	6				canal or neuroforaminal		
	Malpositioned Implant	NR	NR				(p<0.0001).		
	Neurological	16	18						
	Non-Union	2	3				"Despite the statistical		
	Other	21	23				difference, this unexpected		
	Other Pain	14	11				posterior bone formation		
	Respiratory	0	2				was not correlated to a		
	Retrograde Ejaculation	NR	NR				recurrence of increase in		
	Spinal Event	5	5				leg pain from the		
	Subsidence	NR	NR				preoperative state."		
	Trauma	8	9						
	Urogenital	1	5				"In the investigational		
	Vascular Intra-Op	NR	NR				group, cage placement was		
	Vertebral Fracture	NR	NR				strongly associated with the		
	Total Events	113	121				development of bone in the		
							spinal canalNo patient in		
	*Number of events instead of						either group whose cage		
	number of patients with						had been recessed by 3		
	events is reported here as						mm or more developed		
	data reported to FDA does						bone in the spinal canal."		
	not allow calculation of								
	cumulative patients.								

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Jnpublished	ALIF	Inclusion Criteria:	A. Open anterior	~) <u>9</u> .04p			
study**		-Discogenic back pain	interbody			BMP	Control
	48 months	-Preoperative Oswestry score ≥ 35*	implantation of the	95 patients randomized		45.8	45.5
nfuse Bone		-≤ Grade 1 spondylolisthesis	rhBMP-2/ACS			20.8	13.6
Dowel Pivotal		-Single-level DDD from L4-S1	/allograph bone dowels	BMP patients analyzed = 44-		25.0	40.9
Study		-At least 18 years of age -No response to 6 months of	doweis	55		8.3	0
enrolled 85		conservative treatment	B. Open anterior	Control actionts analyzed			
atients prior to		Exclusion Criteria:	interbody	Control patients analyzed = 22-30			
ermination)		-Other fusion surgery at same level	implantation of	22-30			
Study 5)		-Requires steroids or other medications that	allograph bone	9 patients in BMP group			
,		might interfere with fusion ->40% over ideal weight	dowels in which the intramedullary	withdrew prior to surgery			
		-Has osteopenia, osteoporosis, or	cavity is filled with	1 patient in control group			
		osteomalacia to a degree that spinal instrumentation would be contraindicated	autogenous bone	withdrew prior to surgery			
		-Has Waddel signs ≥ 3		3 patients lost to followup in			
		-Tobacco user at time of surgery		BMP group where LTF is			
		-Substance abuser		defined as not being seen			
		-Previous exposure to BMP		for two or more consecutive			
				time periods			
				1 patient lost to followup in control group			

Author Year Country Trial # or Name Unpublished study** Infuse Bone Dowel Pivotal Study (enrolled 85

patients prior to termination) (Study 5)

Author Year Country	Nonmedical Histor Baseline Character			Medical history Baseline characteristics			
Trial # or Name	from FDA data sur			from FDA data summary			
Unpublished							
study**		BMP	Control		BMP	Control	
	Age	39.7	42.1				
nfuse Bone	Height	67.0	66.2	Prior Tobacco:	32.7	36.7	
Dowel Pivotal	Weight	172.1	171.3	Alcohol use:	18.2	20.0	
Study	% Male	43.6	30.0	Prior Back Surgery:	32.7	33.3	
	% White	96.4	86.7	Diabetic:	0	3.3	
enrolled 85	% Married	70.9	70.0	% not taking Non Narcotic:	47.3	53.3	
patients prior to	% ED>HS	49.1	36.7	% not taking Weak Narcotic:	34.5	26.7	
termination)	% Working	65.5	53.3	% not taking Strong Narcotic:	92.7	76.7	
(Study 5)	% Worker's Comp	32.7	33.3	% not taking Muscle Relaxer:	81.8	60.0	
	% Spinal Litigation	5.5	6.7	C C			
				Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	NR	NR	
				%Osteophytes:	NR	NR	
				%↓Disc Height:	NR	NR	
				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				% ≥ 3 of above:	NR	NR	

Author Year		
Country		
Trial # or Name	ODI Results from FDA data summary	ODI results from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country Trial # or Name	SF-36 results from FDA data summary	SF-36 results from published study
Unpublished study**	Sr-30 results from FDA data summary	
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country		
Trial # or Name	Back pain results from FDA data summary	Back pain results from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country Trial # or Name	Leg pain results from FDA data summary	Leg pain results from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country Trial # or Name	Neck disability index from FDA summary	Neck disability index from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study	Not Relevant	Not Relevant
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country Trial # or Name	Neck pain score from FDA summary
Unpublished study**	
Infuse Bone Dowel Pivotal Study	Not Relevant
(enrolled 85 patients prior to termination) (Study 5)	

Author Year Country	Arm pain scores from FDA	Arm pain scores from
Trial # or Name	summary	published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study	Not Relevant	Not Relevant
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country		
Trial # or Name	Neurological Status Results from FDA data summary	Neurological results from published summary
Unpublished		
study**		
		Not applicable
Infuse Bone		
Dowel Pivotal		
Study		
(enrolled 85		
patients prior to		
termination)		
(Study 5)		

Author Year Country		
Trial # or Name	Radiologic fusion results from FDA data summary	Radiologic fusion results from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country		
Trial # or Name	Overall success FDA summary data	Overall success in published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year Country			
Trial # or Name	Additional surgeries from FDA summary data	Additional surgeries in published study	
Unpublished study**			
Infuse Bone Dowel Pivotal Study		Not applicable	
(enrolled 85 patients prior to termination) (Study 5)			

Author Year Country			
Trial # or Name	Employed postoperatively FDA data summary	Employed postoperatively from published study	
Unpublished			
study**			
		Not applicable	
Infuse Bone			
Dowel Pivotal			
Study			
(enrolled 85			
patients prior to			
termination)			
(Study 5)			
(0,00,0)			

Author Year		
Country		
Trial # or Name	Hospitalization days	Hospitalization days from published study
Unpublished study**		
Infuse Bone Dowel Pivotal Study		Not Applicable
(enrolled 85 patients prior to termination) (Study 5)		

Author Year					
Country					
Trial # or Name	FDA adverse events			Selected adverse events from case histories	Adverse events from published study
Unpublished study**		BMP	Control		
	Adverse Events* (n):				Not applicable
Infuse Bone	Anatomic Difficulty	1	2		
Dowel Pivotal	Back and/or Leg Pain	9	12		
Study	Cancer	1	0		
	Cardiovascular	3	2		
(enrolled 85	Death	NR	NR		
patients prior to	Dural Injury	NR	NR		
termination)	Gastrointestinal	8	8		
(Study 5)	Graft site related	0	1		
	Implant Displaced	1	0		
	Infection	5	3		
	Malpositioned Implant	NR	NR		
	Neurological	15	4		
	Non-Union	1	3		
	Other	7	11		
	Other Pain	12	4		
	Respiratory	2	4		
	Retrograde Ejaculation	NR	NR		
	Spinal Event	3	1		
	Subsidence	1	0		
	Trauma	10	9		
	Urogenital	7	2		
	Vascular Intra-Op	1	0		
	Vertebral Fracture	NR	NR		
	Total Events	NR	NR		

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions		
Unpublished study** Infuse/Inter Fix ALIF Pilot RCT (Study 9)	ALIF ≥ 24 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score ≥ 35 -≤ Grade 1 spondylolisthesis -Single-level DDD from L2-S1 -At least 18 years of age -No response to 6 months of conservative treatment Exclusion Criteria: -Other fusion surgery at same level -Requires steroids or other medications that might interfere with fusion ->40% over ideal weight -Has osteopenia, osteoporosis, or osteomalacia to a degree that spinal instrumentation would be contraindicated -History of endocrine or metabolic disorder known to affect osteogenesis -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser -Previous exposure to BMP	A. BMP-2/ACS/LC: Open implantation of 8.4-16.8 mg/ml of BMP-2 B. LC/Bone: Open implantation of NOVUS''' LC device packed with autogenous bone taken from the iliac crest	45 randomized (25/20) BMP/control: Number Analyzed: 23-25/15- 20 Number Death: 0/1 Number Failure: 0/2: Number lost to follow-up: 0/2	% Low Profile Brace: % High Profile Brace: % Corset: % Other	BMP 64.0 28.0 8.0	Control 52.6 0.0 42.1 5.3

Author Year Country Trial # or Name Unpublished study**

Infuse/Inter Fix ALIF Pilot RCT

(Study 9)

Year	Nonmedical Histor Baseline Character			Medical history Baseline characteristics			
Country							
Trial # or Name	from FDA data summary			from FDA data summary			
Unpublished							
study**		BMP	Control		BMP	Control	
Infuse/Inter Fix	Age	45.9	44.9	Prior Tobacco:	40.0	30.0	
ALIF Pilot RCT	Height	66.7	69.2	Alcohol use:	24.0	20.0	
ALIF PIIOL KUT	Weight	178.1	189.4	Prior Back Surgery:	44.0	35.0	
(Study 0)	% Male	44.0	45.0	Diabetic:	0.0	5.0	
(Study 9)	% White	100.0	90.0	% not taking Non Narcotic:	48.0	36.8	
	% Married	84.0	80.0	% not taking Weak Narcotic:	56.0	63.2	
	% ED>HS	25.0	45.0	% not taking Strong Narcotic:	88.0	100.0	
	% Working	NR	NR	% not taking Muscle Relaxer:	72.0	84.2	
	% Worker's Comp	24.0	25.0	:			
	% Spinal Litigation	8.0	5.0				
				Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	NR	NR	
				%Osteophytes:	NR	NR	
				%↓Disc Height:	NR	NR	
				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				% ≥ 3 of above:	NR	NR	

Author Year Country		
Trial # or Name	ODI Results from FDA data summary	ODI results from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		Not Applicable
(Study 9)		

Author Year Country		
Trial # or Name	SF-36 results from FDA data summary	SF-36 results from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		Not Applicable
(Study 9)		

Author Year Country		
Trial # or Name	Back pain results from FDA data summary	Back pain results from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year Country			
Trial # or Name	Leg pain results from FDA data summary	Leg pain results from published study	_
Unpublished study**			_
Infuse/Inter Fix ALIF Pilot RCT			
(Study 9)			

Author Year		
Country	Neck disability index	Neck disability index
	from FDA summary	from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year		
Country	Neck pain score from FDA	
Trial # or Name	summary	
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year		
Country	Arm pain scores from FDA	Arm pain scores from
Trial # or Name Unpublished study**	summary	published study
Infuse/Inter Fix ALIF Pilot RCT		Not Relevant
(Study 9)		

Author Year Country		
Trial # or Name	Neurological Status Results from FDA data summary	Neurological results from published summary
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year Country Trial # or Name Unpublished study**	Radiologic fusion results from FDA data summary	Radiologic fusion results from published study
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year		
Country		
Trial # or Name Unpublished study**	Overall success FDA summary data	Overall success in published study
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year		
Country		
Trial # or Name	Additional surgeries from FDA summary data	Additional surgeries in published study
Unpublished		
study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year Country		
Trial # or Name	Employed postoperatively FDA data summary	Employed postoperatively from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		
(Study 9)		

Author Year Country		
	Hospitalization days	Hospitalization days from published study
Unpublished study**		
Infuse/Inter Fix ALIF Pilot RCT		

(Study 9)

Author Year			
Country		••••••••••••••••••••••••••••••••••••••	
	FDA adverse events	Selected adverse events from case histories	Adverse events from published study
Unpublished study**			
Infuse/Inter Fix ALIF Pilot RCT			
(Study 9)			

Author Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Number randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group	Co-Interventions			
Unpublished Study** rhBMP-2/BCP Canada Pivotal RCT (Study 13)	PL 72 months	Inclusion Criteria: -Discogenic back pain -Preoperative Oswestry score > 30 -≤ Grade 1 spondylolisthesis -Single-level DDD from L1-S1 -At least 18 years of age -No response to 6 months of conservative treatment <u>Exclusion Criteria:</u> -Previous fusion surgery at same level -Requires medications that might interfere with fusion or bone metabolism -Has osteopenia, osteoporosis, or osteomalacia -Weight > 40% over ideal for age/height -Has Waddel signs ≥ 3 -Tobacco user at time of surgery -Substance abuser -Previous exposure to BMP	A. 2.I mg/ml rhBMP- 2BCP posterolateral implantation bilaterally on each side of the spine with either TSRH Spinal System or the CD HORIZON Spinal System B. Posterolateral implantation bilaterally on each side of the spine with autogenous bone from the patient's iliac crest with either TSRH Spinal System or the CD HORIZON Spinal System	Number Randomized: 197 (BMP=98, Control=99) Number Analyzed: BMP=2 to 98, Control=1 to 98 Number Withdrawn: NR Number Lost to follow-up: BMP=1, Control=3	% Low Profile Brace: % High Profile Brace: % Corset: % Other	BMP 9.1 0.0 68.8 22.1	Control 11.5 0.0 66.7 21.8	

Author Year Country Trial # or Name Unpublished Study** rhBMP-2/BCP Canada Pivotal RCT

(Study 13)

Author Year	Nonmedical Histor	у		Medical history			
Country	Baseline Character	istics		Baseline characteristics			
Trial # or Name	from FDA data summary		from FDA data summary	from FDA data summary			
Unpublished							
Study**		BMP	Control		BMP	Control	
hBMP-2/BCP	Age	53.0	53.0	Prior Tobacco:	29.6	26.3	
Canada Pivotal	Height	65.9	66.5	Alcohol use:	37.8	44.4	
RCT	Weight	177.6	172.1	Prior Back Surgery:	19.4	20.2	
	% Male	35.7	48.5	Diabetic:	2.0	6.1	
(Study 13)	% White	98.9	95.7	% not taking Non Narcotic:	53.1	52.0	
	% Married	72.5	70.5	% not taking Weak Narcotic:	57.1	65.3	
	% ED>HS	48.2	37.9	% not taking Strong Narcotic:	64.3	63.6	
	% Working	20.4	24.2	% not taking Muscle Relaxer:	74.5	77.6	
	% Worker's Comp	11.2	14.1				
	% Spinal Litigation	5.1	3.0	Characteristics of Degenerative			
				Disc Disease:			
				%Instability:	NR	NR	
				%Osteophytes:	NR	NR	
				%↓Disc Height:	NR	NR	
				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				$\% \ge 3$ of above:	NR	NR	

Author Year Country		
	ODI Results from FDA data summary	ODI results from published study
Unpublished Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year Country			
•	SF-36 results from FDA data summary	SF-36 results from published study	_
Unpublished Study**			_
rhBMP-2/BCP Canada Pivotal RCT (Study 13)			_

Author Year Country		
Trial # or Name	Back pain results from FDA data summary	Back pain results from published study
Unpublished Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year Country			
Trial # or Name	Leg pain results from FDA data summary	Leg pain results from published study	
Unpublished			
Study**			
rhBMP-2/BCP			
Canada Pivotal			
RCT			
(Study 13)			

Author Year Country Trial # or Name Unpublished Study**	Neck disability index from FDA summary	Neck disability index from published study
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year	
Country	Neck pain score from FDA
Trial # or Name	summary
Unpublished Study**	
rhBMP-2/BCP Canada Pivotal RCT (Study 13)	

Author Year		
Country	Arm pain scores from FDA	Arm pain scores from
Trial # or Name	summary	published study
Unpublished		
Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		Not Relevant

Author Year		
Country		
Trial # or Name	Neurological Status Results from FDA data summary	Neurological results from published summary
Unpublished		
Study**		
rhBMP-2/BCP		
Canada Pivotal		
RCT		
(Study 13)		

Author Year Country		
Trial # or Name	Radiologic fusion results from FDA data summary	Radiologic fusion results from published study
Unpublished Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year Country		
	Overall success FDA summary data	Overall success in published study
Unpublished Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year Country			
Trial # or Name	Additional surgeries from FDA summary data	Additional surgeries in published study	
Unpublished Study**			
rhBMP-2/BCP Canada Pivotal RCT (Study 13)			

Author Year Country		
Trial # or Name	Employed postoperatively FDA data summary	Employed postoperatively from published study
Unpublished Study**		
rhBMP-2/BCP Canada Pivotal RCT (Study 13)		

Author Year Country		
Trial # or Name	Hospitalization days	Hospitalization days from published study
Unpublished Study**		
Siddy		
rhBMP-2/BCP		
Canada Pivotal RCT		
(Study 13)		

Author Year Country			
Trial # or Name	FDA adverse events	Selected adverse events from case histories	Adverse events from published study
Unpublished Study**			
rhBMP-2/BCP Canada Pivotal RCT (Study 13)			

				Number randomized Number analyzed by			
				group			
Author				Number withdrawn by			
Year				group			
Country	Type of trial	Protocol inclusion criteria/		Number lost to follow-up			
Trial # or Name		Protocol exclusion criteria	Interventions	by group	Co-Interventions		
Unpublished	ACDF	Inclusion Criteria:	A. Anterior cervical				
Study**		-Cervical disk disease	implantation of the			BMP	Control
	24 months	-Preoperative Neck Disability score > 30	InFUSE Bone	Randomized=3 (BMP N=2,	Soft collar	NR	NR
INFUSE®/CORN		-Single level requiring fusion from C2-C7	Graft/CORNERST	Control N=1)	Hard collar	NR	NR
ERSTONE®		-No previous surgical intervention at involved level	ONE-SR Allograft		Other	NR	NR
ACDF Pivotal RCT			Ring/ATLANTIS Anterior Cervical	No patients withdrawn or	None	NR	NR
RUI		-At least 18 years of age -No response to 6 weeks of	Plate System	lost to follow-up			
(Enrollment		nonsurgical treatment or presence of	Fiale System	·			
stopped after 3		progressive symptoms	B. Anterior cervical	No analysis due to early			
patients, not		Exclusion Criteria:	implantation of	stopping of trial			
based on any		-Cervical spinal condition requiring surgical	CORNERSTONE-				
safety concerns,		treatment other than symptomatic cervical	SR Allograft				
but because of		disc disease at the involved level(s)	Ring/ATLANTIS				
pursing different		-Requires post-operative medications that	Anterior Cervical				
strategic		interfere with fusion (e.g. steroids,	Plate System filled				
initiatives.)		prolonged NSAIDs)	with autogenous				
(Study 17)		-Has received drugs that may interfere with	bone				
		bone metabolism within 2 weeks of surgery					
		(e.g., steroids, methotrexate)					
		-Previous diagnosis of osteopenia,					
		osteomalacia, or osteoporosis					
		-Substance abuser					
		-Previous exposure to BMP					

Author
Year
Country
Trial # or Name
Unpublished
Study**
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT
(Enrollment
stopped after 3
patients, not
based on any
safety concerns,
but because of
pursing different
strategic
initiatives.)
(Study 17)

Author Year Country Trial # or Name	Nonmedical Histor Baseline Character from FDA data sum	istics		Medical history Baseline characteristics from FDA data summary			
Unpublished Study**		BMP	Control		BMP	Control	
INFUSE®/CORN	Age	NR	NR	Prior Tobacco:	NR	NR	
ERSTONE®	Height	NR	NR	Alcohol use:	NR	NR	
ACDF Pivotal	Weight	NR	NR	Prior Back Surgery:	NR	NR	
RCT	% Male	NR	NR	Diabetic:	NR	NR	
	% White	NR	NR	% not taking Non Narcotic:	NR	NR	
Enrollment	% Married	NR	NR	% not taking Weak Narcotic:	NR	NR	
stopped after 3	% ED>HS	NR	NR	% not taking Strong Narcotic:	NR	NR	
atients, not	% Working	NR	NR	% not taking Muscle Relaxer:	NR	NR	
ased on any	% Worker's Comp	NR	NR				
afety concerns,	% Spinal Litigation	NR	NR	Characteristics of Degenerative			
out because of				Disc Disease:			
oursing different				%Instability:	NR	NR	
trategic				%Osteophytes:	NR	NR	
nitiatives.)				%↓Disc Height:	NR	NR	
(Study 17)				%Thick Ligaments:	NR	NR	
				%Disc Herniation:	NR	NR	
				%Facet Joint Degeneration:	NR	NR	
				% ≥ 3 of above:	NR	NR	

Author Year Country		
Trial # or Name	ODI Results from FDA data summary	ODI results from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country		
	SF-36 results from FDA data summary	SF-36 results from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year		
Country Trial # or Name	Back pain results from FDA data summary	Back pain results from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name	Leg pain results from FDA data summary	Leg pain results from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name	Neck disability index from FDA summary	Neck disability index from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name	Neck pain score from FDA summary
Unpublished Study**	
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT	
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)	

Author Year Country Trial # or Name Unpublished	Arm pain scores from FDA summary	Arm pain scores from published study
Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		Not Relevant
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name Unpublished Study**	Neurological Status Results from FDA data summary	Neurological results from published summary
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country		
Trial # or Name	Radiologic fusion results from FDA data summary	Radiologic fusion results from published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country		
Trial # or Name	Overall success FDA summary data	Overall success in published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country		
Trial # or Name	Additional surgeries from FDA summary data	Additional surgeries in published study
Unpublished Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name	Employed postoperatively FDA data summary	Employed postoperatively from published study	
Unpublished Study**			
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT			
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)			

Author Year Country <u>Trial # or Name</u> Unpublished	Hospitalization days	Hospitalization days from published study
Study**		
INFUSE®/CORN ERSTONE® ACDF Pivotal RCT		
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)		

Author Year Country Trial # or Name Unpublished	FDA adverse events	Selected adverse events from case histories	Adverse events from published study
Study** INFUSE®/CORN ERSTONE® ACDF Pivotal RCT			
(Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.) (Study 17)			

Author Year Country Trial # or Name	PROTOCOL Was the method of randomization adequate?	PUBLICATION Was the method of randomization adequate?	PROTOCOL Was the treatment allocation concealed?	PUBLICATION Was the treatment allocation concealed?
Baskin, 2003 USA Anterior Cervical	Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in SAS	Unclear	Probably: "Both the investigator and the patient will be blinded to the randomization until the Informed Consent Form is signed. After the patient signs the informed	Unclear
Spine	0,10		consent form, the investigator or designee will open the envelope that corresponds to	
N=33			the patient's assigned clinical trial number"	
(Study 7)				
Boden, 2000 USA	Yes; "Patients will be randomized to a randomization schedule generated using the Plan Procedure in Statistical	Unclear; "The patients were randomized in a 3:1 investigational: control block	"Following affirmation of eligibility, the investigator or designee will open the envelope that corresponds to the patient's	Unclear
The use of BMP-2 in interbody fusion cages	Analysis System (SAS)"	fashion to receive anterior lumbar arthrodesis Randomization within each site was achieved by the marginal	assigned study number to determine if the patient will be randomized into the control	
ALIF		balancing method."	the patient providing informed consent to enter the study."	
N=14				
(Study 1)				
Boden, 2002 USA	Yes; Generated using the Plan Procedure in Statistical Analysis System (SAS)	NA-unpublished	Yes; Investigator or designee opens envelope corresponding to assigned sequential number	NA-unpublished
rhBMP-2/BCP US Pilot RCT	Version 6.12 or higher			
PLF				
(Study 12)				

Author Year Country Trial # or Name	PROTOCOL Was the patient blinded to the intervention?	PUBLICATION Was the patient blinded to the intervention?	PROTOCOL Was the care provider blinded to the intervention?	PUBLICATION Was the care provider blinded to the intervention?
Baskin, 2003 USA	No	No - non-blinded	Surgeon not blinded	Surgeon not blinded
Anterior Cervical Spine				
N=33				
(Study 7)				
Boden, 2000 USA	No	No - non-blinded	No	No
The use of BMP-2 in interbody fusion cages				
ALIF				
N=14				
(Study 1)				
Boden, 2002 USA	No	NA-unpublished	No	NA-unpublished
rhBMP-2/BCP US Pilot RCT				
PLF				
(Study 12)				

Author Year Country <u>Trial # or Name</u> Baskin, 2003 USA Anterior Cervical Spine N=33 (Study 7)	PROTOCOL Was the outcome assessor blinded to the intervention? For fusion: "Independent radiologists who evaluate the radiographs will be blinded to treatment" Other outcomes unclear		FDA SUMMARY Was the drop-out rate described and acceptable? Treatment group: 4/18 (22%) not analyzed at 24 months; Control group: 3/15 (20%) not analyzed at 24 months However, 39% fusion data missing for treatment group vs 27% missing for control group	PUBLICATION Was the drop-out rate described and acceptable? "Three investigational patients and one control patient were lost to follow-up at 24 months." No explanation for missing data for one investigational patient and two control patients. However, fusion data missing for 44% for treatment group and 33% for control group
Boden, 2000 USA The use of BMP-2 in interbody fusion cages ALIF N=14 (Study 1)	"Fusion will be determined by an independent evaluator and reported on the Radiographic CT Review form in the Case Report Forms."	"Plain radiographs were evaluated by three blinded radiologists for evidence of fusion, which was defined asComputed tomography scans were evaluated by three blinded neuroradiologist and two blinded surgeons for evidence of fusion"	BMP group: 0/11=0% Control group: 1/3=33% (1 patient was considered a failure)	BMP group: 0/11=0% Control group: 1/3=33% (1 patient was considered a failure)
Boden, 2002 USA rhBMP-2/BCP US Pilot RCT PLF (Study 12)	Yes; independent radiologists who evaluate the radiographs and CT scans will be blinded to treatment.	NA-unpublished	Unclear; not described	NA-unpublished

Author Year Country Trial # or Name	FDA SUMMARY Were all randomized participants analyzed in the group to which they were allocated?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?	FDA SUMMARY Are reports of the study free from suggestion of bias?	PUBLICATION Are reports of the study free from suggestion of bias?
Baskin, 2003 USA	No; missing data is not included and the patient is removed from the numerator and denominator in	No; missing data is not included and the patient is removed from the numerator and denominator in calculation of	Yes	Did not report percentages of tobacco use by group when other variables reported by
Anterior Cervical Spine	calculation of percentages. For some outcomes, this greatly overestimates success.	percentages. For some outcomes, this greatly overestimates success.		percentages as well.
N=33				
(Study 7)				
Boden, 2000 USA	Only attrition was 1 fusion failure in control group.	Only attrition was 1 fusion failure in control group.	Yes	Yes
The use of BMP-2 in interbody fusion cages				
ALIF				
N=14				
(Study 1)				
Boden, 2002 USA	No; 89% evaluated for fusion at 24 months; variable for other outcomes	NA-unpublished	Yes	Yes
rhBMP-2/BCP US Pilot RCT				
PLF				
(Study 12)				

Author Year Country Trial # or Name Baskin, 2003 USA	FDA SUMMARY Were the groups similar at baseline regarding the most important prognostic indicators? Yes, except for Tobacco use: 28% in BMP group vs 47% in control group	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators? Unclear; as no information on those with missing information	FDA SUMMARY Were co-interventions avoided or similar? Investigational group: 67% soft collar, 28% hard collar, 6% none	or similar? "Postoperative bracing requirements were left to the discretion of the individual
Anterior Cervical Spine			Control group: 53% soft collar, 40% hard collar , 7% none	surgeons."
N=33				
(Study 7)				
Boden, 2000 USA	No; BMP group weighed 166 lbs on average vs 211 lbs in control group; BMP group 46% male vs 67% in	Only patient weight listed as statistically significant	BMP Group: Brace 73%, Corset 27%, Other 0%	Unclear; NR
The use of BMP-2 in interbody fusion cages	control group; 55% of BMP group employed vs 67% in control group; 9% of BMP group use tobacco vs 33% in control group; 46% of BMP		Control group: Brace 67%, Corset 33%; Other 33%	
ALIF	group has history of back surgery vs 0% in control group			
N=14				
(Study 1)				
Boden, 2002 USA	No; BMP group had significantly more patients with > HS education (82% vs 40%; p=0.021) and fewer	NA-unpublished	Yes, similar	NA-unpublished
rhBMP-2/BCP US Pilot RCT	with diabetes (4.5% vs 40%; p=0.079)			
PLF				
(Study 12)				

Author Year Country Trial # or Name	FDA SUMMARY Was the compliance acceptable in all groups?	acceptable in all groups?	FDA SUMMARY Was the timing of the outcome assessment similar in all groups?	PUBLICATION Was the timing of the outcome assessment similar in all groups?
Baskin, 2003 USA	Unclear; NR	Unclear; NR	Yes	Yes
Anterior Cervical Spine				
N=33				
(Study 7)				
Boden, 2000 USA	Unclear; NR	Unclear; NR	Yes	Yes
The use of BMP-2 in interbody fusion cages				
ALIF				
N=14				
(Study 1)				
Boden, 2002 USA	Yes; > 80% brace still used at 6 weeks	NA-unpublished	Yes	NA-unpublished
rhBMP-2/BCP US Pilot RCT				
PLF				
(Study 12)				

Author Year Country Trial # or Name	RISK OF BIAS Based on all Data	RISK OF BIAS Based on Publication (and Protocol if Publically Available)	Comments
Baskin, 2003 USA	Moderate (Fair quality) for outcomes other than fusion		Is not a Low ROB (Good quality) due to missing data, lack of intention to treat analysis, and uncertain blinding of outcome assessors other
Anterior Cervical Spine	High (Poor quality) for fusion outcomes due to large amount of missing data and no ITT		than radiologists
N=33	U U		
(Study 7)			
Boden, 2000 USA The use of BMP-2	High (Poor quality) for all outcomes	High (Poor quality) for all outcomes	Randomization revealed to patient before Informed consent given; control group too small; significant baseline differences
in interbody fusion cages			
ALIF			
N=14			
(Study 1)			
Boden, 2002 USA	Poor	NA-unpublished.	
rhBMP-2/BCP US Pilot RCT			
PLF			
(Study 12)			

Author Year Country Trial # or Name	PROTOCOL Was the method of randomization adequate?	PUBLICATION Was the method of randomization adequate?	PROTOCOL Was the treatment allocation concealed?	PUBLICATION Was the treatment allocation concealed?
Burkus, 2002 USA Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages ALIF	Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in SAS	Unclear	Probably: "Both the investigator and the patient will be blinded to the randomization until the Informed Consent Form is signed. After the patient signs the informed consent form, the investigator or designee will open the envelope that corresponds to the patient's assigned clinical trial number"	Unclear
N=279				
(Study 2)				
Burkus, 2002 USA Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2	Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in SAS	Unclear	Probably: "Both the investigator and the patient will be blinded to the randomization until the Informed Consent Form is signed. After the patient signs the informed consent form, the investigator or designee will open the envelope that corresponds to the patient's assigned clinical trial number"	Unclear
ALIF				
N=46				
(Study 4)				

Author Year Country	PROTOCOL Was the patient blinded to	PUBLICATION	PROTOCOL Was the care provider blinded to	PUBLICATION
Trial # or Name	the intervention?	Was the patient blinded to the intervention?	the intervention?	Was the care provider blinded to the intervention?
Burkus, 2002 USA	No	Unclear	Surgeon not blinded	Unclear
Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages				
ALIF				
N=279				
(Study 2)				
Burkus, 2002 USA	No	Unclear	Surgeon not blinded	Unclear
Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2				
ALIF				
N=46				
(Study 4)				

Author Year Country Trial # or Name Burkus, 2002 USA Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages ALIF	PROTOCOL Was the outcome assessor blinded to the intervention? For fusion: "The radiographic review will be completed by two independent, blinded radiologists and reported on the Radiographic Review case report form. If there is a disagreement regarding the ultimate fusion status of the patient between the two radiologists, a third independent, blinded radiologist will be used to break the tie."	PUBLICATION Was the outcome assessor blinded to the intervention? For fusion: "Two independent, blinded radiologists interpreted all radiographs and CT scans. A third independent, blinded radiologist was used to adjudicate conflicting fusion findings."	FDA SUMMARY Was the drop-out rate described and acceptable? BMP group: 18/143 = 13% (not included are 0 deaths and 9 failures) Control group: 25/136=18% (not included are 1 death and 12 failures)	PUBLICATION Was the drop-out rate described and acceptable? BMP group: 20/143 = 14% Control group: 27/136=20%
N=279	Other outcomes unclear			
(Study 2)				
Burkus, 2002 USA	For fusion: "The radiographic review will be completed by an independent,	For fusion: "Two independent,	BMP group: 0/24 =0%	BMP group: 0%
Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2	blinded radiologist and reported on the Radiographic Review case report form." Other outcomes unclear	radiographs and CT scans. A third	Control group: 5/22=23% (not included in the 17 are 1 death and 3 failures)	Control group: 23%
ALIF				
N=46				
(Study 4)				

Author Year Country Trial # or Name	FDA SUMMARY Were all randomized participants analyzed in the group to which they were allocated?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?	FDA SUMMARY Are reports of the study free from suggestion of bias?	PUBLICATION Are reports of the study free from suggestion of bias?
Burkus, 2002 USA	No; missing data is not included.	No; missing data is not included.	Yes	Yes
Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages				
ALIF				
N=279				
(Study 2)				
Burkus, 2002 USA	No; missing data is not included.	No; missing data is not included.	Yes	Yes
Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2				
ALIF				
N=46				
(Study 4)				

Author Year Country Trial # or Name	FDA SUMMARY Were the groups similar at baseline regarding the most important prognostic indicators?	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators?	FDA SUMMARY Were co-interventions avoided or similar?	or similar?
Burkus, 2002 USA Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages	Yes; no characteristic > 10% difference between group	Unclear; as no information on those with missing information	 BMP group: Low profile brace 51%; High profile brace: 7%; Corset 34%; Other 7% Control group: Low profile brace 52%; High profile brace: 4%; Corset 35%; Other: 9% 	"Postoperatively, patients were placed in a soft lumbar corset. Activities were advanced by the treating physician. Isometric strengthening and an exercise program were started at 6 weeks after surgery."
ALIF				
N=279				
(Study 2)				
Burkus, 2002 USA Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2	No; Although no p-values were significant, 33% male in the BMP group vs 46% male in the control group; 21 % receiving worker's compensation in the BMP group vs 32% in the control group; 46% had previous back surgery in the BMP group vs 32% in the control group	Table 1 includes data on gender, worker's comp, and previous surgeries but no p-values were given	BMP group: Low profile brace 46%; High profile brace: 21%; Corset 25%; Other 8% Control group: Low profile brace 46%; High profile brace: 14%; Corset 41%; Other: 0% Differences in Corset use	"All patients were instructed to wear an external orthosis for 6 to 12 weeks after surgery. Patients were encouraged to ambulate immediately after surgery. Physical activities were advanced at the discretion of the attending surgeon."
ALIF				
N=46				
(Study 4)				

Author Year Country Trial # or Name	FDA SUMMARY Was the compliance acceptable in all groups?	PUBLICATION Was the compliance acceptable in all groups?	FDA SUMMARY Was the timing of the outcome assessment similar in all groups?	PUBLICATION Was the timing of the outcome assessment similar in all groups?
Burkus, 2002 USA	Unclear, NR	Unclear; NR	Yes	Yes
Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages ALIF				
N=279				
(Study 2)				
Burkus, 2002 USA	Unclear, NR	Unclear; NR	Yes	Yes
Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2				
ALIF				
N=46				
(Study 4)				

Author Year Country Trial # or Name Burkus, 2002 USA Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages ALIF N=279 (Study 2)	RISK OF BIAS Based on all Data Moderate (Fair quality) for all outcomes	RISK OF BIAS Based on Publication (and Protocol if Publically Available) Moderate (Fair quality) for all outcomes	Comments Is not a Low ROB (Good quality) due to lack of intention to treat analysis and uncertain blinding of outcome assessors other than radiologists
Burkus, 2002 USA Clinical and radiographic outcomes of anterior lumbar interbody fusion using BMP-2 ALIF N=46 (Study 4)	Moderate (Fair quality) for all outcomes	Moderate (Fair quality) for all outcomes	Is not a Low ROB (Good quality) due to lack of intention to treat analysis and uncertain blinding of outcome assessors other than radiologists and groups not similar at baseline

Author Year Country Trial # or Name	PROTOCOL Was the method of randomization adequate?	PUBLICATION Was the method of randomization adequate?	PROTOCOL Was the treatment allocation concealed?	PUBLICATION Was the treatment allocation concealed?
Dawson, 2009 USA	Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in	Unclear	No; Patients were not blinded	Unclear
Mastergraft Pilot	Statistical analysis System			
CD HORIZON				
IDE G020056				
(Study 8)				
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT	Yes; Generated using the Plan Procedure in Statistical Analysis System (SAS) Version 6.12 or higher	Unclear; Centrally generated	Yes; Investigator or designee opens envelope corresponding to assigned sequential number	Yes; Sealed envelopes with sequential numbers
(Study 14)				
Gornet, 2011 USA MAVERICK™ Disc Pivotal RCT	Yes; Plan Procedure in Statistical Analysis System (SAS) Version 6.12 or higher	Unclear; schedule centrally generated, but method NR	Yes; sequentially numbered, sealed envelopes	Yes; sequentially numbered, sealed envelopes provided by sponsor, but controlled on-site by investigator
(Study 10)				

Author Year Country Trial # or Name	PROTOCOL Was the patient blinded to the intervention?	PUBLICATION Was the patient blinded to the intervention?	PROTOCOL Was the care provider blinded to the intervention?	PUBLICATION Was the care provider blinded to the intervention?
Dawson, 2009 USA	No	Unclear	No; Surgeons not blinded	Unclear
Mastergraft Pilot				
CD HORIZON				
IDE G020056				
(Study 8)				
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT	No	No - non-blinded	No	No
(Study 14)				
Gornet, 2011 USA	No	No - non-blinded	No	No - non-blinded
MAVERICK™ Disc Pivotal RCT				
(Study 10)				

Author Year Country Trial # or Name Dawson, 2009 USA Mastergraft Pilot CD HORIZON IDE G020056 (Study 8)	PROTOCOL Was the outcome assessor blinded to the intervention? Yes; The independent radiographic reviewers who evaluate the radiographs and CT scans will not be informed of the treatment.	PUBLICATION Was the outcome assessor blinded to the intervention? Yes	FDA SUMMARY Was the drop-out rate described and acceptable? Yes; 0% in the BMP group and 5.3% in the Control group	PUBLICATION Was the drop-out rate described and acceptable? Yes;
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	Yes; independent radiologists who evaluate the radiographs and CT scans will not be informed of the treatment	Yes; radiographs and CT scans evaluated by 2 independent radiologists, blinded to which patient group they were evaluating and a third adjudication reviewer was used as needed	Yes; Amplify=89.4% and control=84.5% at 24 months	Yes; 89% available for assessment at 2 years (Amplify=90%, control=87%)
Gornet, 2011 USA MAVERICK™ Disc Pivotal RCT (Study 10)	No, but radiographic outcome measurements were made by two independent reviewers, with a third independent radiologist reviewer used adjudicate conflicting findings	No, but radiographic outcome measurements were made by two independent reviewers, with a third independent radiologist reviewer used adjudicate conflicting findings	Yes; 24 months not evaluated: overall=12% (67/577), INFUSE=19% (33/172) vs MAVERICK=9% (34/405)	Yes: Overall at 24 months=8.6% (INFUSE=15%/MAVERICK=6%)

Author Year Country Trial # or Name	FDA SUMMARY Were all randomized participants analyzed in the group to which they were allocated?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?	FDA SUMMARY Are reports of the study free from suggestion of bias?	PUBLICATION Are reports of the study free from suggestion of bias?
Dawson, 2009 USA	Unclear; Do not see anything about missing data	Yes		
Mastergraft Pilot				
CD HORIZON				
IDE G020056				
(Study 8)				
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	No	No; The protocol predefined the as- treated analysis as the primary analysis for the study, on the basis of the statistical consideration that intent-to-treat analysis may not be conservative for assessing a noninferiority hypothesis	Yes	Yes
Gornet, 2011 USA MAVERICK™ Disc	No; severity bias depends on outcome. For example, 24-month fusion status only evaluated for 60% of patients in BMP group (103/172)	Unclear for continuous outcomes (i.e., mean scores). No for many dichotomous outcomes (success/failure). For example, primary outcome analysis of overall		No. Variation in sample sizes analyzed for each outcome are not reported.
Pivotal RCT	and data NR for Maverick group. And, for fusion status, there is a note that "if discrepancies between the	success at 24 months only included 72%		
(Study 10)	first two reviewers could not be resolved by the third reviewer, the fusion success status is considered			

Author Year Country Trial # or Name	FDA SUMMARY Were the groups similar at baseline regarding the most important prognostic indicators?	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators?	FDA SUMMARY Were co-interventions avoided or similar?	PUBLICATION Were co-interventions avoided or similar?
Dawson, 2009 USA Mastergraft Pilot CD HORIZON	No; Worker's comp indicator was significantly different with more cases in the control group (19% vs 0%). However more unresolved spinal litigations in the BMP group (12% vs 0%)	Unclear; More previous surgeries in the control group (29% vs 25%) but not statistically significant.	No; More high profile brace used in the control group (42.9% vs 20%). More corsets used in the BMP group (36% vs 23%).	Unclear; NR
IDE G020056 (Study 8)	(12 % VS 0 %)			
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT (Study 14)	Yes; no characteristic > 10% difference between group	Unclear; control group had significantly higher involvement in litigation (6.7% vs 2.5%, p=0.042), but unclear of clinical importance.	Yes	Unclear; NR
Gornet, 2011 USA MAVERICK™ Disc Pivotal RCT (Study 10)	No; INFUSE group had lower preoperative non-narcotic medication use (61% vs 72%; <i>P</i> =0.014)	No; INFUSE group had lower preoperative non-narcotic medication use (61% vs 72%; P=0.014)	No; rigid external orthosis required in INFUSE group and prohibited in MAVERICK group	NR

Author Year Country Trial # or Name	FDA SUMMARY Was the compliance acceptable in all groups?	acceptable in all groups?	FDA SUMMARY Was the timing of the outcome assessment similar in all groups?	PUBLICATION Was the timing of the outcome assessment similar in all groups?
Dawson, 2009 USA	Unclear; NR	Unclear; NR	Yes	Yes
Mastergraft Pilot				
CD HORIZON				
IDE G020056				
(Study 8)				
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RCT	Unclear; Amplify=94.9% and control=94.2% external orthosis use at discharge, but compliance at 6 weeks NR.	Unclear; NR	Yes	Yes
(Study 14)				
Gornet, 2011 USA MAVERICK™ Disc Pivotal RCT	Unclear; 83% of INFUSE group used external orthosis at discharge, but compliance at 6 weeks NR	NR	Yes	Yes
(Study 10)				

Author Year Country Trial # or Name	RISK OF BIAS Based on all Data	RISK OF BIAS Based on Publication (and Protocol if Publically Available)	Comments	
Dawson, 2009 USA	Fair	Fair		
Mastergraft Pilot				
CD HORIZON				
IDE G020056				
(Study 8)				
Dimar, 2009 USA Amplify (rhBMP- 2/CRM) Pivotal RC1	Fair -	Fair		
(Study 14)				
Gornet, 2011 USA MAVERICK™ Disc	Poor for those outcomes with extremely high levels of missing data excluded from analysis (i.e., fusion), fair for other outcomes.	Fair		
Pivotal RCT				
(Study 10)				

Author Year Country Trial # or Name Haid, 2004 USA Posterior lumbar interbody fusion using BMP-2 with cylindrical interbody cages PLIF N=67 (Study 6)	PROTOCOL Was the method of randomization adequate? Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in SAS	PUBLICATION Was the method of randomization adequate? Unclear	PROTOCOL Was the treatment allocation concealed? Probably: "Both the investigator and the patient will be blinded to the randomization until the Informed Consent Form is signed. After the patient signs the informed consent form, the investigator or designee will open the envelope that corresponds to the patient's assigned clinical trial number"	PUBLICATION Was the treatment allocation concealed? Unclear
Infuse Bone Dowel Pivotal Study	Yes; Patients will be randomized according to a randomization schedule generated using the Plan Procedure in Statistical Analysis System (SAS) Version 6.12 or higher. Treatment 5 randomization will be 2: 1 (investigational: control) on a site basis.	NA	No	NA
Unpublished study Infuse/Inter Fix= ALIF Pilot RCT (Study 9)	Yes; Plan Procedure in Statistical Analysis System (SAS) Version 6.12 or higher	NA	Yes; serially numbered envelopes	NA

Author Year Country Trial # or Name Haid, 2004 USA	PROTOCOL Was the patient blinded to the intervention? No	PUBLICATION Was the patient blinded to the intervention? Unclear	PROTOCOL Was the care provider blinded to the intervention? Surgeon not blinded	PUBLICATION Was the care provider blinded to the intervention? Unclear
Posterior lumbar interbody fusion using BMP-2 with cylindrical interbody cages				
PLIF				
N=67				
(Study 6)				
Unpublished study?	No	NA	No	NA
Infuse Bone Dowel Pivotal Study				
(Study 5-enrolled 85 patients prior to termination)				
Unpublished study	No	NA	No	NA
Infuse/Inter Fix= ALIF Pilot RCT				
(Study 9)				

	fusion status of the patient between	independent, blinded radiologist was used to adjudicate conflicting fusion findings."	FDA SUMMARY Was the drop-out rate described and acceptable? BMP group: 8/34=24% (not included are 1 death and 4 failures) Control group: 5/33=15% (not included are 1 death and 3 failures)	PUBLICATION Was the drop-out rate described and acceptable? For many outcomes only percents are given, so unclear how many patients are actually included
cages PLIF	the two radiologists, a third independent, masked radiologist will be used to break the tie."	Other outcomes unclear		
N=67	Other outcomes unclear			
(Study 6)				
Unpublished study? Infuse Bone Dowel Pivotal Study (Study 5-enrolled 85 patients prior to termination)	Yes; Independent radiologists who evaluate the radiographs and CT Scans will be blinded to treatment	NA	Yes; No	NA
Unpublished study Infuse/Inter Fix= ALIF Pilot RCT (Study 9)	Yes; independent radiologist who evaluates the radiographs and CT scans will be blinded to treatment.	NA	Yes; Yes	NA

Author Year Country Trial # or Name	FDA SUMMARY Were all randomized participants analyzed in the group to which they were allocated?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?	FDA SUMMARY Are reports of the study free from suggestion of bias?	PUBLICATION Are reports of the study free from suggestion of bias?
Haid, 2004 USA	No; missing data is not included.	For many outcomes only percents are given, so unclear how many patients are actually included	Yes	Yes
Posterior lumbar interbody fusion using BMP-2 with cylindrical interbody cages				
PLIF				
N=67				
(Study 6)				
Unpublished study?	Yes	NA		
Infuse Bone Dowel Pivotal Study				
(Study 5-enrolled 85 patients prior to termination)				
Unpublished study	No	NA		
Infuse/Inter Fix= ALIF Pilot RCT				
(Study 9)				

Author Year Country Trial # or Name Haid, 2004 USA Posterior lumbar interbody fusion using BMP-2 with cylindrical interbody cages PLIF N=67 (Study 6)	FDA SUMMARY Were the groups similar at baseline regarding the most important prognostic indicators? No; In the BMP group 79% Caucasian vs 94% in the control group; 27% working before surgery in BMP group vs 46% in control group	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators? Although no p-values significant, work status provided in Table 1 but race not provided	FDA SUMMARY Were co-interventions avoided or similar? BMP group: Low profile brace 32%; High profile brace: 15%; Corset 32%; Other 21% Control group: Low profile brace 18%; High profile brace: 21%; Corset 46%; Other: 15% Differences in Low Profile Brace and Corset use	or similar?
Unpublished study? Infuse Bone Dowel Pivotal Study (Study 5-enrolled 85 patients prior to termination)	Unclear; Previous surgery slightly higher in the BMP group (45.8% vs 31.8%). Although none were statistically significant	NA	Unclear; fewer BMP patients using corset (25% vs 40.9%). Higher number of BMP patients wearing high profile brace (20.8% vs 13.6%)	NA
Unpublished study Infuse/Inter Fix= ALIF Pilot RCT (Study 9)	Unclear, some differences: BMP group had lower rate of > high school education (25% vs 45%), higher tobacco use (40% vs 30%)	NA	Unclear; fewer BMP patients using corset at discharge (28% vs 42%)	NA

Author Year Country <u>Trial # or Name</u> Haid, 2004	FDA SUMMARY Was the compliance acceptable in all groups? Yes except that at 24 months	PUBLICATION Was the compliance acceptable in all groups? Unclear; NR	FDA SUMMARY Was the timing of the outcome assessment similar in all groups? Yes	PUBLICATION Was the timing of the outcome assessment similar in all groups? Yes
USA	13% of BMP group still using brace vs 0% in control group	Unclear, NK	165	1 55
Posterior lumbar interbody fusion using BMP-2 with cylindrical interbody cages				
PLIF				
N=67				
(Study 6)				
Unpublished study?	NR	NA	Yes	NA
Infuse Bone Dowel Pivotal Study				
(Study 5-enrolled 85 patients prior to termination)				
Unpublished study	NR	NA	Yes	NA
Infuse/Inter Fix= ALIF Pilot RCT				
(Study 9)				

Author Year Country Trial # or Name	RISK OF BIAS Based on all Data	RISK OF BIAS Based on Publication (and Protocol if Publically Available)	Comments
Haid, 2004 USA Posterior lumbar interbody fusion	Moderate (Fair quality) for all outcomes	Moderate (Fair quality) for all outcomes	Is not a Low ROB (Good quality) due to lack of intention to treat analysis and uncertain blinding of outcome assessors other than radiologists and groups not similar at baseline
using BMP-2 with cylindrical interbody cages			
PLIF N=67			
(Study 6)			
Unpublished study?	Fair	NA	
Infuse Bone Dowel Pivotal Study			
(Study 5-enrolled 85 patients prior to termination)			
Unpublished study	Fair	NA	
Infuse/Inter Fix= ALIF Pilot RCT			
(Study 9)			

Year	PROTOCOL	PUBLICATION	PROTOCOL	PUBLICATION
Country	Was the method of randomization	Was the method of	Was the treatment allocation	Was the treatment allocation
Trial # or Name	adequate?	randomization adequate?	concealed?	concealed?
Unpublished study	Yes; Generated using the Plan Procedure in Statistical Analysis System	NA-unpublished	Yes; Investigator or designee opens envelope corresponding to assigned	NA-unpublished
rhBMP-2/BCP	(SAS)		sequential number	
Canada Pivotal RCT	Version 6.12 or higher			
(Study 13)				

INFUSE®/CORNER STONE® ACDF Pivotal RCT			
(Study 17)			
Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.			

Author Year Country Trial # or Name	PROTOCOL Was the patient blinded to the intervention?	PUBLICATION Was the patient blinded to the intervention?	PROTOCOL Was the care provider blinded to the intervention?	PUBLICATION Was the care provider blinded to the intervention?
Unpublished study	No	NA-unpublished	No	NA-unpublished
rhBMP-2/BCP Canada Pivotal RCT				
(Study 13)				
Unpublished study INFUSE®/CORNER STONE® ACDF Pivotal RCT (Study 17) Enrollment stopped after 3 patients, not based on any safety concerns, but				
because of pursing different strategic nitiatives.				

Author Year Country Trial # or Name	PROTOCOL Was the outcome assessor blinded to the intervention?	PUBLICATION Was the outcome assessor blinded to the intervention?	FDA SUMMARY Was the drop-out rate described and acceptable?	PUBLICATION Was the drop-out rate described and acceptable?
Unpublished study	Yes. Radiologists will be blinded to the treatment	NA-unpublished	Unclear; not described	NA-unpublished
rhBMP-2/BCP Canada Pivotal RCT	group in which the patient is randomized			
(Study 13)				

Unpublished study

INFUSE®/CORNER STONE® ACDF Pivotal RCT			
(Study 17)			
Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.			

Author Year Country Trial # or Name	FDA SUMMARY Were all randomized participants analyzed in the group to which they were allocated?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?	FDA SUMMARY Are reports of the study free from suggestion of bias?	from suggestion of bias?
Unpublished study	No; number Analyzed: BMP=2 to 98, Control=1 to 98	NA-unpublished	Yes	Yes
rhBMP-2/BCP Canada Pivotal RCT				
(Study 13)				
Unpublished study				
INFUSE®/CORNER STONE® ACDF Pivotal RCT	1			
(Study 17)				
Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.				

Author Year Country Trial # or Name	FDA SUMMARY Were the groups similar at baseline regarding the most important prognostic indicators?	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators?	FDA SUMMARY Were co-interventions avoided or similar?	PUBLICATION Were co-interventions avoided or similar?
Unpublished study rhBMP-2/BCP Canada Pivotal RCT	No; BMP group had fewer males (35.7% vs 48.5%) and more with education above HS (48.2% vs 37.9%)	NA-unpublished	Yes, similar	NA-unpublished
(Study 13)				

Unpublished study

INFUSE®/CORNER STONE® ACDF Pivotal RCT			
(Study 17)			
Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.			

Author Year Country Trial # or Name	FDA SUMMARY Was the compliance acceptable in all groups?	PUBLICATION Was the compliance acceptable in all groups?	FDA SUMMARY Was the timing of the outcome assessment similar in all groups?	PUBLICATION Was the timing of the outcome assessment similar in all groups?
Unpublished study	No; BMP=67.5% and control=69.8% at 6 weeks, 35.4%	NA-unpublished	Yes	NA-unpublished
rhBMP-2/BCP	vs 44.8% at 3 months, 19.8% vs			
Canada Pivotal RCT	19.5% at 6 months			
(Study 13)				

Unpublished study

INFUSE®/CORNER STONE® ACDF Pivotal RCT			
(Study 17)			
Enrollment stopped after 3 patients, not based on any safety concerns, but because of pursing different strategic initiatives.			

Author Year Country Trial # or Name	RISK OF BIAS Based on all Data	RISK OF BIAS Based on Publication (and Protocol if Publically Available)	Comments	
Unpublished study rhBMP-2/BCP Canada Pivotal RCT (Study 13)	Fair to poor; variable by outcome, depending on number of patients analyzed.	NA-unpublished.		
Unpublished study INFUSE®/CORNER STONE® ACDF Pivotal RCT (Study 17) Enrollment stopped after 3 patients, not based on any safety concerns, but				
because of pursing different strategic initiatives.				

Author

Year Country Trial # or Name	Type of trial Length of trial Intervention Series	Protocol inclusion criteria/ Protocol exclusion criteria	Intervention	Co-Interventions
INFUSE/LT-CAGE Lap	ALIF	Inclusion: Degenerative disc disease;	°	Wear external orthosis
Pivotal Single-Arm Study	72 months	Preoperative Oswestry score \geq 35; no greater than Grade 1	laparoscopic implantation	(corset or brace) for ambulation
(Study 3)		spondylolisthesis; Single level disease		approximately 6
		from L4-S1; at least 18 years of age		weeks following surgery; begin
		Exclusion: Previous anterior spinal		abdominal
		fusion at the involved level; has		strengthening program
		posterior spinal instrumentation;		after 30 days following
		requires postoperative medications that interfere with fusion; is >40% over		surgery.
		ideal weight for age; is a tobacco user		
		at the time of surgery; is an alcohol or drug abuser		

Author Year Country Trial # or Name	Number analyzed Number withdrawn Number lost to follow-up	Nonmedical history Baseline characteris from FDA data sumi		Medical history Baseline characteristics from FDA data summary	
			BMP		ВМР
INFUSE/LT-CAGE Lap	136 went to surgery; 134 actually	Age	42.4		
Pivotal Single-Arm Study	received the investigational device;	Height	67.5	Prior Tobacco:	29.9
	9 failures; 9 lost to follow-up; 13	Weight	169.8	Alcohol use:	49.3
(Study 3)	not analyzed but not considered	% Male	42.5	Prior Back Surgery:	24.6
	lost to follow-up	% White	93.3	Diabetic:	2.2
		% Married	67.9	% not taking Non Narcotic:	27.6
		% ED>HS	65.7	% not taking Weak Narcotic:	54.5
		% Working	52.2	% not taking Strong Narcotic:	87.3
		% Worker's Comp % Spinal Litigation	21.3 8.2	% not taking Muscle Relaxer:	63.4

Author Year Country

Trial # or Name	Radiographic fusion		FDA adverse events		Second surgeries	
				BMP		BMP
NFUSE/LT-CAGE Lap	Percent Radiographic Fusion (n):		Patients Reporting Event (n):		Second Surgeries (n)	
Pivotal Single-Arm Study		94.7 (94)	Anatomic Difficulty	12	Revisions	1
	12 months	94.1 (101)	Back and/or Leg Pain	31	Removals	2
(Study 3)	24 months	92.9 (99)	Cancer	0	Supplemental Fixations	7
· · ·	36 months	NR	Cardiovascular	10	Reoperations	3
	48 months	NR	Death	0	-	
	72 months	NR	Dural Injury	0		
			Gastrointestinal	24		
			Graft Site Related	0		
			Implant Displaced/Loosened	2		
			Infection	17		
			Malpositioned Implant	4		
			Neurological	18		
			Non-Union	4		
			Other	30		
			Other Pain	10		
			Respiratory	1		
			Retrograde Ejaculation	6		
			Spinal Event	6		
			Subsidence	1		
			Trauma	28		
			Urogenital	16		
			Vascular Intra-Op	8		
			Vertebral Fracture	NR		
			Total Patients with ≥ 1 Event	102		

Author

Year				
Country	Type of trial	Protocol inclusion criteria/		
Trial # or Name	Length of trial	Protocol exclusion criteria	Intervention	Co-Interventions
	Intervention Series			
INFUSE/TELAMON	Circumferential	Inclusion: Degenerative disc disease;	TELAMON Impacted Implant,	Wear external orthosis
PEEK Instrumented PLIF	PLIF	Preoperative Oswestry score \geq 30;	INFUSE, and the CD Horizon Spinal	(corset or brace) for
Pilot, Single-Arm Study	24 months	preoperative back pain score \ge 25; no greater than Grade 1	System in PLIF	ambulation approximately 6
(Study 11)		spondylolisthesis; Single level disease from L1-S1; at least 18 years of age		weeks following surgery; begin
36 months		Exclusion: Previous anterior spinal fusion at the involved level; requires fusion at more than one lumbar level; has a diagnosis of osteopenia or osteomalacia; if a post-menopausal non-black female over 60 or a postmenopausal female with a non- traumatic hip, spine, or wrist fracture or is a male over 70 or a male over 60 with a nontraumatic hip or spine fracture, a DEXA scan will be require; requires post-operative medications that interfere with fusion; is an alcohol		abdominal strengthening program after 30 days following surgery.

Author Year Country Trial # or Name	Number analyzed Number withdrawn Number lost to follow-up	Nonmedical history Baseline characteris from FDA data sum		Medical history Baseline characteristics from FDA data summary	
			ВМР		BMP
INFUSE/TELAMON	35 enrolled	Age	51.0		
PEEK Instrumented PLIF	5 patients did not receive study	Height	66.5	Prior Tobacco:	26.7
Pilot, Single-Arm Study	treatment: one insurance denial,	Weight	184.9	Alcohol use:	40.0
	one had previous fusion at same	% Male	40.0	Prior Back Surgery:	46.7
(Study 11)	level, one had ODI score too low,	% White	66.7	Diabetic:	NR
	one had history of breast cancer,	% Married	63.3	% not taking Non Narcotic:	46.7
36 months	one was discovered	% ED>HS	65.5	% not taking Weak Narcotic:	70.0
	intraoperatively to need surgery at	% Working	30.0	% not taking Strong Narcotic:	83.3
	two levels	% Worker's Comp % Spinal Litigation	13.3 3.3	% not taking Muscle Relaxer:	56.7

Author Year Country Trial # or Name

Trial # or Name	Radiographic fusion		FDA adverse events		Second surgeries	
				BMP		BMP
INFUSE/TELAMON	Percent Radiographic Fusion (n):		Adverse Events (n):		Second Surgeries (n)	
PEEK Instrumented PLIF		100 (26)	Anatomic Difficulty	NR	Revisions	0
Pilot, Single-Arm Study	12 months	100 (27)	Back and/or Leg Pain	34	Removals	1
	24 months	100 (24)	Cancer	NR	Supplemental Fixations	0
(Study 11)	36 months	100 (11)	Cardiovascular	2	Reoperations	0
			Death	NR		
36 months			Dural Injury	1		
			Gastrointestinal	5		
			Graft Site Related	NR		
			Implant Displaced/Loosened	NR		
			Infection	4		
			Malpositioned Implant	NR		
			Neurological	8		
			Non-Union	NR		
			Other	17		
			Other Pain	1		
			Respiratory	3		
			Retrograde Ejaculation	NR		
			Spinal Event	6		
			Subsidence	NR		
			Trauma	4		
			Urogenital	1		
			Vascular Intra-Op	NR		
			Vertebral Fracture	NR		
			Total Patients with ≥ 1 Event	29		

Author Year Country Trial # or Name	Type of trial Length of trial Intervention Series	Protocol inclusion criteria/ Protocol exclusion criteria	Intervention	Co-Interventions
rhBMP-2/BCP Mexico Pilot	PLF 12 months	Inclusion: Spinal degeneration with instability of \geq 4mm translation or \geq 5 degrees of engulation with introductor	Cohort 1: rhBMP-2/BCP device implanted unilaterally; autograph was	The type and duration of bracing is to be left to the discretion of the
(Study 16)		degrees of angulation with intractable back pain; one level involvement L3-	implanted on the other side	investigator; treatment
(2.2.2) . 2)		S1; 18 years or older	Cohort 2: rhBMP-2/BMP device implanted bilaterally with GDLH	with electrical bone growth stimulation at
		Exclusion: Spinal stenosis or a	Spinal System	any time during 12
		condition requiring a full laminectomy; had a previous fusion, discectomy or		month follow-up is not permitted
		laminectomy at any level L3-S1; requires medication which may		
		interfere with bone metabolism; unwilling to return for required follow- up; has severe osteopenia or		

osteoporosis

Author Year Country Trial # or Name	Number analyzed Number withdrawn Number lost to follow-up	Nonmedical history Baseline characteristics from FDA data summary		Medical history Baseline characteristics from FDA data summary	
			BMP		BMP
rhBMP-2/BCP Mexico	7 patient cohort 1; 8 patients	Cohort1:		Cohort 1:	
Pilot	cohort 2	Age	53.9	Prior Tobacco:	0
		Height	58.3	Alcohol use:	14.3
(Study 16)	4 patients in cohort 2 did not	Weight	131.7	Prior Back Surgery:	0
	receive instrumentation	% Male	14.3	Diabetic:	0
		% White	NR	% not taking Non Narcotic:	0
		% Married	57.1	% not taking Weak Narcotic:	100
		% ED>HS	42.9	% not taking Strong Narcotic:	100
		% Working	28.6	% not taking Muscle Relaxer:	100
		% Worker's Comp	0		
		% Spinal Litigation	0		
		Cohort 2:		Cohort 2:	
		Age	41.7	Prior Tobacco:	0
		Height	65.1	Alcohol use:	0
		Weight	154.1	Prior Back Surgery:	0
		% Male	50	Diabetic:	0
		% White	NR	% not taking Non Narcotic:	25
		% Married	62.5	% not taking Weak Narcotic:	87.5
		% ED>HS	37.5	% not taking Strong Narcotic:	100
		% Working	37.5	% not taking Muscle Relaxer:	100
		% Worker's Comp	0		
		% Spinal Litigation	0		

Author Year

Country

Trial # or Name

Radiographic fusion

FDA adverse events

Second surgeries

				BMP		BMP
rhBMP-2/BCP Mexico	Cohort 1, Reader 1	Cohort 1, Reader 2	Number of Events (n)		Second Surgeries (n)	
Pilot	6 months:	6 months:	Loose Screw-Cohort 1	2	Revisions	0
	BMP=80% (5); autograft=33.3% (6)	BMP=71.4% (7);	Gastric Ulcer-Cohort 1	1	Removals	0
(Study 16)	12 months:	autograft=28.6% (7)	Sacroiliitis-Cohort 1	3	Supplemental Fixations	NR
· · ·	BMP=83.3% (6);	12 months:	Stenosis-Cohort 1	1	Reoperations	1 (Cohort 1)
	autograft=50% (6)	BMP=100% (7);	Bone Fracture-Cohort 1	1	-	
		autograft=71.4% (7)	Bone Fracture-Cohort 1	1		
	Cohort 2, Reader 1					
	6 months:	Cohort 2, Reader 2				
	Side A: 87.5% (8);	6 months:				
	Side B: 100% (8)	Side A: 87.5% (8);				
	12 months:	Side B: 100% (8)				
	Side A: 100% (8)	12 months:				
	Side B: 100% (8)	Side A: 87.5% (8)				

Note: Cohort 1 is BMP on one side and autograft on the other; Cohort Note: Cohort 1 is BMP 2 is BMP on both sides on one side and autograft on the other; Cohort 2 is BMP on

both sides

Side B: 100% (8)

Author

Year Country Trial # or Name	Type of trial Length of trial	Protocol inclusion criteria/ Protocol exclusion criteria	Intervention	Co-Interventions
	Intervention Series			
rhBMP-2/CRM 2-level	PLF	0	2-level application of rhBMP-	An external orthosis
Pilot, Single-Arm Study	36 months	at two adjacent levels; Preoperative Oswestry score ≥ 30; No greater than	2/CRM/CD Horizon Spinal System	(i.e., corset or brace) should be worn for
(Study 15)		Grade 1 spondylolisthesis; Two level disease from L1-S1; at least 18 years of age		ambulation until approximately 6 weeks following surgery; an abdomina
		Exclusion: Previous anterior spinal		strengthening program
		fusion at the involved level; requires postoperative medications that		should be started approximately 30 days
		interfere with fusion; is an alcohol or		after surgery
		drug abuser; if a post-menopausal non		
		black female over 60 and weight less than 140 lbs or a postmenopausal		
		female with a non-traumatic hip, spine,		
		or wrist fracture or is a male over 70 or		
		a male over 60 with a nontraumatic		
		hip or spine fracture, a DEXA scan will be require; diagnosed with		
		osteopenia, osteomalacia, or		
		osteoporosis		

Author Year Country Trial # or Name	Number analyzed Number withdrawn Number lost to follow-up	Nonmedical history Baseline characteristics from FDA data summary		Medical history Baseline characteristics from FDA data summary	
			BMP		BMP
rhBMP-2/CRM 2-level	30 patients were consented, and	Age	53.9		
Pilot, Single-Arm Study	29 received the investigational	Height	67.8	Prior Tobacco:	41.4
	device (the patient who did not go	Weight	196.5	Alcohol use:	41.4
(Study 15)	through the surgery had insurance	% Male	51.7	Prior Back Surgery:	24.1
	reimbursement issues)	% White	93.1	Diabetic:	10.3
		% Married	79.3	% not taking Non Narcotic:	41.4
		% ED>HS	65.5	% not taking Weak Narcotic:	51.7
		% Working	44.8	% not taking Strong Narcotic:	89.7
		% Worker's Comp % Spinal Litigation	0 0	% not taking Muscle Relaxer:	79.3

Author Year Country Trial # or Name

Radiographic fusion

				BMP	BMP
rhBMP-2/CRM 2-level	Percent Radiographic Fusion (n):		Adverse Events (n):		
Pilot, Single-Arm Study	6 months		Anatomic Difficulty	NR	
	12 months	47.6 (21)	Back and/or Leg Pain	18	
(Study 15)	24 months	56.5 (23)	Cancer	NR	
	36 months	85.0 (20)	Cardiovascular	2	
		93.3 (15)	Death	NR	
			Dural Injury	1	
			Gastrointestinal	7	
			Graft Site Related	NR	
			Implant Displaced/Loosened	NR	
			Infection	1	
			Malpositioned Implant	NR	
			Neurological	11	
			Non-Union	1	
			Other	7	
			Other Pain	NR	
			Respiratory	1	
			Retrograde Ejaculation	NR	
			Spinal Event	16	
			Subsidence	NR	
			Trauma	2	
			Urogenital	4	
			Vascular Intra-Op	NR	
			Vertebral Fracture	NR	
			Total Patients with ≥ 1 Event	26	

FDA adverse events

Second surgeries

Evidence Table 4. Medtronic intervention series: Risk of bias

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?
INFUSE/LT-CAGE Lap Pivotal Single-Arm Study	Unclear; 136 patients from 14 sites.	Yes	Yes; two independent blinded radiologists	Yes; 9 lost to follow-up at 24 months
Study 3				
INFUSE/TELAMON PEEK Instrumented PLIF Pilot, Single-Arm Study	Unclear; 30 patients from 5 sites.	Yes	No; two independent radiologists	No
Study 11				
rhBMP-2/BCP Mexico Pilot Study 16	Unclear; 12 evaluable patients	Yes	Unclear; Do not mention anything	No
rhBMP-2/CRM 2-level Pilot, Single-Arm Study Study 15	Unclear; 30 patients at no more than 5 investigational sites	Yes	No; the independent radiologists who evaluate the radiographs and CT scans will not be specifically in formed of the treatment although they may have access to the study protocol.	Yes; 15% loss to follow-up at 36 months

Evidence Table 4. Medtronic intervention series: Risk of bias

			Were outcomes prespecified and		
Author	Did the study perform		defined, and ascertained using		
Year	appropriate statistical	la thara high laga ta	accurate methods? Was the method to determine fusion		
Country	analyses on potential confounders?	Is there high loss to		Quality Dating	Commonto
Trial # or Name		follow-up?	described?	Quality Rating	Comments
INFUSE/LT-CAGE Lap	Unclear	No	Yes	Poor	
Pivotal Single-Arm Study					
Study 3					
INFUSE/TELAMON PEEK	No	Unclear	Yes	Poor	
Instrumented PLIF Pilot,					
Single-Arm Study					
Study 11					
rhBMP-2/BCP Mexico Pilot	Yes	Unclear	Yes	Fair	
Study 16					
rhBMP-2/CRM 2-level Pilot,	Yes	No; 15%	Yes	Poor	
Single-Arm Study					
Study 15					

Author Year Country Trial # or Name	21	Protocol inclusion criteria/ Protocol exclusion criteria	Interventions	Co-Interventions	Number Randomized Number analyzed by group Number withdrawn by group Number lost to follow-up by group
Glassman 2008 USA	RCT 2 years	NR	rhBMP-2/ACS vs. ICBG	NR	Randomized=106; BMP=50; ICBG=52
					Withdrawn=0

Lost to Follow-up: BMP=5 Control=1

Author Year Country Trial # or Name	Nonmedica Baseline ch	l history paracteristics		ODI results from publ	lished study		SF-36 results from p	ublished stud	ły
Glassman 2008		BMP	ICBG		BMP	ICBG		BMP	ICBG
2008 USA	N M:F Age Smokers BMI	50 15:35 96.2+-5.5 11 29.4+-5.7	52 17:35 69.9+-5.8 9 28.1+-6.1	Average ODI Scores	49.9+-12.9	47.0+-16.8	Physical Component	27.7+-5.9	28.4+-7.3

Author

Year

ial # or Name	Back pain results from published study			Leg pain results from published study			Radiologic fusion results from published study			
assman 08		BMP	ICBG		BMP	ICBG		BMP	ICBG	p-value
5A	Preoperative NRS Back	16.4+-2.8	15.2+-5.3	Total NRS leg Pain	14.4+-3.8	15.4+-5.1	2-year composite CT grade	4.3+-1.3	3.8+-0.9	0.03
0, (Pain						Fusion rate (%)	86.3	70.8	

Author

Year Country Overall success in Funding Trial # or Name published study Additional surgeries in published study Comments Adverse events from published study Glassman BMP ICBG BMP ICBG 2008 NR Ν 4 11 Cardiac 7 Norton 1 USA At 3 months Wound Infection 4 Healthcare 1 Wound Infection 1 1 Back or Leg Pain 0 3 Pedicle Screw Adjustment 0 2 Gastrointestinal 2 3 Proximal Extension for Compression 1 0 UTI 1 1 Fracture Neurologic Deficit 0 1 1-2 Years Line related Sepsis 0 1 Broken Toe Non-Union 1 5 1 0 Late Screw Removal 0 0 1 Shingles 1 Pain Pump Insertion 0 1 Revision for Adjascent-level 1 1 degeneration

Author Year Country Trial # or Name	PUBLICATION Was the method of randomization adequate?	PUBLICATION Was the treatment allocation concealed?	PUBLICATION Was the patient blinded to the intervention?	PUBLICATION Was the care provider blinded to the intervention?	PUBLICATION Was the outcome assessor blinded to the intervention?	PUBLICATION Was the drop-out rate described and acceptable?	PUBLICATION Were all randomized participants analyzed in the group to which they were allocated?
Glassman 2008 USA	Unclear; Do not mention it in the published data	Yes	Unclear	Yes; 3 spine surgeons were blinded	Yes; surgeons evaluted the CT grade	Yes	Yes

Author Year Country Trial # or Name	PUBLICATION Are reports of the study free from suggestion of bias?	PUBLICATION Were the groups similar at baseline regarding the most important prognostic indicators?	PUBLICATION Were co- interventions avoided or similar?	PUBLICATION Was the compliance acceptable in all groups?	PUBLICATION Was the timing of the outcome assessment similar in all groups?	RISK OF BIAS Based on Publication (and Protocol if Publically Available)	Comments
Glassman 2008 USA	Unclear; The study does not mention any confounding factors	Unclear; some information is provided but not enough	Unclear	Unclear; NR	Yes	Moderate (Fair Quality)	

Author, year Type of Study Approach	n (BMP vs. Control)	Interventions	Baseline Characteristics rhBMP-2 vs. control (unless otherwise noted)	Results	Funder	Quality
Butterman, 2008 Prospective ACDF	66 (30 vs. 36)	rhBMP-2 vs. ICBG 0.9mg BMP per level	Age (yr): 49 vs. 48 Female (%): 50 vs. 67 Smoker (%): 37 vs. 53 Diagnosis (%): DDD: 40 vs. 38 HNP: 10 vs. 17 Stenosis: 50 vs. 46	Fusion: NR Patient rating of success (1-2 yrs) (%): 90 vs. 94 Neck pain: NS (difference between groups at all time periods) Arm pain: NS (difference between groups at all time periods)	NR	Poor
Cahill, 2009 Retrospective Anterior/ Posterior Cervical, Lumbar, Thoracic Nationwide Inpatient Sample database	70649 (17623 vs. 53026)	rhBMP-2 vs. No rhBMP-2 Dosage: NR	Age (yr): 53.79 vs. 53.26 Male (%): 43.74 vs. 46.65 Diagnosis: DDD (%): 70.72 vs. 75.65 Segment of fusion (%): Cervical: 16.4 vs. 52.0 Thoracic: 4.2 vs. 4.7 Lumbosacral: 79.3 vs. 43.1	Fusion: NR Complications (BMP-2 vs. Control) Any Complications (%): Anterior Cervical: 7.09 vs. 4.68 Posterior Cervical: 10.04 vs. 9.95 Thoracic: 16.47 vs. 17.44 Lumbar: 6.97 vs. 7.18 Dysphagia or Hoarseness (%): Anterior Cervical: 4.35 vs. 2.45 Posterior Cervical: 2.09 vs. 1.63 Thoracic: 0.80 vs. 1.31 Lumbar: 0.25 vs. 0.21 Wound Complication (%): Anterior Cervical: 1.22 vs. 0.65 Posterior Cervical: 2.93 vs. 2.51 Thoracic: 4.69 vs. 5.81 Lumbar: 2.01 vs. 2.15	Brain Science Foundation	Fair

Evidence Table 7. Non-Medtronic Cohort studies

Cahill, 2011 Retrospective Lumbar MarketScan claims data set	15862 (2373 vs. 13489)	rhBMP-2 vs. No rhBMP-2 Dosage: NR	Age (yr): 48 vs. 48 Male (%): 51 vs. 49 Osteoporosis (%): 1 vs. 1 Tobacco User (%): 27 vs. 26 Diabetes (%): 11 vs. 10 Diagnosis (%): LDH: 47 vs. 44 DDD: 64 vs. 63 Spondylolisthesis: 34 vs. 36	Fusion: NR Additional Surgeries (Adjusted OR): With BMP: 0.66 (0.47, 0.94) DDD: 1.98 (1.28, 3.07) Spondylolisthesis: 0.85 (0.56, 1.29)	Federal and Institutional funds received in support of this work. Benefits received for professional or personal use from a commercial party.	Fair
Carragee, 2011 Retrospective ALIF	243 (69 vs. 174)	rhBMP-2 vs. local osteophytes or ICBG Small INFUSE kit	Age (yr): 42.4 vs. 40.9 Smoker (%): 28 vs. 24 Diagnosis (%): Degenerative spondylolisthesis: 48 vs. 46 DDD: 19 vs. 23 Isthmic spondylolisthesis: 33 vs. 31	Fusion: NR Retrograde ejaculation (%, 90% Cl): 7.3 (2.11 to 12.39) vs. 0.6 (-0.37 to 1.51)	No funds received from Medtronic	Poor
Crawford, 2009 Retrospective Posterior Cervical	77 (41 vs. 36)	rhBMP-2/ACS vs. ICBG 19: large INFUSE kit, 22 small INFUSE kit	Age (yr): 56.2 vs. 54.3 Males (%): 32 vs. 42 Smokers (%): 24 vs. 36	Fusion: NR Adverse Events (%): Wound Complications: 15 vs. 3 Wound complications by INFUSE kit size (%): Large kit: 11 Small kit: 18 Prolonged Drainage: 2 vs. 1 Deep Infection: 4 vs. 0 Iliac Crest site Deep Infection: 0 vs. 1	No funds received in support of this work. Benefits received for professional or personal use from a commercial party.	Poor

Crawford, 2010 Prospective ALIF Circ.	60 (36 vs. 24)	rhBMP-2 vs. autogenous group Mean dose 11.4 mg rhBMP-2/ level anterior, 17.3 mg/ level posterior	Age (yr): 49.7 vs. 43.5 Male (%): 8.3 vs. 4.2	Fusion (%): 88.9 vs. 79.2, p =NS ODI score: NS (difference between groups at all time periods) Revision for pseudoarthrosis (%): 5.6 vs. 12.5 Adverse Events (%): Total Complications: 50 vs. 71 Deep Wound Infection: 3 vs. 4	No funds received in support of this work. Benefits received for professional or personal use from a commercial party.	Poor
Gerszten, 2011 Retrospective AxiaLIF Circ.	99 (45 vs. 54)	rhBMP-2/ACS vs. bone marrow aspirate + Actifuse medium INFUSE kit	Age (yr): 42.6 vs. 42.9 Male (%): 44 vs. 44	Fusion (%): 96 vs. 93 (NS) Back pain: VAS scores (range 0-100) Pre-op: 72.9 vs. 81.3, p = .007 24 months: 30.1 vs. 22.6, p = .111 Additional Surgery (%): 16 vs. 4	Multiple author disclosures, funder NR.	Poor
Glassman, 2007 Retrospective PLF	148 76 vs. 72	rhBMP-2 + ICBG vs. ICBG 10mL HA/TCP and collagen compression matrix + 20 mg rhBMP-2 per side	Smokers (%): 27.6 vs. 29.2 Male (%): 47 vs. 49 Smokers (n = 42): Age (yr): 50.8 vs. 48.1 Male (%): 52 vs. 69 Non-Smokers: Age (yr): 51.8 vs. 51.7 Male (%): 45 vs. 43	 Fusion in smokers (%): 95.2 vs. 76.2 Fusion in non-smokers (%): 100 vs. 94, p = NS (difference between) ODI score mean improvement 24 months: Non-smokers: 26.4 vs. 24.6, p = NS Smokers: 22.1 vs. 21.0, p = NS Back pain mean improvement 24 months: VAS score (range NR) Non-smokers: 7.4 vs. 7.5, p = NS Smokers: 7.9 vs. 6.1, p = NS 	Institutional funds received in support of this work. No benefits from a commercial party received.	Poor

Hiremath, 2009 Retrospective Posterior Cervical	83 (16 vs. 67)	rhBMP-2 vs. ICBG or local autograft or other synthetic agent Average dose rhBMP-2 = 1.3 mL per level	Age (yr): 59 vs. 58 Male (%): 23 vs. 75 Diagnosis (%): Pseudoarthrosis following ACDF: 38 vs. 19 Trauma or nonhealed fracture: 38 vs. 19 Cervical spondylotic myelopathy: 13 vs. 48	Short-Term Complications (%): Medical Complications: 13 vs. 7 New Neurological Deficits: 6 vs. 4 Wound Infection: 0 vs. 12 Symptoms attributable to BMP (%): 6 Long-Term Complications (%): Persistent pain: 1.5 vs. 7 Instrument failure: 3 vs. 1.5 Unimproved neurological deficit: 1.5 vs. 4	No funds received in support of this work.	Poor
Hoffman, 2012 Retrospective Posterior lumbar fusion to include PLIF and TLIF with and without instrumentation	1398 (947 vs. 306 vs. 145)	rhBMP-2 + BCS vs. DBM vs. autograft mean rhBMP- 2 dosage (range) = 12.7 mg per pt (4.2 – 48.0 mg)	Age: 59 vs. 63 vs. 58 Male (%): 40.8 vs. 37.3 vs. 51.7 Diabetes: 14.5 vs. 7.2 vs. 7.6 Smoking: 11.1 vs. 5.9 vs. 11.8 Authors note significant differences in all categories listed here.	Adverse Events (%): Non-unions: 4.3 vs. 13.1 vs. 15.2, p < 0.001 for both comparisons Infection: 2.3 vs. 1.6 vs. NR, NS Seroma formation: 3.2 vs. 2.0 vs. 1.4, p = NS	The authors did not receive grants or outside funding in support of their research or preparation of the manuscript.	Poor
Joseph, 2007 Prospective PLIF Circ./ TLIF Circ.	33 (23 vs. 10)	rhBMP-2/ACS vs. local autologous bone small INFUSE kit + nonthreaded cages	Overall Age (yr): 49.7 Male (%): 61 Diagnosis (%): Spondylolisthesis: 85 DDD: 15 Surgical Approach (%): PLIF Circ.: 30 TLIF Circ.: 70	 Fusion (%): 6 months: 91 vs. 50, p = 0.016 12 months: 100 vs. 90 Adverse Events: Heterotopic bone formation (% of levels): 21 vs. 8, p = NS Additional surgery %: Total = 9 (rhBMP-2 vs. control not reported) 	No funds received in support of this work. Benefits received for professional or personal use from a commercial party.	Poor
Katayama, 2009 Prospective PLF	11	rhBMP-2/ PLGA on right side vs. ICBG on left side	Overall Age (yr): 56 Male (%): 36.4	Fusion at 24 months (%): 82 vs. 91, p = NS	NR	Fair

Latzman, 2010 Retrospective Lumbar	125 (20 vs. 101 + 4 with one surgery of each)	rhBMP-2 vs. No rhBMP-2 Dosage: NR	Age (yr): 50.1 vs. 55.8 Male (%): 78 vs. 90 Diabetics (%): 7 vs. 37 Smokers (%): 44 vs. 40	Fusion (%): NR Adverse Events (%): Cancer: 17 vs. 8, p = NS Increases in BUN (to > 30 mg/dL) and creatinine (to >1.5 mg/dL): 13 vs. 0, p = 0.006	No funds received in support of this work.	Poor
Lee, 2010 Retrospective PLF Companion to Lee, 2012	127 (34 vs. 52 vs. 41)	Group A: Age \geq 65 + rhBMP-2 + allograft Group B: Age < 65 + rhBMP- 2 + allograft Group C: Age \geq 65+ autograft	Group A vs. B vs. C Age (yr): 74.1 vs. 49.9 vs. 72.4 Male (%): 53 vs. 39 vs. 42 Smokers: 15 vs. 27 vs. 17 Osteoporosis: 41 vs. 12 vs. 44	Fusion, groups A and B (%): 82 vs. 94, NS Fusion, groups A and C (%): 82 vs. 78, NS	NR	Fair
Lee, 2012 Retrospective PLF	195 (86 vs. 109)	Group A: rhBMP-2 + allograft + Risk Factors Group B: rhBMP-2 + Allograft - Risk Factors Group C: ICBG + Risk Factors Group D: ICBG - Risk Factors	Age (yr): 74.1 vs. 72.4 Male (%): 44 vs. 43 Smoker (%): 22 vs. 19 Diabetics (%): 20 vs. 20	Fusion (%): p = NS (difference between groups A and C given all risk factors)	Royalties received by at least one author from Medtronic and other commercial parties.	Fair
Lindley, 2012 Retrospective ALIF Circumferential	95 (54 vs. 41)	rhBMP-2 vs. artificial disk replacement	Age (yr): 49 vs. 35 Diagnosis (%): DDD: 72 vs. 40 Spondylolisthesis: 9 vs. 2 Degenerative Scoliosis: 4	Retrograde Ejaculation (%): 7.4 vs. 9.8, p = 0.7226 Sexual Dysfunction, other than RE (%): 2 vs. NR	No funds received in support of this work. One or more author(s)	Poor

			vs. 0 Pseudoarthrosis: 15 vs. 0, p < 0.05		will receive benefits from a commercial party related to the subject of this manuscript.	
Maeda, 2009 Prospective ALIF Circ.	55 (23 vs. 32) correct	rhBMP-2/ACS or local bone + allograft vs. ICBG mean concentration 2.1 mg/mL rhBMP-2	Age (yr): 55.6 vs. 52.6 Smokers (%): 13.0 vs. 12.5	Fusion (%): 95.7 vs. 71.9 Perioperative complication (%): 4 vs 0	No funds received in support of this work. Benefits received for professional or personal use from a commercial party.	Poor
Mindea, 2009 Retrospective TLIF Circ.	43 (35 vs. 8)	rhBMP-2/ BCS vs. No rhBMP- 2 4.2 mg rh- BMP-2/level	Overall Age (yr): 50.8 Male (%): 42 rhBMP-2 vs. control: Spondylolisthesis (%): 46 vs. 63	Fusion (%): NR Radiculitis (%): 11 vs. 0	No funds received in support of this work.	Poor
Mines, 2011 Retrospective Lumbar U.S. Medicare claims data	93,654 (15,460 vs. 78,194)	BMP vs. no BMP Unclear if BMP-2 or BMP-7	Age (yr): 74.2 vs. 74.6 Male (%): 33.0 vs. 34.6 Diabetes (%): 36.4 vs. 35.5	Pancreatic Cancer, n: 8 vs. 83, p = NS	Wyeth pharmaceuticals	Fair
Mummaneni, 2004 Retrospective TLIF Circ.	40 (21 vs. 19)	9 rhBMP-2 only + 12 ICBG also vs. ICBG only	Overall Age (yr): 53 Male (%): 57.5 Smokers (%): 10	Fusion at 6 months (%): 95 vs. 95	NR	Poor

Pradhan, 2006 Prospective ALIF	36 (27 vs. 9)	medium INFUSE kit rhBMP-2/ACS vs. ICBG/FRA Dosage	Diagnosis (%): DDD: 30 Spondylolisthesis: 70 Age (yr): 51.2 vs. 53.4 Male (%): 33.3 vs. 18.5	Fusion at 24 months (%): 44 vs. 63, p = NS Additional Surgeries (%): 26.0 vs. 33.3	No funds received in support of this work.	Poor
Rihn, 2009 Retrospective TLIF Circ.	119 (86 vs. 33)	unclear rhBMP-2 vs. autograft Dosage: NR	Overall Age (yr): 47.4 Male (%): 53 Diagnosis (%): DDD: 11 DDD/HNP: 13 RHNP: 28 IS: 33 DS: 15	Fusion (%): 97 vs. 97, p = NS Reoperations (%): 9 vs. 12 Adverse Events (%): Lumbar Infection: 4 vs. 6 Radiculitis: 14 vs. 3 Patients with complications: 29 vs.46 Total complications: 43 vs. 54	Multiple author disclosures, funder NR.	Poor
Rogozinski, 2009 Prospective PLF	31 (15 vs. 16)	rhBMP-2 + ICBG vs. ICBG + bone stimulation large INFUSE kit		Fusion at 24 months (%): 100 vs. 100 Back Pain: Significance NR at all time points	NR	Poor
Rowan, 2012 Retrospective PLF/ PLIF Circ.	104 (64 vs. 40)	rhBMP-2 vs. no rhBMP-2 (12 mg InductOs + collagen matrix (+BCS and bone marrow aspirate in 3 cases)	rhBMP-2 vs. control Age (yr): 54.8 vs. 56.5 Male (%): 48 vs. 30 Diagnosis: Degenerative spondylolisthesis: 50 vs. 55 DDD: 50 vs. 40 Central stenosis: 42 vs. 35 Surgical Approach (%): PLF: 70 vs. 75 PLIF: 30 vs. 25	Fusion (%): NR Leg Pain: Postop: 25 vs. 12, p = NS 3 months: 12 vs. 8, p = NS Subsequent Intervention (%): Overall: 8 vs. 10 Revision surgery: 2 vs. 0 Selective nerve root block: 5 vs. 5	No conflict of interest reported.	Poor

Prospective PLF	(41 vs. 11)	+ ICBG vs. ICBG only large INFUSE kit	Male (%): 44 vs. 46			
Slosar, 2007 Prospective ALIF Circ.	75 (45 vs. 30)	rhBMP-2/AVS vs. allograft chips 3mg rhBMP- 2/level	Age (yr): 45.1 vs. 43.6 Male (%): 51.1 vs. 60 Tobacco use (%): 18 vs. 8	Patients with united grafts (%): 100 vs. 83, p < 0.011 Adverse Events (%): Wound Dehiscence: 0 vs. 2.2 Wound Infection: 3.3 vs. 0 Revision Surgeries: 0 vs. 13	Research supported by a grant from Medtronic	Poor
Smucker, 2006 Retrospective Anterior Cervical	234 (69 vs. 165)	rhBMP-2 vs. Autograft 1.5 mg/MI per level rhBMP-2	Age (yr): 52 vs. 50 Male (%): 49 vs. 49 Smoker (%): 29 vs. 15, p = 0.02	Adverse Events (%): Dysphagia: 7.2 vs. 1.2 Neck swelling: 27.5 vs. 3.6, p < 0.001	No funds received in support of this work.	Fair
Taghavi, 2010 Retrospective PLF	62 (24 vs. 18 vs. 20)	rhBMP-2/ACS vs. BMAA vs. Autograft Large INFUSE kit	Age (yr): 57.3 vs. 59.7 vs. 55.8 Male (%): 45.8 vs. 55.6 vs. 55.0 Smokers (%): 8.3 vs. 11.1 vs. 15.0 Diabetes (%): 8.3 vs. 5.5 vs. 10	Fusion (%): 100 vs. 77.8 vs. 100, (p = 0.005 when comparing groups 1 and 2 Back pain, 24 months VAS scores: NS between groups at all time points Adverse Events (%): Dural Tear: 4 vs. 0 vs. 5 Additional surgery: 8 vs. 22 vs. 10	No funds received in support of this work.	Poor
Vaidya, 2007 (C) Retrospective ACDF	46 (22 vs. 24)	rhBMP-2 vs. Allograft 1 mg/mL rhBMP-2/level + PEEK cage	Age (yr): 50 vs. 48 Male (%): 31.8 vs. 41.7	Probable Fusion (%): 100 vs. 96 ODI: p = NS (difference between groups at all time periods) Arm Pain: p = NS (difference between groups at all time periods) Neck Pain: p = NS (difference between groups at all time periods) Adverse Events (%): Dysphagia: 85 vs. 56 Reoperations: 9 vs. 4	NR	Poor

Vaidya, 2007 (I) Prospective ALIF Circ./ TLIF Circ./ Anterior Cervical	77 (36 vs. 41)	rhBMP-2/ACS vs. demineralized bone matrix lumbar = 2 mg BMP2/ level, cervical = 1 mg/level	Age (yr): 48 vs. 45 Male (%): 44 vs. 44 Surgical Approach (%): ALIF Circ.: 36 vs. 27 TLIF Circ: 33 vs. 44 ACDF: 31 vs. 29	Fusion (%): ALIF Circ: 100 vs. 100 TLILF Circ.: 100 vs. 100 ACDF: 100 vs. 92 ODI improvement final follow-up: 89 vs. 88 (surgical approach NR) Adverse Events (%): Dysphagia with ACDF: 55 vs. 0 Additional Surgery: 11 vs. 12	No benefits received from a commercial party related to this article.	Poor
Xu, 2011 Retrospective Posterior Cervical	204 48 vs. 156	rhBMP-2 vs. No rhBMP-2 Dosage: NR	Age (%): 60.3 vs. 60.8 Male (%): 47.9 vs. 64.1 Diabetes (%): 15.1 vs. 25.0 Smoking history (%): 30.2 vs. 22.4	Fusion (%): 100 vs. 87.6, p = 0.01 Neck Pain at last follow-up: 47.5 vs. 23.3, p = 0.003 Adverse Events (%): Infection: 10.9 vs. 10.9, NS Dysphagia: 6.3 vs. 3.8, NS Wound dehiscence: 2.2 vs. 5.1, NS Reoperation: 15.2 vs. 20.5, NS	NR	Poor
Yaremchuck, 2010 Retrospective Anterior Cervical	775 260 vs. 515	rhBMP-2 vs. No rhBMP-2 Dosage: NR	NR	Adverse Events (%): Percutaneous endoscopic gastrostomy: 2.3 vs. 0.8, $p = 0.089$ Tracheotomies: 3.1 vs. 0.6, $p = 0.024$ Readmissions: 8.8 vs. 5.0, $p = 0.040$ Dysphasia: 0.4 vs. 0.6, $p = 0.888$ Dysphagia: 6.9 vs. 3.3, $p = 0.001$ Dyspnea: 20.4 vs. 8.0, $p = 0.001$ Hoarseness: 2.3 vs. 1.2, $p = 0.427$ Respiratory failure: 13.1 vs. 4.7, $p = 0.001$	NR	

ACDF = anterior cervical discectomy and fusion, ACS = absorbable collagen sponge, ALIF = anterior lumbar interbody fusion, BCS = bovine collagen sponge, BMAA = bone marrow aspirate with allograft, Circ. = circumferential, DBM = Demineralized Bone MatrixDDD = degenerative disc disease, DS = degenerative spondylolisthesis, FRA = femoral ring allograft, HNP = herniated nucleus pulposus, IS = isthmic spondylolisthesis, LDH = lumbar disc herniation, PLF = posterior lumbar fusion, PLIF = posterior lumbar interbody fusion, rhBMP-2 = recombinant human bone morphogenetic protein-2, RHNP = recurrent herniated nucleus pulposus, TLIF = transforaminal lumbar interbody fusion

Author Year Country Trial # or Name Butterman 2008 USA ACDF	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? No; differences between groups on: gender distribution, smoking status, and levels fused	Did the study maintain comparable groups through the study period? Baseline differences were maintained
Cahill 2009 USA Anterior/Posterior Cervical, Lumbar, Thoracic	Yes; Total = 328,468	No; several statistically significant differences	No
Cahill 2011 USA Lumbar	Yes; NIS database for 2006	No; differences in age and a number of other characteristics (table 1)	NA
Carragee 2011 USA ALIF	Yes; Consecutive patients meeting inclusion criteria. "Consecutive" in abstract	Yes; Matched Table but no information on diabetes	Yes; No withdrawals reported.
Crawford 2009 USA Posterior Cervical	Yes	Unclear; BMP group had 10% lower rate of males and 12% lower rate of smokers; differences not significant likely due to small sample size	Yes

Author Year Country Trial # or Name Butterman	Did the study use accurate methods for ascertaining exposures and potential confounders? Prospective study; pre and	Were outcome assessors and/or data analysts blinded to the exposure being studied? Unclear	Did the article report attrition?	Did the study perform appropriate statistical analyses on potential confounders? Subgroup analysis of patients with 2
2008 USA ACDF	postoperative surveys given	Undear	between 2-3 years	levels fused; some analysis of patients with 2 levels fused; some analysis of confounders such as effect of smoking on outcomes. However, within subgroup of patients with 2 levels, there was significantly more males in the BMP group (62% vs 21%, p=0.021), which wasn't controlled for.
Cahill 2009 USA Anterior/Posterior Cervical, Lumbar, Thoracic	Yes; retrospective review of NIS database using ICD-9 codes	Unclear	Unclear; missing data not described	Yes; Multivariate Analysis
Cahill 2011 USA Lumbar	Yes; retrospective review of NIS database using ICD-9 codes	Unclear	Unclear; missing data not described	Yes; multivariate logistic regression
Carragee 2011 USA ALIF	Unclear; Retrospective database study. Details of ascertainment not specified.	Yes; Post-operative complications were recorded by independent research assistants in a deidentified database.	No	No
Crawford 2009 USA Posterior Cervical	Unclear; details of retrospective chart review not clearly specified.	Possibly-"Hospital and clinic charts were reviewed by an individual not involved in the care of the patients."	No attrition reported	No, significant difference in follow-up time (30 months vs. 23 months)

Author Year Country Trial # or Name Butterman 2008 USA ACDF	Is there important differential loss to follow- up or overall high loss to follow-up? No	Were outcomes pre- specified and defined, and ascertained using accurate methods? Unclear; Specific postoperative complications were not prespecified	Quality Rating Poor	Comments Information on age, gender, and levels provided along with subgroup analysis and analysis of effect of smoking, number of levels fused, and workers comp
Cahill 2009 USA Anterior/Posterior Cervical, Lumbar,	Unclear	Yes	Good	
Thoracic Cahill 2011 USA Lumbar	Unclear	Yes	Good	Although it does not differentiate between BMP-7 and BMP-2, we believe there is a very low likelihood of any use of BMP-7 because of its indication, humanitarian device restrictions and because we could find no trials of its use in the US in the cervical spine or any trials on clinicaltrials.gov.
Carragee 2011 USA ALIF	No	No; Retrograde ejaculation was not defined	Poor	
Crawford 2009 USA Posterior Cervical	Unclear; attrition NR	Yes	Poor	No adjustment for length of followup

Author Year Country Trial # or Name Crawford 2010 USA ALIF Circ.	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes; Consecutive patients	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? No; some differences including BMP group was younger (43.5 vs 49.8 years, p=0.04) and had more anterior levels fused (3.3 vs 1.9, P=0.01)	Did the study maintain comparable groups through the study period? No
Gerzten 2011 USA AxiaLIF Circ.	Unclear; 99 patients	Unclear; Only age and female comparison	Unclear
Glassman 2007 USA PLF	Unclear; Randomized but not sure if all the patients were included	Yes; table 1 shows certain risk factors similar. The age in the smokers group is slightly lower but acceptable.	Unclear
Hiremath 2009 USA Posterior Cervical	Yes	Yes; No-large difference in gender distribution 75% vs. 23% Male	N/A
Hoffman 2012 USA PLF/PLIF Circ.A16	Yes. Consecutive patients meeting inclusion criteria. Exclusions reported.	No. rhBMP-2 group had higher rates of diabetes (14.5% vs 7.2% vs 7.6%), cardiovascular disease (45.4% vs 23.9% vs 25.5%), steroid medication (21.4% vs 8.2% vs 9.0%) and NSAID medication (33.1% vs 11.4% vs 15.9%)	N/A
Joseph 2007 USA PLIF Circ./ TLIF Circ.	Unclear	Unclear; No comparison Table	Unclear
Katayama 2008 USA PLF	Unclear; Do not mention All/Consecutive	Yes; Patients served as own controls.	Yes; Paired

Author Year Country Trial # or Name Crawford 2010 USA ALIF Circ.	Did the study use accurate methods for ascertaining exposures and potential confounders? Unclear; retrospective review of various data sources, but criteria and process not explicitly described	Were outcome assessors and/or data analysts blinded to the exposure being studied? Unclear; Fusion evaluated by two independent surgeons	Did the article report attrition? Yes	Did the study perform appropriate statistical analyses on potential confounders? No; No Adjusted Results
Gerzten 2011 USA AxiaLIF Circ.	Unclear	No; Don't mention	Yes	No; No adjusted Results
Glassman 2007 USA PLF	Unclear; smoking status was based on patient's preoperative response and extent of cigarette use was not determined.	Yes - Independent, Blinded Radiologist	No	No; No adjusted Results
Hiremath 2009 USA Posterior Cervical	Unclear; details of retrospective chart review not clearly specified.	Unclear	No attrition reported	No
Hoffman 2012 USA PLF/PLIF Circ.A16	Yes for exposures (CPT codes). Unclear for potential confounders; details of retrospective chart review not explicitly described.	No.	No information about missing data.	No
Joseph 2007 USA PLIF Circ./ TLIF Circ.	Unclear; criteria not described for how patients were retrospectively identified from hospital and clinical chart review	underwent independent	Yes; 1 Loss to follow-up	No
Katayama 2008 USA PLF	Unclear; insufficient description of diagnostic criteria	No; Independent surgeons	Yes; 1 died, 1 moved	No

Author Year Country Trial # or Name		Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Crawford 2010 USA ALIF Circ.	No	Yes	Poor	
Gerzten 2011 USA AxiaLIF Circ.	No	No. Complications not prespecified.	Poor	
Glassman 2007 USA PLF	Unclear; attrition NR	Yes	Poor	
Hiremath 2009 USA Posterior Cervical	No	Unclear; Specific postoperative complications were not prespecified	Poor	
Hoffman 2012 USA PLF/PLIF Circ.A16	Unclear	No. Complications and ascertainment methods not explicitly defined.	Poor	
Joseph 2007 USA PLIF Circ./ TLIF Circ.	No	Unclear; ambiguous criteria for repeat CT scan (when fusion was "in doubt")	Poor	
Katayama 2008 USA PLF	No; less than 20% over 6 years.	Yes	Fair	

Author Year Country Trial # or Name Latzman 2010 USA Lumbar	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes; all patients in an 8-year period	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? No; more females (22% vs 10%) and fewer diabetics (7% vs 37%) in BMP group	Did the study maintain comparable groups through the study period? No
Lee 2010 USA PLF	No; required > 2-year follow-up	No; differences in sex, comorbidity, osteoporosis, smoking, fusion level and revision.	NA; not comparable at baseline
Lee 2011 USA PLF	No; required > 2-year follow-up	Yes; p values insignificant	Yes
Lindley 2012 USA ALIF	Unclear. "All" patients meeting inclusion criteria. But, exclusions not reported.	No. rhBMP-2 group was older (49 vs 35 years; P <0.001), more had primary diagnosis of pseudoarthrosis (14.8% vs 0; P <0.05), and fewer had single-level L5-S1 (31.5% vs 58.5%, P <0.05) and anterior surgery only (50% vs 100%, P <0.001)	
Maeda 2009 USA ALIF Circ.	No; Consecutive but min. 2 year follow- up	Yes; Nothing was significant except follow-up time.	Yes; But the time frames were different between groups: 1997-2002 for ICBG and after 2002 for BMP.
Mindea 2008 USA TLIF Circ.	Yes; All consecutive patients	Unclear; Have a table but cannot differentiate between groups	Unclear

Author Year Country Trial # or Name	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?	Did the study perform appropriate statistical analyses on potential confounders?
Latzman 2010 USA Lumbar	Unclear; criteria not described for retrospective review of computerized VA hospital records	Unclear; Not Reported	Yes	No
Lee 2010 USA PLF	Unclear; retrospective review of medical record database, process not specified.	Unclear; No mention of blinding	NA, only included patients with > 2 years of follow-up	Yes; Multivariate Analysis
Lee 2011 USA PLF	Unclear; retrospective review of medical record database, process not specified.	Unclear; No mention of blinding	NA, only included patients with > 2 years of follow-up	Yes
Lindley 2012 USA ALIF	Unclear; process for retrospective chart review not explicitly described	Unclear; No mention of blinding	No	No.
Maeda 2009 USA ALIF Circ.	Yes; Prospective study. Unclear; criteria for determining spinal deformity NR	Unclear; Blinding not specified.	No; Missing data not specified	No
Mindea 2008 USA TLIF Circ.	Unclear; process for retrospective chart review not explicitly described	Unclear	No	No

Author Year Country Trial # or Name	Is there important differential loss to follow- up or overall high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Latzman 2010 USA Lumbar	No	Yes	Poor	
Lee 2010 USA PLF	NA, only included patients with > 2 years of follow-up	Yes	Fair	
Lee 2011 USA PLF	N/A, only included patients with > 2 years of follow-up	Yes	Fair	
Lindley 2012 USA ALIF	Unclear	Unclear; chart notes verified by phone calls, but retrograde ejaculation was not explicitly defined.	Poor	
Maeda 2009 USA ALIF Circ.	Yes; No Lost to follow-up	Yes	Poor	
Mindea 2008 USA TLIF Circ.	No	Unclear; radiculitis criteria not explicitly defined	Poor	

Author Year Country Trial # or Name Mines 2011 USA Lumbar	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes; inclusion criteria described and reported numbers and reasons for exclusions	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? Unclear; BMP administration was statistically significantly more common in younger patients, women, blacks, and those with diabetes or prior cholecystectomy, but differences were very small and likely not clinically important and all baseline differences were controlled for in the multivariate analysis	Did the study maintain comparable groups through the study period? N/A, but the length of followup is different between two groups
Mummaneni 2004 USA TLIF Circ.	Yes; 40 out of 44	Yes; Table for all patients	Yes
Pradhan 2005 USA ALIF	Yes; Consecutive	No; Table 2 shows significant differences in baseline characteristics	No; They were not similar to start with
Rihn 2009 USA TLIF Circ.	Yes; 119 out of 130	Unclear; stated no significantly differences, but data NR	Unclear
Rogozinski 2012 USA PLF	Yes	No; more patients in BMP group had previously undergone a laminotomy or laminectomy (31% vs 7%) and I don't see gender mentioned at all.	No; Groups not comparable at baseline and different timeframes

Author Year Country Trial # or Name	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?	Did the study perform appropriate statistical analyses on potential confounders?
Mines 2011 USA Lumbar	Unclear for exposure: Because rhBMP-2 could not be specifically ascertained from Medicare claims, the ICD-9 code for BMP had to be used as a surrogate. Although this code also covers use of rhBMP-7, authors suspected that utilization of rhBMP-7 was low. Unclear for potential confounders: retrospective review of ICD-9 codes	Unclear	No	Yes
Mummaneni 2004 USA TLIF Circ.	Unclear; process for retrospective chart review not explicitly described	Unclear	Yes; 40 were followed through	No
Pradhan 2005 USA ALIF	Yes; prospective study with detailed information provided about diagnostic criteria.	Yes; An independent, blinded radiologist interpreted all radiographs	No	No
Rihn 2009 USA TLIF Circ.	Unclear; process for retrospective chart review not explicitly described	Unclear; Do not mention anything	Yes	No
Rogozinski 2012 USA PLF	Unclear; insufficient description of diagnostic criteria	Yes; Blinded and went through extra care to hide the surgery	No	No

Author Year Country	Is there important differential loss to follow- up or overall high loss to	Were outcomes pre- specified and defined, and ascertained using accurate		
Trial # or Name	follow-up?	methods?	Quality Rating	Comments
Mines 2011 USA Lumbar	No information provided about missing data	Yes	Fair	
Mummaneni	No; 4 out of 40	Unclear; radiculitis criteria not	Poor	

2004 USA TLIF Circ.	NO, 4 OUT OF 40	explicitly defined		
Pradhan 2005 USA ALIF	Unclear	Yes	Poor	
Rihn 2009 USA TLIF Circ.	No	Yes	Poor	
Rogozinski 2012 USA PLF	Unclear; attrition NR	Yes	Poor	

Author Year Country Trial # or Name Rowan 2012 Ireland PLF/PLIF Circ.	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes; All patients were reviewed	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? No; Different time frames (BMP: 2007 - 2009 vs Control: 2005 - 2007) and previous fusion surgery variable is significantly different	Did the study maintain comparable groups through the study period? N/A; groups not comparable at baseline
Singh 2006 USA PLF	Yes; 39/41	No; Higher age in BMP group (65.3 vs 54.2); number of levels fused NR	No; Groups not comparable at baseline.
Slosar 2007 USA ALIF Circ.	Yes; Consecutive	Unclear. Data on number of levels fused NR. Tobacco use 10% higher in BMP group. Although NSS due to small sample size, 10% difference may be clinically significant.	Yes; Some LTFU (1 in Control and 2 in BMP) but they do not mention if that was significant
Smucker 2006 USA Anterior Cervical	Yes	No; differences between groups on prior anterior cervical fusion, smoking, # levels fused, inclusion of C4-C5, use of a plate, and type of bone graft used	NA
Taghavi 2010 USA PLF	No; Minimum 2-year follow-up	Unclear; no statistically significant differences, but BMP group had more with single level (54.2% vs BMAA=38.9%) and fewer with 2 levels (16.7% vs 33.3% vs 25.0%)	Unclear
Vaidya 2007c ACDF	Yes	Yes on the characteristics listed but no information on smoking status, working status, spinal litigation status, etc	Unclear

Author Year Country Trial # or Name	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?	Did the study perform appropriate statistical analyses on potential confounders?
Rowan 2012 Ireland PLF/PLIF Circ.	Unclear	Unclear; Blinding not specified.	Yes, four (out of 64) in the rhBMP- 2 treated group and one (out of 40) in the non- rhBMP-2 treated group.	No
Singh 2006 USA PLF	Yes	Yes; all imaging studies blindly evaluated by 2 orthopedic surgeons and a board-certified radiologist	Yes; 96% available at 2 years (50/52)	No
Slosar 2007 USA ALIF Circ.	Unclear; prospective design, but diagnostic criteria NR	Yes; Three Independent reviewers, blinded to group status	Yes; 1 in Control and 2 in BMP	No
Smucker 2006 USA Anterior Cervical	Unclear; details of retrospective chart review not clearly specified.	Unclear	No; No attrition reported	Yes
Taghavi 2010 USA PLF	Unclear; retrospective review of medical records, but process not described	Yes; Blinded	NA, only included patients with > 2 years of follow-up	No
Vaidya 2007c ACDF	Retrospective study and unclear how information was obtained	Unclear; Radiologist and three observers were "independent"	No; No attrition reported	No

Author Year Country Trial # or Name	up or overall high loss to follow-up?	methods?	Quality Rating	Comments
Rowan 2012 Ireland PLF/PLIF Circ.	No, four (out of 64) in the rhBMP- 2 treated group and one (out of 40) in the non-rhBMP-2 treated group.	Unclear about accuracy of surgeon discretion in determining severity of leg pain based on criteria of of "when symptoms were disproportionately high or new".	Poor	
Singh 2006 USA PLF	Yes, 2 of 52 dropped out	Yes	Poor	
Slosar 2007 USA ALIF Circ.	No; 1 in Control and 2 in BMP	Yes; Molinari-Bridwell grading used to assess fusion. Scales identified that were used to measure clinical outcomes.		
Smucker 2006 USA Anterior Cervical	No	Yes	Fair	
Taghavi 2010 USA PLF	NA, only included patients with > 2 years of follow-up	Yes	Poor	
Vaidya 2007c ACDF	No	Unclear; Fusion not defined	Poor	No adjustment for confounding

Author Year Country Trial # or Name Vaidya 2007 (I) USA ALIF Circ./ TLIF Circ./ Anterior Cervical	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)? Yes; Consecutive	Were the groups comparable at baseline on key prognostic factors (e.g., by restriction or matching)? Unclear; Matched for age and gender, but mean # of levels and other prognostic factors NR	Did the study maintain comparable groups through the study period? Unclear; CT scans only available for 42% patients
Xu, 2011 Posterior Cervical	Yes, consecutive enrollment	No; differences were reported but rhBMP-2 group was 48% male vs 64% male in control group; # levels to be fused not given; 10% lower rate of diabetes in BMP group	NA
Yaremchuck, 2010 Retrospective Anterior Cervical	Yes, BMP-2 pateints enrolled	NR	NR

Author Year Country Trial # or Name	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?	Did the study perform appropriate statistical analyses on potential confounders?
Vaidya 2007 (I) USA ALIF Circ./ TLIF Circ./ Anterior Cervical	Unclear; prospective study but diagnostic criteria for indications not described	No; Don't mention blinding but independent radiologists	Unclear; attrition NR	Νο
Xu, 2011 Posterior Cervical	Unclear; details of retrospective chart review not clearly specified.	Unclear	Yes; 35 (17%) excluded due to radiographic follow-up < 6 months	No
Yaremchuck, 2010 Retrospective Anterior Cervical	Unclear; Retrospective study and the data were obtained using hospital claims system.	Unclear	No, Missing data not reported	Unclear, adjusted for diagnoses and time since the initial use of BMP. Patient charactersitics were not adequately adjusted for.

Author Year Country Trial # or Name		Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Vaidya 2007 (I) USA ALIF Circ./ TLIF Circ./ Anterior Cervical	Yes	Yes	Poor	
Xu, 2011 Posterior Cervical	No for overall; yes for differential, control=29%, BMP=0	Fusion not defined	Poor	No adjustment for confounding; No information on levels fused
Yaremchuck, 2010 Retrospective Anterior Cervical	Unclear, NA	Unclear	Poor	

Author, year	n	Intervention	Baseline Characteristics	Results	Funder	Quality
Approach			rhBMP-2 vs. control (unless			
Mean Follow-up			otherwise noted)			
Abd-El-Barr, 2011	17	rhBMP-2 +	Mean age, years: 12.3	Fusion rate, %: 100	Not reported.	Fair
Cervical,	(15 at	ACS with	Male, %: 29	Neurological improvement of 8		
Thoracic, and	final	allograft or	Area fused, n:	patients reporting deficits at		
Lumbar	follow	autograft	Lumbar: 4	presentation, %:		
24.1 Months	up)		Thoracolumbar: 2	Improvement: 75		
			Thoracic: 3	Stabilization: 25		
			Thoracic/cervical: 1	Complications, n:		
			Cervical/occipital: 7	Kyphosis: 1		
				Pneumothorax: 1		
				Screw revision: 2		
				Plate removal: 1		
				CSF leak: 1		
Acosta, 2009	200	rhBMP-2 +	Mean age, years: 59	Fusion rate, %:	Not reported.	Poor
ALIF Circ., TLIF		PSF/PSI	Male, %: 44	Overall: 97		
Circ., posterior			Diagnosis, %:	ALIF Circ: 100		
spinal fusion with			DDD: 53.0	TLIF Circ: 92		
pedicle screw			Degenerative	PLIF: 90		
instrumentation			spondylolisthesis: 26.0	Mean levels fused: 3.2		
32 Months			Spondylolysis: 12.5	Total adverse events, % : 8.5		
			Scoliosis: 8.5	Complications, n:		
			Surgery type, %:	Infection: 5		
			ALIF Circ: 65	CSF Leak: 2		
			TLIF Circ: 25	DVT: 3		
			PLIF: 10	Pneumonia: 1		
				Pseudoarthrosis: 6		
Anand, 2006	100	rhBMP-2	Mean Age, years: 52	Fusion rate, %: 99%	No funds were	Poor
TLIF Circ.			Male, %: 58	ODI score:	received in	
30 Months			Smokers, %: 1	Preoperative: 35	support of this	
			Levels of Fusion, %:	Final follow-up: 12	work.	

Evidence Table 9. Non-Medtronic Intervention Series

			Single-level: 76 Two-level: 24	Radicular pain, %: 3		
Anand, 2008 AxiaLIF Circ., XLIF Circ., DLIF Circ 75.5 Days	12	rhBMP-2 + ACS with local bone and Grafton Putty BDM	Mean age, years: 73 Male, %: 58 Mean levels of fusion: 3.5	Adverse events, n: Thigh dysesthesias: 3 Transient quadracep weakness: 1	Not reported.	Poor
Anderson, 2011 ALIF Circumferential Minimum 12 Months	50	rhBMP-2, INFUSE)	Male, %: 52 Mean age: 48.2 Diagnosis, n: Spondylolisthesis: 23 DDD: 24 Recurrent herniated disc disease: 2 Painful spondylolysis: 1 Levels of fusion, %: Single-level: 48 Two-level: 52	Fusion rate, %: Definitely Fused: 61 Probably Fusion: 31 Probably Not Fused: 8 Adverse events, n: Ileus requiring an NG tube for 2 days: 1 Scrotal Edema: 1 Tachycardia, Transient hypotension with trace pericardial effusion: 1 Urinary Retention: 1 Urinary Tract Infection: 1	Conflict of interest: None	Poor
Aryan, 2007 Cervical, Thoracic and Lumbar 20 Months	15	rhBMP-2 (INFUSE) + titanium cages with allograft and/or autograft	Mean age, years: 51 Segment of fusion, n: Cervical: 6 Thoracic: 5 Lumbar: 4 Diabetes, n: 4 Smokers, n: 4 Osteoporosis/Osteopenia, n: 2 Vertebral Osteomyelitis, n: 15	Fusion, %: 92.3 Adverse events, n: Superficial Wound Infection: 2 Dysphagia/Dysphonia: 4 Intraoperative Venous Injury: 1 Lower-Extremity Edema: 1	No conflict of interest reported.	Poor
Boakye, 2005 Anterior Cervical 13 Months	24 (23 in follow up)	rhBMP-2 (INFUSE) with PEEK cages	Mean age, years: 52 Male, %: 50 Presenting diagnosis, %:	Fusion rate, %: 100 Clinical outcome according to Odom criteria, %:	Not reported.	

Companion to			Radiculopathy: 63	Good/excellent: 95		
Tumialan, 2008			Myeloradiculopathy: 33	Fair: 5		
,			Quadriparesis: 4	Complications, n:		
			Levels of fusion, %:	Transient dysphagia: 2		
			Single-level: 50	CSF leakage: 1		
			Two-level: 38	Transient C-5 paresis: 1		
			Three-level: 13	Transient vocal cord paresis: 1		
				Heterotopic bone formation, n: 3		
Carreon, 2008	96	rhBMP-2	Male, n: 44	Adverse events, n:	No funds	Poor
All Approaches/		(INFUSE)	Smokers, n: 35	First surgery:	received in	
Levels			1 st Surgery w/ rhBMP-2, n:	Complications (overall): 38	support of this	
Follow up not			Primary fusions: 90	Hematoma/wound drainage: 9	work. One or	
reported, study			Revisions: 6	Deep wound infection: 2	more authors	
period = 4 years.			Cervical: 28	Second surgery:	received	
			Thoracic: 3	Complications: 27	benefits from a	
			Lumbar: 65	Hematoma/wound drainage: 11	commercial	
			2 nd Surgery w/ rhBMP-2, n:	Deep wound infection: 5	party related to	
			Primary fusions: 25	Difference in incidence of overall	this manuscript.	
			All revisions: 71	wound complications between first		
			Cervical: 24	and second exposure to rhBMP-2: NS,		
			Thoracic: 5	p = 0.839		
			Lumbar: 67			
Fahim, 2010	19	rhBMP-2 +	Mean age, years: 12	Fusion, %: 100	Authors have no	Poor-
Posterior		ACS with bone	Male, n: 11	Adverse events, n:	financial or	Fair
occipital, cervical,		graft or a		Superficial wound infection: 2	institutional	
thoracic, lumbar,		compression		Deep wound infection: 0	interest in the	
or lumbosacral		resistant		Bony overgrowth: 1	drugs, etc	
19 Months		matrix			described in this	
					article.	
Geibel, 2009	48	rhBMP-2	Mean age, years:	Fusion, %: 100	Supported by	Fair
PLIF		(INFUSE) +	Male: 50	Subsequent surgeries at adjacent	The Texas	
Circumferential		impacted	Female: 51	level, n: 5	Center for	
53.8 Months		interbody or	Male, %: 52	ODI scores:	Spinal Research	
		Titanium or	Smokers, %: 35	Preoperative: Not recorded	and financed by	

		PEEK cages	Diabetic, %: 2 Diagnosis, %: DDD: 100 Spondylolisthesis: 25 Radiculopathy: 100 Pseudoarthrosis: 0 HNP: 100	17 months post-surgery: 31.4	Medtronic Sofamor Danek.	
Glassman, 2007 PLF 27 Months	91	rhBMP-2 (INFUSE) with local bone or allograft cancellous chips or DBM or HA/TCP ceramic	Mean age, years: 60 Male, %: 40 Smokers, %: 15 Diagnosis, n: Disc pathology: 20 Spondylolisthesis: 17 Degenerative scoliosis: 2	Nonunion rate, %: 12 Union rates for graft extenders: Differences between graft extenders were not significant, p = .200	Research supported by grants from Norton Healthcare and Medtronic. Authors acknowledge a financial relationship related to this research.	Fair
Glassman, 2011 PLF 3 Months	1037	rhBMP-2 + ACS	Mean age, years: 58.4 Male, %: 38.6 Smokers, %: 29 Diagnosis, %: Stenosis: 24.4 Spondylolisthesis: 19.7 Disc pathology: 10.2 Nonunion: 11.1 Adjacent disc degeneration: 17.4 Post-discectomy instability: 12.3	Mean surgical levels fused (range): 1.8 (1-5) Major complications, %: Overall: 7.8 Deep wound infection: 2.12 Pneumonia: 1.64 Hematoma (–)culture: .96 Minor complications, %: Overall: 10.2 Dural tear: 5.59 Mental status change: 3.66 Ileus: 2.60 Urinary tract infection: 1.83 Superficial wound infection: 1.74	No funds were received in support of this work. One or more author will receive benefits from a commercial party related to the subject of this manuscript.	Fair
Hamilton, 2008	55	rhBMP-2	Mean age, years: 68	Significant fusion, %: 80	Not reported.	Poor

PLF 34 Months	(47 at FU)	(INFUSE)	Male, %: 45 Symptoms, n:	Complications requiring additional surgery, n (%):		
	FUJ		Debilitating back pain: 47	Total: 5 (9)		
			Radicular symptoms: 46	Epidural hematoma: 2		
			Neurogenic claudication:	Thecal sac compression: 1		
			34	Wound infection: 1		
			54	Radicular nerve impingement: 1		
				Stenosis at adjacent level, n: 10		
Hamilton, 2010	23	rhBMP-2 +	Mean age, years: 60.9	Fusion rate, %: 100	Source of	Poor
Posterior Cervical		ACS	Male, %: 43	Complications, n: 0	support: nil.	
45 Months			Patients under age 10, n: 2		Conflict of	
			Surgical indications, n:		interest: none	
Companion to			Atlantoaxial instability: 16		declared.	
Hamilton, 2011			Basilar invagination: 6			
			Kyphoscoliosis: 1			
Hamilton, 2011	53	rhBMP-2 +	Mean age, years:	Fusion rate, %: 100	The authors	Poor
Posterior Cervical		ACS	Male: 55	Lenke, Grade A: 94	have no	
40 Months			Female: 56	Lenke, Grade B: 6	personal	
			Male, %: 42	Adverse events, n (%):	financial or	
			Patients under age 10, n: 3	Total complications: 2 (4)	institutional	
			Surgical indications, n:	Superficial wound infection: 1	interest in any	
			Kyphosis/kyphoscoliosis: 22	Adjacent-level degeneration requiring	of the drugs,	
			Atlantoaxial instability: 16	revision surgery: 1	materials, or	
			Basilar invagination: 6		devices	
			Fracture: 6		described in this	
			Other: 3		article.	
Helgeson, 2011	23	rhBMP-2	Mean age, years: 38.2	Fusion rate, %: 83	Funding from	Poor
TLIF		(INFUSE)	Male, %: 78	Osteolysis, %:	Medtronic and	
Circumferential			Levels of fusion, n:	At 3 to 6 months: 54	Defense	
1 -2 Years			Single-level: 12	At 1 to 2 years: 41	Advanced	
			Two-level: 6		Research	
			Three-level: 5		Projects Agency.	
					Author	
					relationships	

					with Medtronic and U.S. Government.	
Hodges, 2012	29	rhBMP-2 +	Mean age, years: 50	Pseudoarthrosis, %:	No relevant	Poor
Posterior Cervical		ACS with	Male, %: 45	Patients: 10.3	financial	
Minimum 12		autograft or	Mean BMI: 29	Levels: 5.8	information to	
Months		allograft bone	Tobacco use, %: 21	Patients with previous	disclose.	
			Diabetes, %: 14	pseudoarthrosis: 12.5 (1 of 8)		
			Previous anterior cervical	Patients with a previous anterior		
			Pseudoarthrosis, %: 28	fusion at an adjacent level: 20 (2 of		
			Operative levels, n: 69	10)		
Jagannathan,	87 (80	rhBMP-2	Mean age, years: 63.2	Adverse events, %:	Royalties	Poor
2009	at FU)	(INFUSE) with	Male, %: 27.5	Reoperation: 4	received from	
TLIF Circ.		allograft	Previous surgery, %: 57	Pseudoarthrosis: 3	Medtronic for	
34 Months		spacer	Preoperative findings, %:		spinal	
			Recurrent disc herniation:		instrumentation	
			44		devices. Authors	
			Spondylolisthesis: 81		have no other	
			Preoperative deformity: 75		disclosures.	
			Scoliosis: 25			
			Sagittal imbalance: 50			
Kleeman, 2001	22 (21	rhBMP-2 +	Mean age, years: 38	Fusion rate, %: 100	Conflict of	
ALIF	at FU)	BCS with	Male, %: 36	ODI score:	interest	
Maximum 24		NOVUS LT	Smokers, % : 9	Preoperative: 47	category: 16	
months		cages		6 months: 16		
				12 months: 11		
Companion				SF-36: Improvement in all categories		
Klimo, 2009	22	rhBMP-2 with	Mean age, years: 53	Fusion rate, %: 89	Author	Fair
Anterior Cervical		Cornerstone	Male, %: 64	Adverse events, %:	disclosure:	
14.5 Months		PEEK implants	Mean BMI: 27.1	Recurrent laryngeal nerve palsy: 1	none.	
			Smokers, %: 27	Neck swelling: 1		
			Previous posterior cervical	Pseudoarthrosis: 4		
			Foraminotomies, n: 2	Levels experiencing, %:		
			Levels fused, n: 38	Excessive bone growth: 68		

				Moderate of severe end-plate resorption: 57		
Knox, 2011 TLIF Circ. 4.3 Months	58	rhBMP-2 (5 mg per level) + ACS with PEEK Capstone or Perimeter cage and local autograft	Mean age, years: 36.8 Male, %: 72 Levels fused, n: 77 Levels of fusion, n: Single- level: 39 Two-level: 19	Osteolysis, %: Patients with: 28 Levels with: 26 Incidence of graft subsidence, %: 10 Incidence of cage migration, %: 9	No funds or benefits received in support of this work.	Poor
Kuklo, 2004 TLIF Circ. 12.4 Months	22	rhBMP-2 (INFUSE) + ACS with HYDROSORB	Mean age, years: 41.6 Male, %: 77 Diagnosis, %: DDD: 27 Ishemic spondylolisthesis: 23 Degenerative scoliosis: 18 Degenerative spondylolisthesis: 18 Failed-back syndrome: 9 Congenital scoliosis: 5 Levels fused, n: 39	 Fusion rate of levels fused, %: Levels with radiographic fusion: 87 Levels with fusion according to CT scan: 97 Adverse events, n: Instrumentation failure: 1 	Not reported.	Poor
Lanman, 2004 (L) TLIF Circ. 9.8 Months	43 (42 at 6 month FU, 11 at 12 month FU)	rhBMP-2 + ACS with HYDROSORB implant	Mean age, years: 48.6 Male, %: 56 Diagnosis, %: Discogenic pain: 79 Spondylolisthesis: 12 Nonunion from previous surgery: 9 Levels fused, n: 56 Levels of fusion, %: Single- level: 70 Two-level: 30	Fusion rate, %: At 3 months: 45 (19 of 42 patients) At 6 months: 98 (40 of 41 patients) At 12 months: 100 (11 of 11 patients)	Primary author is a paid consultant for Medtronic.	Poor
Lanman, 2004 (E)	20	rhBMP-2	Mean age, years: 46.2	Fusion rate, %:	Primary author	Fair

Anterior Cervical March 31, 2003 – July 3, 2003		(INFUSE) + ACS with Cornerstone) HSR spacer	Male, %: 70 Presenting diagnosis, n: Disc herniation: 8 DDD: 5 Discogenic pain: 2 Nonunion: 4 Spondylosis: 3 Levels of fusion, %: Single-level: 70 Two-level: 20 Three-level: 10	At 3 months: 100 (20 of 20 patients) At 6 months: 100 (17 of 17 patients) Adverse events, n: Severe dysphagia: 1 Additional surgery for nonunion: 1	is a paid consultant for Medtronic.	
Luhmann, 2005 ALIF, PLF, circumferential 17.9 Months	70	rhBMP-2 with titanium mesh cages	Mean age, years: 49.3 Male, %: 20 Surgical approach, n: ALIF: 46 PLF: 41 Compassionate use (CU): 8 Circumferential: 25 Diagnosis, n: Degenerative scoliosis: 11 Transition syndrome: 10 Pseudoarthrosis: 8 Spondylolisthesis: 6 AIS/congenital scoliosis: 4 Other: 7 Levels fused, n: 263 Previous surgery, %: 61	Fusion rate, %: ALIF: 96, 90 of 93 levels PLF: 93, 110 of 118 levels CU: 100, 52 of 52 levels Complications: Superficial wound dehiscence: 1 Deep wound infection: 1 Wound hematoma: 1	No funds or benefits received in support of this work.	Poor
Mannion, 2011 PLIF Circ., TLIF Circ. 7.1 Months	30	rhBMP-2	Mean age, years: 51 Male, %: 47 Levels fused, n: Total: 36 PLIF, n: 4 TLIF, n: 32	Fusion rate, %: 7.1 Months: 92 12 Months: 97 Adverse events, n: Heterotopic ossification: 2 Perineural cyst formation: 2 Non-union: 1	Multiple author disclosures regarding Medtronic: consulting, speaking arrangements,	Poor

				Revision surgery: 1	fellowship support, advisory board	
McClellan, 2006 TLIF Circ. 4.4 Months	26	rhBMP-2 (INFUSE) + ACS with various interbody implants	Mean age, years: 46 Male, %: 54 Total levels fused, n: 32	Fusion rate, % of levels: 59 Bone resorption rate, % of levels without fusion: 92, 12 of 13 levels Osteolytic defects, n: Mild: 11 Moderate: 4 Severe (Graft Subsidence/ Loss of End plate integrity): 7	Not reported.	Poor
Meisel, 2008 PLIF Circ. 24 Months	17	rhBMP-2 + BCS with Telamon PEEK cages	Mean age, years: 67 Male, %: 47 DDD, %: 100	 Fusion rate, %: 3 months: 100% of patients with evidence of vertebral endplate osteoclastic activity 6 months: 100% of patients with radiographic evidence of fusion Intracanalar bone formation, n: 1 	Not reported.	Poor
Mulconrey, 2008 Thoracic and Lumbar: ALIF, PLF 2.6 Years	98	rhBMP-2 + ACS with titanium mesh cage (ALIF) vs. rhBMP-2 + ACS with local bone graft and TCP-HA vs. rhBMP-2 (PLF) + collagen resistant matrix with TCP-HA	Mean age, years: 51.4 Male, %: 14 Patients per group, n: Group 1: 47 Group 2: 43 Group 3: 8 Total levels fused: 308 Mean levels with BMP use: 3.15 Preoperative factors, %: Medical comorbidities: 26 Tobacco use: 17 Revision surgery: 34 Previous laminectomy: 51 Pseudarthrosis: 27	Fusion rate, %: Overall: 95 Group 1: 91 Group 2: 97 Group 3: 100 Fusion ratings by group (1-5, 1 = fused): Group 1: 1.39 Group 2: NR Group 3: 1.03 Fusion rate, % levels: Group 1: 91 Group 2: 97 Group 3: 100 Additional surgery, n: 1 Pseudoarthrosis, %: 5	No funds received in support of this work and no benefits from a commercial party received from a party related to the subject of this manuscript.	Poor

Oetgen, 2010 Lumbar, Thoracic, Cervical Spine, also Femur, Tibia, and Ribs 22 Months O'Shaughnessy,	81	rhBMP-2 with a variety of approaches rhBMP-2 with	Mean age, years: 11.3 Male, %: 46 Skeletally immature, %: 65 Surgical procedures, n: 91 Region of surgery, n: Thoracic/lumbar spine: 47 Cervical spine: 5 Femur: 7 Tibia: 21 Ribs: 1 Mean age, years: 55	Overall complication rate, %: 17.5 (16 problems in 91 procedures) Complication rate in patients with multiple exposures to BMP, %: 27 (3 of 9 patients) Complications, n: Wound drainage: 5 Wound swelling: 2 Wound swelling: 2 Wound dehiscence: 2 Enlargement of optic glioma: 1 Deep infection: 3 (2 of 3 spine) Compartment syndrome: 1 (tibia) Progressive myelopathy: 1 (cervical) Dural fibrosis: 1 (spinal) Fusion rate, %: 100	Not reported.	Poor
2008 ALIF, TLIF, and circumferential 40 Months		Titanium mesh (90%), PEEK (5%) or femoral allograft (5%)	Male, %: 60 Vertebral Osteomyelitis:20 Region of surgery, %: Thoracic: 5 Thoracolumbar: 25 Lumbosacral: 15 Surgical approach, n: Anterior/posterior: 40 Anterior: 20 Posterior/posterolateral: 25 Direct posterior: 15	Intraoperative complications, n: Pseudoarthrosis: 1 Durotomy: 1 Major vessel injuries: 2 Deep venous thrombosis: 2 Superficial wound dehiscence: 1 <i>C. difficile</i> colitis: 1 Neurological status Frankel grade, n: Improved: 6 Stable: 14	industry and foundation funds received in support of this work. One or more authors received benefits from a commercial party related to the subject of this manuscript.	
O'Shaughnessy, 2012 Upper and Lower Thoracic 2.8 Years (UT)	58	rhBMP-2	Mean age, years: 55.7 Region of surgery, n: Upper thoracic (UT): 20 Lower thoracic (LT): 38 Smokers, %:	ODI score, preop vs. final: UT: 37.1 vs. 21.9, p = 0.001 LT: 35.8 vs. 16.8, p < 0.001 Complication rate, UT vs. LT, %: Overall: 50 vs. 37	Institutional funds received in support of this work. One or more authors	Poor

3.1 Years (LT)			UT: 5	Perioperative: 30 vs. 16	received	
. ,			LT: 5	Pseudoarthrosis: 20 vs. 5	benefits from a	
			Comorbidities, %:	Proximal junctional kyphosis: 10 vs. 18	commercial	
			UT: 50	Revision surgery: 20 vs. 11	party related to	
			LT: 45		the subject of	
			Mean fused segments:		this manuscript.	
			UT: 15.8			
			LT: 8.6			
Owens, 2011	204	rhBMP-2 +	Mean age, years: 49.3	Complications, %:	Conflict of	Fair
TLIF Circ.		ACS with local	Male, %: 44.6	Overall: 21.6	interest	
29.8 Months		autograft, iliac	Smokers, %: 40.7	Pneumonia: 0.5	statement:	
		crest bone	Diagnosis, %:	Vascular Injury: 0.5	none.	
		graft and/or	Spondylolisthesis: 27	Neurologic: 3.4		
		other graft	Instability: 5.4	Wound infection: 1.5		
		extender and	Stenosis: 10.8	Wound hematoma/seroma: 1		
		PEEK cage	Scoliosis: 2.9	Radiculopathy: 2.9		
			Disc pathology: 26	Superficial wound dehiscence: 1.0		
			Nonunion: 1.5	lleus: 2.9		
			Adjacent level	Urinary tract infection: 1.0		
			degeneration: 8.3	Other: 8.8		
			Post discectomy instability:			
			18.1			
			Levels fused, %:			
			One level: 69.9			
			Two level: 20.1			
Rinh, 2009	53	rhBMP-2	Mean age, years: 48.3	Fusion Rate, %: 96	No sources of	Fair
TLIF Circ.	(48 at	(InFUSE) +	Male, %: 52	Adverse events, n:	funding were	
27.4 Months	final	ACS	Smoker, %: 35	Lumbar infection: 1	used to perform	
	follow		Diagnosis, %:	Lumbar hematoma: 1	this study.	
	up)		DDD: 13	Lumbar seroma: 1		
			DDD/HNP: 6	Radiculitis: 8		
			RHNP: 29	Ectopic bone formation: 1		
			IS: 35	Vertebral osteolysis: 3		
			DS: 15	Dural tear: 1		

			Failed lami fusion: 2	Nonunion: 2		
			Previous surgery, %: 44	Malpositioned instrumentation: 1		
Scheufler, 2010	30	rhBMP-2	Mean age, years: 73.2	Fusion according to rigid CT-based	The primary	Fair
TLIF Circ.			Male, %: 40	criteria, %:	author is a	
19.6 Months			Presenting Diagnosis, %:	Segmental fusion: 90	consultant for	
			Disabling back pain: 90	Intersomatic fusion: 92	Medtronic.	
			Radiculopathy: 77	Fusion according to standard	Authors have no	
			Neurogenic Claudication: 47	radiographic assessment, %:	additional	
			Medical comorbidities, %:	Segmental fusion: 98	personal	
			Arterial hypertension: 43	Patient fusion: 90	interest in any	
			Osteoporosis: 33	Adverse events, n:	materials	
			Diabetes: 30	Lumbosacral pseudoarthrosis: 3	discussed in this	
			Full metabolic syndrome: 20	Revision surgery: 10	article.	
			Cardiac arrhythmias: 23			
			Congestive heart disease:			
			27			
			Morbid obesity: 17			
			Rheumatoid arthritis: 77			
			Fused segments, n: 179			
Sethi, 2011	95	rhBMP-2 with	Mean age, %: 51	Fusion rate with PEEK, %:	Not reported.	Fair
Anterior Cervical,		PEEK cage or	Male, %: 55	Cervical spine, 6 months: 91		
ALIF, TLIF, PLIF		allograft bone	Surgical approach, n:	Cervical spine, 9 months: 100		
Maximum: 24			ALIF: 23	Lumbar spine, 6 months: 56		
Months			TLIF: 36	Lumbar spine, 9 months: 83		
			PLIF: 2	Lumbar spine, 12 months: 100		
			ACDF: 34	Fusion rate with allograft spacer, %:		
			Interbody spacer type, %:	Cervical spine, 6 months: 82		
			PEEK: 62	Lumbar spine, 6 months: 88		
			Allograft bone: 38	Lumbar spine, 12 months: 100		
			Levels fused by area, n:	Adverse events, n:		
			Lumbar: 87	Cage migration: 11 (10/11 with TLIF)		
			Cervical: 50	Mean prevertebral swelling (ACDF):		
				1 week: 15.7 mm		
				2 weeks: 11.8 mm		

				3 weeks: 8.0 mm		
				Other adverse events discussed, but		
				no numbers provided: heterotopic		
				bone formation		
Shen, 2010	127	rhBMP-2 with	Male, %: 43	Pseudoarthrosis rate, %:	No funds were	Fair
ACDF		structural	Mean age, years: 54	By patient: 10	received in	
2.9 Years		allograft or	Prior surgery, %:	By fusion segments: 3	support of this	
		PEEK cage	Prior ACDF: 44	In 3-level fusion: 4	work. One or	
			Postlaminectomy kyphosis:	In 4-level fusion: 17, p = 0.0251 when	more authors	
			5	compared with 3-level rate	received	
			Number of levels fused, %:	In 5-level fusion: 22, p = 0.0245 when	benefits from a	
			3 levels: 59	compared with 3-level rate	commercial	
			4 levels: 27	Swelling/ difficulty swallowing: n not	party related to	
			5 levels: 14	provided but noted in most patients	the subject of	
			Fusion segments, n: 451	initially following surgery.	this manuscript.	
Shields, 2006	151	rhBMP-2 with	Mean age, year: 49.9	Adverse events, %:	No funds were	Poor
ACDF and		Hydrosorb (n	Male, %: 41	Hematoma: 10	received in	
anterior cervical		= 135) or	Diagnosis, %:	Requiring surgical evacuation, n: 8	support of this	
vertebrectomy		cornerstone	Spondylosis: 74	Readmission (for dysphagia/	work. One or	
and fusion		(n = 3) or	Disc herniation: 26	respiratory difficulty/ incisional	more authors	
Follow up not		pyramesh (n =	Symptoms, %:	swallowing): 8	received	
reported, study		13)	Neck pain: 98	Syndrome of inappropriate secretion	benefits from a	
period = July			Arm pain: 90	of antidiuretic hormone: 1	commercial	
2003 to March			Arm numbness: 70	Partial lung collapse: 1	party related to	
2004.			Arm weakness: 56	Horner Syndrome: 2	the subject of	
			Previous cervical surgical	Vocal cord palsy: 2	this manuscript.	
			procedures, %: 20	Superficial stitch abscess: 1		
			Smoker, %: 39	Implant dislodgement: 2		
			Hypertension, %: 35	Graft resorption: 1		
			Diabetes, %: 10			
Stachniak, 2011	30	rhBMP-2 +	Mean age, years: 52.5	Fusion rate, %:	Financial	Poor
Anterior Cervical	(21 at 6	ACS with PEEK	Male, %: 20	6 months: 95	support from	
Maximum 9	months)	spacer	Mean BMI: 28.8	9 months: 100	Medtronic.	
Months			Risk factors, %:	Dysphagia according to SWAL-QOL	Primary author	

Stambourgh 2000	26	rbPMD 2	Smoking: 33 Diabetes: 13 Obesity: 43 Previous ACDF, n: 1	Questionnaire at 2 weeks, %: Frequent choking on food: 19 Frequent choking when drinking: 5 Frequent food sticking in throat: 48 Peak cervical soft tissue swelling, mean: 21.8 mm at 2 weeks Mean scores at baseline (postop Day 1), 2 weeks, 6 weeks, 10 weeks, 6 months (n): Neck disability index: 23.9 (29), 21.8 (28), 15.2 (24), 12.7 (22), 11.2 (21) Neck pain: 15.3 (28), 9.6 (28), 8.0 (28), 7.8 (25), 5.8 (20) Arm pain: 12.8 (28), 8.8 (28), 6.3 (28), 5.6 (25), 4.7 (20) Eucion rate %:	was a former consultant for Medtronic.	Epir
Stambough, 2009 PLF	36	rhBMP-2 (Infuse) + ACS	Mean age, years: 66.3 Male, %: 22	Fusion rate, %: Lenke grading system: 88	Research supported by an	Fair
28.6 Months		with	Smokers, %: 14	CT scan: 97	unrestricted	
		autogenous	Levels of fusion, n:	Mean peri- and postoperative verbal	research grant	
		bone and	Single-level: 20	rating scale scores (times not given):	from Medtronic.	
		allograft	Two-level: 16	Back pain: 7.7 to 3.9		
				Leg pain: 6.02 to 2.02, p < 0.05		
				Mean pre- and post-operative ODI scores (times not given): 54 to 14, p < 0.05		
				Improvement in select SF-26 areas (bodily pain, vitality, mental health, social functioning): score not provided, p < 0.05		
Subach, 2010	47	rhBMP-2 with	Mean age, years: 44	Mean wide cage vs. narrow cage	Not reported.	Poor
ALIF		LT-cage	Male, %: 49	subsidence, mm:		
12 Months		lumbar	Mean BMI: 26.8	Anterior region: 2.16 vs. 3.50		
		tapered fusion	Smoker, %: 32	Posterior region: 1.25 vs. 3.33		
		device	Cage placement, n:	Significance: subsidence significantly		

			Narrow: 12 Wide: 35	greater in narrow cage group Subsidence in narrow cages vs. wide cage, %: 83 vs 43, p < 0.05		
Tumialan, 2008 Anterior Cervical 16.7 Months	200 (193 for long term follow up)	rhBMP-2 (Infuse) with PEEK cage	Mean age, years: 53.9 Male, %: 48.5 Active smokers, %: 18.5 Previous anterior cervical surgery, %: 15.5 Levels of fusion, n: Single-level: 96 Two-level: 62 Three-level: 36 Four-level: 6 rhBMP-2 dosage, n: Group A, 2.1 mg: 24 Group B, 1.05 mg: 93 Group C, 0.7 mg: 83	Odom outcome, % (n = 193): Good: 85 Fair: 12.4 Poor: 2 Overall adverse events, %: 7 Overall reoperation, %: 2 For postoperative hematoma, n: 2 For postoperative seroma, n: 2 Dysphagia, n (%): 14 (7) Mild dysphagia: 6 (3), 0 patients symptomatic at 6 weeks Moderate dysphagia: 3 (1.5), 2 patients symptomatic at 6 months Severe dysphagia: 5 (2.5), 4 required PEG tube, 1 permanently Excess interbody bone formation: noted in first 24 patients, dosage decreased thereafter.	No financial support received for the generation of this study. Authors disclosed consultancy relationships with Sofamor Danek, Medtronic, and DuPuy Spine.	Poor
Tumialan, 2012 ALIF, PLIF and TLIF 24.6 Months	102	rhBMP-2 with stand-alone tapered cages or femoral ring allograft or stand-alone PEEK spacer	Mean age, years: 34 Male, %: 89 Surgical indication, %: Discogenic back pain: 59 Spondylolisthesis: 39 Spinal stenosis: 2 Surgical approach, %: ALIF: 38 Posterior (PLIF or TLIF): 62 Tobacco use, %: 20	Radiographic evidence of fusion, n: Evidence of bridging bone: 84 Evidence of pseudoarthrosis: 8 Indeterminate evidence of fusion: 10 Return to active duty, %: 55 Revision surgery, n: 3 Complications, n: Dural tear: 2 Iliac vein injury: 1 Wound infections: 4 Nerve root compression: 1 Deep venous thrombosis: 1 Hardware complications: 3	Primary author is a consultant for Medtronic. Authors have no additional personal interest in any materials discussed in this article.	Fair

Vaidya, 2008	59	rhBMP-2 with	Mean age, year: 52	Fusion rate, %:	Not reported.	
Anterior Cervical,		PEEK cages	Male, %: 41	ACDF at 6 months: 91	-	
ALIF, TLIF circ,		_	Surgical approach, n:	ACDF at 9 months: 100		
PLIF circ			ACDF: 23	All lumbar categories at:		
26 Months			ALIF: 10	6 months: 72		
			TLIF: 24	9 months: 83		
Companion to			PLIF: 2	12 months: 100		
Sethi, 2011			Levels fused, n: 82	Adverse events, n:		
			ACDF: 32	Cage migration: 11		
			Lumbar: 50	Requiring revision surgery: 8		
				Mean clinical outcome scores:		
				Improvement noted in all categories		
Villavicencio,	74 (71	rhBMP-2	Mean age, years: 56.9	Fusion rate, %:	Not reported.	Poor
2005	complet	(Infuse)+ ACS	Male, %: 38	At 12 months: 100		
TLIF Circ.	ed	with	Previous lumbar surgery,	At 24 months: 100		
20.6 Months	follow	structural	%: 34	Surgical complications, n:		
	up of at	bone	Approach, %:	Total: 29		
	least 12	allografts and	Minimally invasive: 58	CSF leak: 3		
	months)	locally	Open approach: 42	Screw malposition: 12		
		harvested	Levels of fusion, %:	Graft malposition: 1		
		autograft	Single-level: 60	Hematoma: 2		
			Two- level: 36	Infection: 2		
			Three-level: 4	Neural injury: 9		
Wang, 2006	32	rhBMP-2 with	Mean age, years:	Fusion rate, %: NR	One author is	Fair
ALIF Circ.		SPIRE (n = 21)	SPIRE: 46.2	Pseudoarthrosis, %: 0	the inventor of	
4.9 to 7.2 Months		or Open BPS	Open PS: 49.5	Hardware failure, %: 0	SPIRE devices	
(depends on		fixation (n = 3)	MAST PS: 48.8	Intraoperative complications, %: 0	and receives	
group)		or MAST BPS	Males, %: 63		royalties from	
		fixation (n = 8)			Medtronic.	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?
Abd-El-Bar 2011	Unclear; inclusion criteria described, but required ≥ 3 months' follow-up	Unclear; retrospective collection of data, methods not explicitly described	No; But independent	Yes; 12% excluded due to insufficient radiographic follow- up
Acosta 2009 USA ALIF Circumferential	Yes; consecutive patients presenting with symptomatic degenerative disease of the lumbar spine.	Yes	Unclear; Assessors not specified.	No
Anand 2006 USA TLIF	Yes; Consecutive patients	Yes; Smoker/Compensation	Unclear	No
Anand 2008 USA Circumferential	Yes; 12 Consecutive patients	No; Do not mention any confounders	Unclear; Do not mention anything about blinding	No
Anderson 2011 USA ALIF Circumferential	No; Focused only on the 60% (50/83) with \ge 12 months follow-up.	Yes	Yes; 3 observers blinded to each other, patient identity, clinical status.	Yes
Aryan 2007 Cervical, thoracic, and lumbar	Unclear; Does not say all or consecutive	Yes	No; But independent	Yes
Carreon 2008 All approaches/ Levels	Yes; 96 Consecutive patients	Yes; Smoker, gender but do not mention age	Unclear; Do not mention	No

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Abd-El-Bar 2011	Yes; Detailed description of patient demographics and potential confounders. Smoking status, presence of diabetes, and prior surgery at the same level were not reported, but unclear of relevance in pediatric population.	No	No	Fair	
Acosta 2009 USA ALIF Circumferential	Unclear; Heterogeneity not specified and no analyses performed.	Unclear; Attrition NR.	Yes	Poor	
Anand 2006 USA TLIF	No	Unclear	Yes	Poor	
Anand 2008 USA Circumferential	No	Unclear	Yes	Poor	
Anderson 2011 USA ALIF Circumferential	Unclear; Heterogeneity not specified and no analyses performed.	Radiographs: No, available for 90% (45/50). Clinical outcome data: Yes, only available for 44% (22/50)	Yes	Poor	
Aryan 2007 Cervical, thoracic, and lumbar	No	Yes	Yes	Poor	
Carreon 2008 All approaches/ Levels	No	Unclear	Yes	Poor	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	data analysts blinded to the exposure being studied?	Did the article report attrition?
Fahim 2010 Posterior occipital, cervical, thoracic, lumbar, or lumbosacral	Yes; 19 consecutive patients	No; Just mention age and gender but lists out all the patient characteristics individually?	No; But independent	No
Geibel 2009 USA PLIF	Yes; 48 consecutive patients	Yes; Known source as well as various confounders	No; Independent Radiologist	Yes; 45 out of 48 patients available for follow-up
Glassman 2007 USA PLF	Unclear; Selection criteria and timeframe not described	Unclear; retrospective review of medical records, methods not explicitly described	No; 2 independent orthopedic spine surgeons	No
Glassman 2011 USA PLF	Yes; Consecutive series of 1037 patients	Unclear; retrospective review of medical records, methods not explicitly described	Unclear	Unclear; Completeness of data not described
Hamilton 2008 USA PLF	Yes; 47 out of 55	Yes	No; Independent	Yes; 14% excluded (8/55)
Hamilton 2011 Cervical	No; Only patients with 2 years of followup included	Unclear; Retrospective chart review; specifics not given	No; Independent Radiologist	Yes; 12% were excluded due to not having 2 years of follow- up
Helgeson 2011 USA TLIF	Yes; 23 out of 88	Unclear; Mentioned nothing	Unclear; No mention of any blinding	No
Hodges, 2012	No; Inclusion/exclusion criteria explicitly described, but required ≥ 12 months' follow-up.	Unclear; methods not described	No; single reviewer	Yes; 22% refused to participate

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Fahim 2010 Posterior occipital, cervical, thoracic, lumbar, or lumbosacral	No	Unclear	Yes	Poor - Fair	
Geibel 2009 USA PLIF	No; Oswestry Scores were the outcome used t-test so no	No; 3 out of 48	Yes	Fair	
Glassman 2007 USA PLF	Yes; Detailed description of patient demographics and potential confounders	Unclear	Yes	Fair	
Glassman 2011 USA PLF	Yes; Detailed description of patient demographics and potential confounders	Unclear	Yes	Fair	
Hamilton 2008 USA PLF	No	No	Yes	Poor	
Hamilton 2011 Cervical	No; No statistical analysis but stratification by diagnosis	No	Yes	Poor	No information on smoking, diabetes, or prior surgery.
Helgeson 2011 USA TLIF	No	Yes; 65 out of 88used only 23	Yes	Poor	
Hodges, 2012	Yes; sufficient information on all required variables.	Yes.	Yes for pseudoarthrosis; no for others	Poor	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	data analysts blinded to the exposure being studied?	Did the article report attrition?
Jagannathan 2009 USA TLIF	No; Minimum 2-year follow-up included	Unclear	Unclear	Yes; 7 out of 87
Klimo, 2009 Cervical	Yes	Unclear	No; "Analysis of the CT scans was done by both treating surgeons independently; discrepancies were evaluated jointly."	No attrition reported
Knox 2011 USA TLIF	Yes; Consecutive patients	Unclear	Unclear	No
Kuklo 2004 USA TLIF	Yes; 22 out of 35 total	Yes; Table	No; Don't mention blinding	No
Lanman 2004 (L) USA TLIF	No; Does not mention out of how many or consecutive	Yes	Unclear; Do not mention	Yes
Lanman, 2004 (E) Cervical	Yes	Yes	Unclear	No
Luhmann 2005 USA	No; Focused only on the 29% (70/241) with \ge 12 months follow-up.	Yes	Yes; Surgeons not involved in operative procedure assessed radiographs and CT scans	No
Mannion 2011 USA PLIF	No; 30 Patients	No; The source is vague and have not mentioned many confounding factors	Yes; Blinded Radiologist	No; No attrition reported

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Jagannathan 2009 USA TLIF	No	No	Yes	Poor	
Klimo, 2009 Cervical	NA	No	Yes	Fair	
Knox 2011 USA TLIF	Unclear	Unclear	Yes	Poor	
Kuklo 2004 USA TLIF	No	No	Yes	Poor	
Lanman 2004 (L) USA TLIF	No	Yes; 11 by the 12-mo follow up time	Yes	Poor	
Lanman, 2004 (E) Cervical	NA	No	Yes	Fair	Information on revision surgery given by patient
Luhmann 2005 USA	Unclear; Only mentioned finding no association between fusion and gender, age, amount of rhBMP-2 used and presence of pseudoarthrosis.	Unclear; Attrition NR.	Yes	Poor	
Mannion 2011 USA PLIF	No	Unclear	Yes	Poor	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?
McClellan 2006 USA TLIF	Yes	Unclear	Yes	No
Meisel 2008 Germany PLIF	Unclear; Mention 17 but do not say out of or that was it	No; Know the source but no confounding factors were identified	No; Independent Radiologist	Yes; No attrition reported
Mulconrey 2007 USA PLF	Unclear; Inclusion criteria not explicitly described	Unclear; prospective study, case definition not explicitly described	Yes	No
Oetgen 2010 USA	Yes; All pediatric patients	Unclear; retrospective review but confounders not listed	Unclear	No
O'Shaughnessy 2008 Upper and lower thoracic	Yes; Consecutive in the Conclusion	Yes; Mention Age and Gender	Unclear; Do not mention	Yes; No patients lost to follow- up
O'Shaughnessy 2012	No; Inclusion/exclusion criteria explicitly described, but required ≥ 12 months' follow-up.	Yes for etiology of scoliosis, unclear for other variables. Retrospective review methods not clearly described.	No	No
Owens 2010 USA TLIF	Yes; Consecutive patients	Yes; Table	NA; Not detecting Fusion	NA; Retrospective
Rihn 2009	Yes; 48 out of 53 total	Yes; Table 1	No; Don't mention blinding	Yes

USA TLIF

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
McClellan 2006 USA TLIF	No	Unclear	Yes	Poor	
Meisel 2008 Germany PLIF	No	No	Yes	Poor	
Mulconrey 2007 USA PLF	Yes; Detailed description of patient demographics and potential confounders	Unclear	Yes	Poor	
Oetgen 2010 USA	No	Unclear	Yes	Poor	
O'Shaughnessy 2008 Upper and lower thoracic	No	No	Yes	Poor	
O'Shaughnessy 2012	No; no data on gender	Unclear	No; Not all variables were adequately defined. Yes for PJK and severity classification of complications. No for pseudoarthrosis and the complications themselves.	Poor	
Owens 2010 USA TLIF	No	No	Yes	Fair	
Rihn 2009 USA TLIF	No	No	Yes	Fair	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	data analysts blinded to the exposure being studied?	Did the article report attrition?
Scheufler 2009 Germany TLIF	Unclear	Yes; Comorbidities	No; Do not mention anything about blinding	Yes; 4 lost to follow-up
Sethi 2011 USA ALIF	Unclear	Yes, prospective study	No; Independent Radiologist	No
Sethi, 2011 USA Cervical	Unclear	Yes	Probably-"Radiographic measurements were made by three independent observers"	No
Shen, 2010 Cervical	No; A consecutive series of those with two year followup	Unclear; patients were "analyzed by experienced, independent spine surgeons"	No; Independent Radiologist	No
Shields, 2006 Cervical	Unclear	Unclear; Retrospective chart review; specifics not given	Unclear	No
Stachniak, 2011 Cervical	Unclear	Unclear	No; Independent Radiologist	No Not Reported
Stambough 2009 USA PLF	Yes; consecutive	Unclear; selection criteria somewhat vague	Yes	Yes

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Scheufler 2009 Germany TLIF	No	No	Yes	Fair; Because they report for all 30 patients in a table.	
Sethi 2011 USA ALIF	No	No	Yes; defined criteria for rating new bone formation and endplate resorption.	Fair	
Sethi, 2011 USA Cervical	No; Study does not report gender, age, levels fused by type of surgery (cervical fusion vs. lumbar fusion)	No	Yes	Poor	No baseline characteristics by type of surgery
Shen, 2010 Cervical	Unclear; Some statistical analysis showing relationship between potential confounders given; details of those with pseudoarthrosis given	No	Yes; Pseudoarthrosis defined	Fair	Would like information on number who had less than 2 years of followup and what their last recorded outcomes were
Shields, 2006 Cervical	Unclear; Does not adjust statistically, but does give additional confounder information on some patients who had complications	No	Unclear; Fusion outcomes not provided	Poor	Unclear if this represents a consecutive series or if any persons were omitted from this analysis; unclear how information obtained
Stachniak, 2011 Cervical	Yes; ANCOVA was conducted to assess the significance of the relationship between cervical swelling and the amount of dysphagia.	No	No; Fusion not defined.	Poor	Unclear if this represents a consecutive series or if any persons were omitted from this analysis
Stambough 2009 USA PLF	Yes; Age, gender, number levels fused and smoking status reported	No	Yes	Fair	

Author Year Country Trial # or Name	Did the study attempt to enroll all (or a random sample of) patients meeting inclusion criteria, or a random sample (inception cohort)?	Did the study use accurate methods for ascertaining exposures and potential confounders?	Were outcome assessors and/or data analysts blinded to the exposure being studied?	Did the article report attrition?
Subach 2010 USA ALIF	Unclear, only enrolled those with adequate postoperative and follow-up x-rays in the database.	Unclear; Retrospective study. Exposure ascertained based on search of electronic database. But no information about search details or about ascertainment of potential confounders.	Unclear	NA - Retrospective study that only enrolled patients with available x-ray data
Tumialan, 2008 Cervical	Unclear	Unclear; Retrospective chart review; specifics not given	Unclear	No; No attrition reported
Tumialan, 2012	Yes; 102 of 116 patients who met explicit inclusion criteria.	Unclear; Retrospective chart review; specifics not given	No	Yes; No attrition
Villavicencio 2005 USA TLIF	Yes; According to Criteria	Unclear; Do not mention any	No; Independent	Yes
Wang 2006 USA ALIF Circumferential	Yes; 32 out of 62	No; Only Age and Gender information	Unclear	NA; Retrospective so does not matter

Author Year Country Trial # or Name	Did the study perform appropriate statistical analyses on potential confounders?	Is there high loss to follow-up?	Were outcomes pre- specified and defined, and ascertained using accurate methods?	Quality Rating	Comments
Subach 2010 USA ALIF	No	NA; Retrospective study that only enrolled patients with available x-ray data	Yes	Poor	
Tumialan, 2008 Cervical	Unclear; Does not adjust statistically, but does give additional confounder information on some patients who had complications	No; 4% lost to followup	No; Fusion not defined.	Poor	
Tumialan, 2012	Yes; sufficient information on all required variables.	No; all patients included in analysis	Yes	Fair	
Villavicencio 2005 USA TLIF	No	No; 3 out of 74	Yes	Poor	
Wang 2006 USA ALIF Circumferential	No	NA	Yes	Fair	

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Anderson 2011 USA	Case Report	Case 1 Age Diagnosis Fusion Site Case2 Age Previous Surgeries Diagnosis Fusion Site	68 Spondylosis at multiple levels without kyphosis, severe stenois C3-C7 44 Two-level ACDF Psuedoarthrosis and central stenosis with artifact present C5-C7	Case 1 rhBMP-2 (12mg) + posterior instrumental arthrodesis using Magerl tequniqe and laminectomy Case 2 rhBMP-2 (4.2mg) + posterior instrumentation, arthrodesis, and laminectomy	Case 1 Evacuation of fluid collection and patrial laminectmy at C6-C7, drain removed post-op Day 2 Case 2 Evacuation of fluid colelction, removal of fibrinous material on the spinal cord, drain removed post op Day 2
Anderson CL 2012 USA	Case Report	Age Diagnosis Fusion Site	73 low back, right buttock and right lower extremity pain Previous L3-S1 laminectomy, TLIF at L3-L4, PLF from L2 to S1	In previous surgery: undergone L3–S1 laminectomy, TLIF with interbody cage at L3–L4, and instrumented posterolateral fusion from L2 to S1. The PLF was augmented with emineralized bone matrix, local autograft, crushed allograft cancellous bone, and a large kit of rhBMP-2 placed in the posterolateral gutter after thorough irrigation.	No additional surgeries
Balseiro 2010 USA	Case Report	Case 1 Age Diagnosis Fusion Site Case 2 Age Diagnosis Fusion Site	54 Recurrent disc herniation and mechanical back pain L3-L5 73 Post laminectomy instability L4-L5	Case 1 rhBMP-2 (INFUSE) + TLIF with collagen sponge morcellized allograft bone, demineralized bone matrix putty Case 2 rhBMP-2 (Medium INFUSE kit) + same as patient 1	Case 1 @ 3 mos: removal of interbody cage at L4-L5 level, revision of fusion with iliac crest autograph Case 2 Declined further surgery

Author Year

Country

Trial # or

Trial # or Name	Adverse Events	Funding	Comments
Anderson 2011 USA	 Case 1 Days 9 to 12: Decline in neuroloigcal status. Inability to: raise arms, open or close both hands, stand or walk withoutassistance. Loss of sensation in bilateral hands. 2 weeks: Computed tomographic myelogram revealed postoperative fluid collection posterior to the thecal sac causing moderate-to-severe central spinal stenosis between C3 and C6. Case 2 Day 5: Acute onset of bilateral upper and lower extremity weakness. Unable to raise self from a seated or lying position. Decline in proprioception for right upper extremity. Computed tomographic myelogram showed complete blackage on contrast flow at C6-C7 consistent with a severe spinal stenosis. 	No funds were received in support of this work. No benefi ts in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.	
Anderson CL 2012 USA	Discovered at exploration (in response to presenting complaint): Serosanguineous paraspinal fluid = sterile. Extensive osteolytic process, posterior elements and surrounding posterior hardware. Near complete obstruction of the thecal sac, paraspinal fluid collection with surrounding heterotopic ossification, cortical breach of L4 pedicle screw R side. Heterotopic ossification inferior to lumbodorsal fascia, encapsulating paraspinal musculature in continuity with the fusion mass (nonmalignant mature bone), Serosanguineous fluid collection, no evidence of ongoing leak/infection. Solidly fused lumbar spine. Cortical breach L4.	No funds were received in support of this work. No benefi ts in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.	
Balseiro 2010 USA	Case1 3 mos: Increase low back pain, osteolysis affecting L4 and L5, expansion of preoperative defect caused by subchondral cyst 15 mos f/u: no complaints of back pain, solid fusion at L4-L5 Case 2 4 mos: increasing low back pain, osteolysis of L4 and L5 bodies, appear to be expansion of a preoperative vertebral defect caused by subchondral cyst 1 and 2 yrs: continued lower back pain, again declined revision surgery	Not reported, 2nd author EWN consulting for Medtronic	End plate violation during disc space preparation, rhBMP-2 overdosing or combo can lead to vertebral osteolysis. In addition, these cases suggest that end plate defects present before surgery may also be a risk factor for osteolysis when rhBMP-2 is placed in the disc space.

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Brower	Case Report	Age	69	rhBMP-2 + PLIF with collagen sponge,	
2008		Diagnosis	1 yr Hx of back and right leg pain with foot	wrapped around granules of biphasic	
USA			drop. Multiple level DDD w/ disc space	calcium phosphate carrier (15%	
		Fusion Site	narrowing, anterior spurring, grade 1 degenerative spondylolisthesis. Central canal	hydroxyapatite and 85% tricalcium phosphate). Pedicle screw instrumentation.	
		FUSION SILE	stenosis narrowing of lateral recesses on right		
			side.		
			L4-L5		
Chamoun	Case Report	total n	7	Case 1	NR
2009		Case 1		rhBMP-2 + posterior instrumented fusion	
USA		Age	19 mo	with iliac crest bone graft suboccipital	
		Diagnosis	Pfeiffer syndrome, severe stenosis at the level of the foramen magnum and craniocervical	craniectomy Case 2	
		Fusion Site	junction instability secondary to a hypoplastic	rhBMP-2 ?? + instrumented fusion with	
		Case 2	dens	cancellous morselized allograft	
		Age	Occiput - TF		
		Diagnosis			
		-	10		
		Fusion Site	Increased atlantodental interval, ossiculum		
			terminale persistens and spinal instability		
			C1-C2		

Author

Year Country Trial # or Name	Adverse Events	Funding	Comments
Brower	3 mos: pain along right iliac wing. Large collection of tracer in the right retroperitoneum	None.	
2008	from the right kidney to the pelves, including involvement of the iliac wing, heterotopic		
USA	bone formation in the right psoas and iliacus muscles extending down to the iliac wing.		
	5.5 mos: heterotopic bone visible on anteroposterior film of abdomen and spine,		
	heterotopic bone formation in the right iliopsoas muscle, osteopenia in the rest of the		
	skeleton.		
	1 yr: continued improvement in pain levels, still required use of solid foot orthosis for foot		
	drop.		
	2 yrs: Foot drop persists, heterotopic bone still apparent on plain films.		
Chamoun	None reported for either patient.	The authors have no	Paper is focused on C2 laminar screw
2009		personal or financial	fixation. One patient of seven had
JSA		interest in any of the	prolonged dysphagia, but the authors
		drugs, materials,	belive this was from a C1 lateral mass

or devices in this article. screw insertion.

Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Chen	Case Report	Case 1	39	All cases: rhBMP-2 (1 large kit) + TLIF with	Case 1. Reexploration of fusion
2010		Age	Multiyear hx of right leg radiculopathy, back	single large absorbable collagen sponge,	mass, large, dense bone mass
Taiwan/USA		Diagnosis	pain. Discography	PEEK interbody fusion cage	encountered encasing L4 and L5
		Fusion Site	L4-L5		nerve roots, removed
		Case 2			Case 2. Repeat decompression,
		Age	78		instrumentation extended to L3-L4
		Diagnosis	Lower back pain, right leg radiculopathy. Grade	5	w/ facet arthrodesis
		Fusion Site	1 spondylolisthesis.		Case 3. Reoperation, diffuse mass
		Case 3	L4-L5		of bone encasing L5 nerve root
		Age			removed.
		Diagnosis	69		Case 4. No additional surgery.
		-	Right leg pain, paresthesias. Grade 1		
		Fusion Site	spondylolisthesis, lateral recess stenosis,		
		Case 4	19years post prior L4-L5 spinal fusion.		
		Age	L4-L5		
		Diagnosis			
		0	56		
		Fusion Site	Lower back pain, lower-extremity S1		
			radiculopathy, Loss of disc height at L5-S1,		
			severe bilateral L5-S1 lateral recess stenosis.		
			L3-S1		

Author

Year Country Trial # or			
Name	Adverse Events	Funding	Comments
Chen 2010 Taiwan/USA	 Case 1: 29 mos, new back pain, right posterolateral thigh pain, weakness in right lower extremity. Opacification of right L4-L5 neural foramen, entrapment of nerve root within bone mass, solid interbody fusion Case 2: 1 yr, solid, non-mobile union at L4-L5. 32 mos, recurrent right side radiculopathy, back pain. Bilateral stenosis at L3-L4 and L4-L5, newly formed ectopic bone opacified L4-L5 neural foramen. Case 3: 23 mos, left side S1 radiculopathy, left neural foraminal narrowing w/ large endplate bone mass abutting left-exiting L5, transversing S1 nerve roots, stable fused segment w/outtracer uptake. Case 4: 51 mos, recurrent left leg pain. New ectopic bone formation in left L5-S1 foramen, moderate neural impingement. 	Not reported. No conflicts of interest.	4 cases of delayed ectopic bone formation following MIS-TLIF, cause remains unknown. Key influences of ectopic bone formation: * position of graft and carrier (recommend placement of cage as anteriorly and medially as possible) * barriers to migration of bone-forming material (presence of an intact posterior annulus a likely barrier) * rhBMP-2 dose

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Cho	Case Report	Case 1	17	Case 1	
2011		Age	Type-1 neurofibromatosis. Increasing upper	rhBNP-2 + allograft + autologous iliac bone	
USA		Diagnosis	back pain. Increased cervical lordosis and	graft	
		-	severe upper thoracic kyphosis w/ right-sided	Case 2	
			posterior prominence. Complete spontaneous	rhBMP-2 (2mg/mL and 40mg/mL)	
			dislocation of T3 on T4, angular kyphosis, dural		
		Fusion Site	ectasia with widened spinal canal.		
		Case 2	T2-T7 (other work at C4-C6, T1, T8-T12)		
		Age			
		Diagnosis	30		
			Type-1 neurofibromatosis, severe back and		
		Fusion Site	lower-right extremity pain. Dural ectasia from		
			L3-L5 and throughout sacrum.		
			T12-L3 (specifically L3-sacrum??)		

Choudhry	Case Report	Age		TLIF at L4-L5, laminectomy, excision of	Reoperation at 8 weeks postop to
2012 USA		Diagnosis Fusion Site	low back pain radiating to left lower extremity in L4-L5 diatribution	, 3	remove a cystic lesion at L4-L5, incision of the cyst revealed
			TLIF at L4-L5		collagen sponge material

Author Year Country Trial # or			
Name	Adverse Events	Funding	Comments
Cho	Case 1	Not reported. Financial	Thoracic/Thoracic Lumbar
2011	None reported. 5 yrs: intact spinal instrumentation and robust bone formation.No pain.	relationship and payments	No adverse events reported.
USA	Case 2	from third party in support	:
	None reported. 2 yrs, pain in back and right lower-extremities fully resolved, solid fusion.	of work noted.	

paper.	2012 USA		conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.	
--------	-------------	--	---	--

_

Author Year Country Trial # or Name	Type of Report	E	Baseline Characteristics	Interventions	Additional Surgeries
David	Case Report	Age	44	rhBMP-2+ PLIF with 6 mm tibial allograft	
2010 Canada		Diagnosis	Hx of multiple surgeries for scoliosis, developed paraplegia after 1989 surgery. 2001 developed increasing back pain and neuropathic symptoms in left lower limb.	spacer, pedicle screws, unilateral rod, morselized bone and allograft	
		Fusion Site	Residual scoliosis, solid fusion T4-L2, evidence of Charcot arthropathy below fusion level, progressive destruction of L3-L4 region. T12-S1		
Deutsch 2010	Case Report	Age Diagnosis	56 Increased back pain. Evidence of	Anterior: rhBMP-2 (12 mg INFUSE) + ALIF Circumferential with Grafton demineralized	Removal
USA		Diugnosis	pseudoarthrosis and scre pullout (L1)	bone matrix, crushed allograft, autogenous	
		Previous Surgery	Complex anterior and posterior fusion from T8-	rib graft, titanium mesh cages. Posterior:	bone forming a sheet-like layer
		Comorbidities	pelvis.	rhBMP-2(6mg per level) + rods, autograft, crushed allograft, Grafton putty.	between the psoas and retroperitoneum.
		Fusion Site	60-pack-a-year cigarette smoking history		
			T11- S1		
Garrett	Case Series	Total n	130	2 pts: laminectomy + PLF, 3 pts: also PLIF	6 patients underwent surgical
2009		n reporting swelling	6 (4.6%)	2 of 3 PLIF: PEEK cages	exploration: mean 7.7. days (range
USA		% Female	83.3% (5/6)	rhBMP2 (range from 2.1mg - 14.7mg)	5-13) after initial surgery
		Age Average (Range) Fusion Levels mean	58 (34-80) 3.5 (1-8)		4 pts had Hemovac drains placed
		(range)	J.J (1 ⁻ 0)		

Author Year Country Trial # or Name	Adverse Events	Funding	Comments
David 2010 Canada	None reported.3 wks: re-exploration and debridement of surgical wound, no deep infection found. 6 mos back pain resolved significantly. 6-12 mos: twisting and lifting restrictions lifted, pt returned to work. 2 yrs solid fusion, no evidence of hardware loosening.	None. Author disclosures present	No adverse events reported related to use of rhBMP-2.

Deutsch	1 month: patient complaint of progressively enlarging mass in left lower quadrant.	Not reported, no author	Possible issues with dosing and cages,
2010	Seroma noted and drained percutaneously.	disclosures reported	cages used in the patient were probably
USA	7 mos: Patient weight loss of 40 lbs, experiencing early satiety and pain with urination.		more consistent with a smaller kit. Also,
	Enlarging hard mass in the left lower quadrant palpable. Osseous ectopic bone formation		seroma noted at 1 month may have been
	in the left abdominal and pelvic cavity wall.		related to the dispersement of rhBMP-2
			into the retroperitoneal space.

Garrett	During surgery: 3 pts incurred durotomy, 2 required direct repair	None reported
2009	5-13 days: painful swelling, erythema and tenderness at surgical site, possible infection.	
USA	Upon inspection serous fluid collection noted, subcutaneous tissues edematous, infection	
	ruled out. In 3 pts with durotomy, CSF from a persistant leak ruled out.	

Author

Year Country Frial # or	Type of					
Name	Report	E	Baseline	Characteristics	Interventions	Additional Surgeries
Glassman	Case Series	Total n	Case Se		All patients underwent lumbar	
2011		age (Mean)	Case Se	ries 2:	decompression and instrumented	
		% Male		-2 without dural tear	posterolateral fusion with rhBMP-	
		%Smoker	rhBMP-	2 with dural tear	2/absorbable	
		% Worker's		51	collagen sponge.	
		compensation	51			
		Fusion Levels (mean)		59.5		
		Preoperative HRQOL	60.2			
		ODI		35		
		Back Pain	41			
		Leg Pain		20		
		SF-36 PCS	14			
		SF-36 MCS		14		
			12			
				1.8		
			1.9			
				51.7		
			51.7			
				7.8		
			7.3			
				8.0		
			7.8			
				27.1		
			27.1			
				36.7		
lansen	Case Report	Age	45		rhBMP-2 + ALIF Circumferential with FF	RA
2006		Diagnosis	10 yrs o	f Discogenic Pain		
JSA			DDD			
		Fusion Site	L5-S1			

Author Year Country Trial # or			
Name	Adverse Events	Funding	Comments
Glassman	Postoperatively, three patients in the group with a dural tear had new onset	Medronic paid royalties,	From consecutive series of 1,037 patients
2011	radiculopathy and one needed administration of oral steroids. All three radiculopathy	consulting fees, reseach	who underwent decompression and
	resolved within 6 months postoperatively.	support and Trips/tavel	posterolateral lumbar spine fusion using
		expenses for some	rhBMP-2/absorbable collagen sponge
	No patient in the group without a dural tear had new onset radiculopathy	authors.	between 2003 and 2006, intraoperative dural tear was reported in 58 cases (5.59%).

Hansen	3 mos: low back/bilateral pain. Dx: degenerative osteophytes S1 joints, erosive changes	Not reported	Reabsorptive response w/in interbody
2006	inferior endplate L5 and superior endplate S1.		space in early months following anterior
USA	5 mos: cont. pain. Cysts on endplates at interbody fusion site. Infection apparent, concern		discectomy and fusion can resemble an
	re: osteomyelitis but no infection present.		infection.
	6 mos: small cysts internal FRA surface, lucencies at graft-host junction, increased density		
	of cancellous bone cranial to FRA.		
	12 mos: similar findings.		
	15 mos: no obvious bridging bones, poss pseudo arthrorisis. Upon exploration, solid		
	arthrodesis found.		

Author Year Country Trial # or Name	Type of Report	1	Baseline Characteristics	Interventions	Additional Surgeries
Haque	Case Series	Total n	17	rhBMP-2 + C1-C2 fusion eith rib graft = 5	NR
2009		Total rhBMP-2	9	rhBMP-2 + occipital-cervical fusions	
USA		Pathological entities	posttraumatic rotary subluxation, os odontoideum (3), Down syndome, congenital occipitocervical instability (3), posttraumatic		
		Overall fusion sites	occipitocervical instability		
			0-C3		
			22		
Kepler	Case Series	Case 1	23	Case 1	
2011 USA		Age	Proximal and distal pseudoarthrosis and	Lateral approach: rhBMP-2 (8mg) +	
USA		Diagnosis Previous Surgery	degenerative breakdown 8 years previousm spinal fusion T2-T12 for	polyether ether ketone interbody cages, collagen sponge	
		Fusion Site	Scheuermann kyphosis.	Case 2	
		Case 2	Posterior spinal fusion (PSF), T1-L1. Lateral	rhBMP2 (8 mg) + expandable cage +	
		Age	approach inter-body fusion T11-L1.	collagen sponge	
		Diagnosis		Case 3	
		Medical hx	78	rhBMP2 (6mg) - no other information	
		Fusion Site	T12 burst fracture with progressive deformity,	reported	
		Case 3	pain, and myelopathy.	Case 4	
		Age	Osteoporosis	rhBMP-2 (12.5mg) - no other information	
		Diagnosis Fusion Site	PSF T11-L1. Lateral approach T12 corpectomy		
		Case 4	Information not provided		
		Age	Information not provided		
		Diagnosis	Lateral approach T12 copectomy, lateral		
		Fusion Site	approach interbody fusion T8-T9		
			Information not provided		
			Information not provided		
			Lateral approach T11 corpectomy (Staged after		
			PSF T4-S1)		

Author

Year Country Trial # or Name	Adverse Events	Funding	Comments
Haque 2009 USA	No complications related to the use of rhBMP-2 in any of these patients.	The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.	Verifying sfaety and suitibility of alternative techniques to the C1-2 transarticular screw. Cannot critically evaluate the use of rhBMP- 2.
Kepler	Case 1	None	Thoaracic
2011 USA	 Chest tube outputs- day 1: 35 cc., day 2: Removed. Day 3: Patient complained of chest fullness and difficulty breathing. Interval development of large right pleural effusion. Tachypneic (30 breaths per minute), tachycardic (120 beats/min), maintained oxygen saturations in upper 90s. 6 weeks: mild subjective chest fullness, sizeable residual pleural effusion. 3 months: effusion resolved. Case 2 Chest tube outputs- day 1: 25 cc, removed. Day 2: patient developed dyspnea and a tachyarrhythmia. Large left pleural effusion. Chest tube replaced, output 710, day 3: 200 cc., day 4: 510 cc., day 5: 50 cc., tube removed. No further symptoms, pleural effusion resolved w/in 1 month. Case 3 Chest tube outputs- day 1: 1030 cc., day 2: 440 cc., day 3: 90 cc., 65 cc, removed. Shortness of breath resolved by day 8, supplemental O2 required for 1 month, pleural 	t	Authors believe effusions were related to use of rhBMP-2 because effusions 1. occurred on side of surgical approach, 2. did not resolve quickly after surgery 3. and similar pleural effusions have not been noted by operating surgeon when rhBMP-2 was not used. Possible link between rhBMP-2 2 inflamatory properties and pleaural effusion.

effusion resolved w/in 3 months.

Case 4

Chest tube outputs- day 1: 120 cc., day 2: 40 cc., day 3: 140 cc., 140 cc, removed. Chest fullness improved during hospitalization, pleural effusion resolved w/in 5 months.

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Lehman	Case Report	Age	63	rhBMP2 (6 mg) + TLIF with absorbable	
2011		Diagnosis	Suprajacent degeneration and radiculopathy.	collagen sponge + Capstone cage	
USA		Previous Surgery	L5-S1 fusion		
		Fusion Site	L5-S1?		
Lewandrowski	Case Series	Total n	68	4 pts: rhBMP2 (small INFUSE kit, 4.2 mg) +	
2007		Complication, n	5	TLIF with PEEK cage and absorbable	
USA		Age, average yrs	50.2	collagen sponge	
		Male, n	3	1 pt: rhBMP2 (medium INFUSE kit, 4.2 mg)	
		Female, n	2	+ TLIF with removal of implants and	
		Diagnosis	(4 pts) DDD, osteophyte formation, sclerosis of end plates (1 pt) adjacent level disease and nonunion following previous surgery	reinstrumentation with PEEK cages	
			(4 pts) single-level disease, (1 pt) L3-L4 and L5-		
			S1		

Author

Year Country Trial # or Name	Adverse Events	Funding	Comments
Lehman 2011 USA	Postoperative left lower extremity radiculitis refractory to narcotics and gabapentin several months after surgery.	Defense Advanced Research Projects Agency, Defense Medical Research and Development Program	Consists of primarily images. Little to no commentary.
Lewandrowski 2007 USA	4 weeks - 3 mos: New onset severe low back pain. CT scan showed resorption of the inferior aspect of the L5 vertebral body occurred in each of the 5 patients.	Nothing of value received from a commercial entity related to this manuscript.	Vertebral osteolysis can occur with the use of rhBMP-2 in PLIFs. Violation of the end plate during decortication may be a contributing factor.

Author Year

Country

Trial # or	Type of				
Name	Report		Baseline Characteristics	Interventions	Additional Surgeries
Lindley	Case Series	n Tri hanna	48	Case 1	Case 1
2011		Total n with rhBMP	- 2 6	rhBMP2 + dorsal fusion with titanium	Emergent tracheostomy, right
JSA		complications		instrumentation and magnum	frontal ventriculostomy,
		Case 1	14	decompression, laminectomy	wound exploration, and placemen
		Age	Upward, near-horizontal position of the clivus	Case 2	of a drain in the wound.
		Diagnosis	with a short basiocciput and a high-riding	rhBMP2 + dorsal fusion with titanium	Case 2
		Fusion Site	anterior arch of the atlas	instrumentation and magnum	Emergency right frontal
		Case 2	0-C2	decompression	ventriculostomy and wound
		Age		Case 3	exploration.
		Previous Surgery	8	rhBMP2 + dorsal fusion with titanium	Case 3
		Diagnosis	Craniofacial remodeling and cranial release	instrumentation and decompression of	Posterior fossa and repeat
		Fusion Site	procedures	ventral medulla and expansion of previous	decompression, intradural lysis of
		Case 3	Atlantoaxial instability	suboccipital decompression	adhesions, placement of a shunt
		Age	0-C1-C2	Case 4	from the fourth ventricle to the
		Diagnosis		rhBMP2 + fusion with titanium	subarachnoid space, and duraplast
			16	instrumentation and magnum	
			Posterior fossa craniotomy, C-1 laminectomy,	decompression, laminectomy	
		Fusion Site	duraplasty	Case 5	
		Case 4	Hypoplastic clivus with compression of the	rhBMP2 + fusion with titanium	
		Age	medulla by the odontoid, tonsillar herniation,	instrumentatio n	
		Fusion Site	and a cervical syrinx	Case 6	
		Case 5	0–C2	rhBMP2 + fusion with titanium	
		Age		instrumentation and magnum	
		Fusion Site	6	decompression, laminectomy	
		Case 6	0- C2		
		Age			
		Fusion Site	11		
			O-C3		
			11		
			0-C2		

Author Year Country Trial # or Name	Adverse Events	Funding	Comments
Lindley	Case 1	The authors report no	A significant number of patients (10.4%)
2011	Day 4: Apneic spells, large fluid collection in the operative site with extension into the	conflict of interest	developed postoperative complications
USA	epidural space within the posterior fossa, and obstructive hydrocephalus	concerning the materials	associated with the use of rhBMP. The
	Case 2	or methods used in this	most common complication was seroma
	Day 3: Worsening ataxic gait and somnolence. Large posterior fossa epidural fluid	study or the findings	formation observed in 5 patients and
	collection and hydrocephalus	specified in this	ectopic bone formation in 1 patient.
	Case 3	paper.	
	1 + year: Excessive bone growth in the area of previous decompresion		
	Case 4		
	4 weeks: Wound swelling, evidence of seroma formation, no evidence of wound infection		
	Case 5		
	2 weeks: Large fluid collection at the operative site		
	Case 6		
	A weaks: Eluid collection at the aparative site, sultures pagative		

4 weeks: Fluid collection at the operative site, cultures negative

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Lu	Case Study	Age	16 mos	rhBMP-2 + (5.6 ml) + craniovertebral fusion	NR
2007 USA		Previous operations	4 mos: spinal reduction, placement of halo fixation, C-1 decompression, and occiput–C3 fusion with iliac crest and occipital bone graft. 11mos: Rib grafts were wired to the occiput	with iliac crest secured with a titanium cable and instrumentation with 2-mm craniomaxillofacial plates and screws	
		Diagnosis Fusion Site	and C-2 and C-3 and covered with demineralized bone matrix (Grafton). Loss of reduction and nonunion of the construct		
			C2-C3		
Madrazo	Case Series	Case 1		All cases	NR
2006		Age	56	rhBMP-2 (1.4 mL) + ACDF with PEEK cages	
Mexico		Diagnosis	C5-C6 and C6-C7 posterolateral osteophytes, predominantly on the right side, and reduction	and collagen sponge carriers	
		Fusion Site	of the root foramina		
		Case 2	C5-C7		
		Age Comorbidities	73		
		Diagnosis	Diabetes, moderate whole body osteoporosis Grade II degenerative listhesis at C3-C4, siginificant degenerative changes at C4-C5,		
		Fusion Site	lateral and central osteophyte and spinal cord		
		Case 3	and root compression		
		Age Diagnosis	C3-C5		
		Fusion Site	44 Significant osteophytes at C4-C5 and C5-C6 with cervical kyphosis with disk protrusion and		

Author Year Country Trial # or			
Name	Adverse Events	Funding	Comments
Lu	No adverse events reported.	The authors of this study	First report of use use of rhBMP-2 to
2007		do not have any financial	promote bone fusion in an infant with
USA		interests in any	craniovertebral instability after two
		of the companies	attempts at arthrodesis had failed.
		mentioned in this paper.	

Madrazo	No adverse events reported.
2006	
Mexico	

NR

Author

Year

Country Trial # or

Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Mladenov	Case Series	Case 1	6	Thoracic cervical	Additional ourgenes
2010		Age	Mucopolysaccharidosis type 1 (Hurler's	Case 1	
Germany		Diagnosis	disease). Progressive weakness in lower	rhBMP-2 (12 mg)	
		-	extremities and sleep apnea. Spinal cord	Case 2	
			compression in cranio- cervical junction with	rhBMP-2 (12mg) + repeat posterior	
			myelopathy caused by C1-C2 instability. 4 mos	autologous iliac crest bone grafting	
			after first surgery: local kyphosis and anterior	Case 3	
		Previous Surgery	displacement of C1 on C2, unstable non-union	rhBMP-2 (12mg) + repeat autologous iliac	
			confirmed.	crest bone grafting	
		Fusion Site	Widen foramen magnum, C1-C2 laminectomy.		
		Case 2	Autologous iliac crest bone grafting from		
		Age	occiput to C4.		
		Diagnosis	C1-C2		
			2		
			Klippel-Feil deformity, muscle hyptony in both		
			lower extremities. Cervical kyphosis and		
		Previous Surgery	anterior desplacement of upper cervical spine		
		Fusion Site	of 13 mm. 10 mos after first surgery: non-		
		Case 3	union and pin loosening		
		Age	Arthrodesis + autologous iliac crest bone graft.		
		Diagnosis	C2-C4, T2-T4		
			10		
		Previous Surgery	Hereditary sensory autonomic neropathy type		
		Fusion Site	IV, thoraco-lumbar juntional kyphosis of 65°, partial destruction of L1 and L2 vertebra		
			bodies. Following first surgery: concerns about		
			significant bone substance deficiency		
			Posterior decompression of L1-L2,		
			instrumentation T11-L4, iliac crest bone		
			grafting, anterior cage filled with autologous		
			rib bone graft		
			L1-L2?		

Author Year			
Country Trial # or			
Name	Adverse Events	Funding	Comments
Mladenov	Adverse events related to use of rhBMP-2 not reported.	None reported. No	Cervical/Thoracic/Lumbar
2010		potential conflicts of	No adverse events reported.
Germany		interest.	

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
2008 USA		Diagnosis Comorbidities Fusion Site	3-year hx of severe axial low-back pain and progressive bilateral radiculopathy Hypertension, gout, hepatitis C, and depression, past hx of smoking L5-S1	Capstone spacer and pedicle screw (PS) placement	Fusion construct extended to S2, PS revised, autologous bone graft w/out rhBMP-2 3rd Operation exploration of previous L5-S1 laminectomy defect, removal of ligamentum flavum, decorticated interspace contralateral to
					interbody graft and packed it with cancellous iliac crest autograft, replaced loose L5, S1 PS, pack w/ cancellous iliac crest autograft wrapped in collagen and hydroxyapatite sponges soaked in rhBMP-2

Author Year

Country Trial # or

Name	Adverse Events	Funding	Comments
Moshel	Following 1st Operation	Not reported	Pt suffered severe and potentially life-
2008	max creatinine level 1.5mg/dl, BUN 47 mg/dl, levels dropped to .6 mg/dl, 35mg/dl in		threatening systemic immune toxicity afte
USA	response to intravenous hydration, fever of 38.6°C, cultures show no signs of growth		re-exposure to rhBMP-2 and bovine
	For year following, continued to report severe low-back pain, lucencies consistent with		collagen carrier. Pt may have had mild
	pseudo-arthrosis		version of systemic immune toxicity after
	Following 2nd Operation		first exposure to rhBMP-2 and bovine
	creatinine and BUN levels remained w/in normal levels, fever 38.3°C post-op day 1,		collagen carrier. Possible that reaction was
	cultures show no evidence of growth		to collagen but data suggest collagen is
	Following 3rd Operation		relatively safe. Suspect reaction to rhBMP-
	Day 7: Max creatinine = 3.2 mg/dl, max BUN = 53 mg/dl, no evidence of hydronephrosis,		2. Mechanism of reaction unknown,
	creatinine and BUN levels stabilized after 3 mos		possible hypothesis: nonosteogenic
	Day 10: SVT developed, heart rate in 160s, hypoxic w/ oxygen saturation dropped to 70%,		functions of endogenous BMP-2 were
	fever 38.5°C, Swan-Ganz catheterization demonstrated hyperdynamic cardiac function		affected by the induced antibody response
	and low systemic vascular resistance consistent with		
	sepsis, low probability of pulmonary embolism. Intermittent low-and high grade fevers for		
	3 weeks. Cultures did not show evidence of growth.		
	Day 14: MRI: no evidence of surgical site abscess, thin rim of enhancement adjacent to		
	bone graft placement evident		
	Day 29: MRI: no evidence of infectious disease		
	Given hx of gout + joint pain, aspiration of fluid from knee/elbow on Day 4, 13, 19, no		
	evidence of growth.		
	Concern of immune response to rhBMP-2		

Author	
Voor	

Year Country

Trial	#	or	

Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Muchow 2010 USA	Case Report	Age Diagnosis Comorbidities Fusion Site	27 Progressive low back pain, radiated into left lower extremity. Slight scoliosis. Radiographs demonstrate rotatory subluxation and levoscoliosis, mild levoscoliosis, and mild degenerative disc disease. MRI demonstrate degenerative disc disease, with a central disc herniation and subarticular stenosis and degenerative disc disease with a bulging disc Smoke 1.5 packages of cigarette/day, obesity. L4-L5	rhBMP-2 (medium INFUSE kit) + TLIF with two #12 22-mm PEEK cages packed	15 wks: Reexplored and decompress L4 nerve root, Instrumentation removal at L4-L5 on right side. 8 mos: microscopic decompression of the left cyst, remaining instrumentation removed
Newman 2012 USA	Case Report	Age Diagnosis Fusion Site	57 Low back and right leg pain in L5 distribution with previous L4-L5 discectomy with later revision L4-L5	TLIF with rhBMP-2 medium kit and morselized local autograph	Repeat surgery to explore the thecal sac; a large amount of clear yellow gel-like material was found and removed; the material was though to be an expansion of the DuraSeal
Oluigbo 2008 UK	Case Study	Age Diagnosis Previous treatments Fusion Site	2 Severe C1–2 level spinal cord injury with cord transection, type I fracture of dens, disruption of the anterior longitudinal, transverse and posterior interspinous ligaments and evidence of joint injury and traumatic effusion at C0–1 and C1–2 joints 12 week course of Halo-Vest immobilization and SOMI type external orthosis C1-C2	rhBMP-2 + non-metal-instrumented posterior spinal fusion with ACS matrix and bicalphos crystals	NR

Author

Year Country Trial # or Name	Adverse Events	Funding	Comments
Muchow	4 wks: progressive low back pain, radiated into lateral right thigh	Not reported	Chronic host inflammatory response after
2010 USA	 9 wks: pain increase in severity (10/10 w/ activity), two epidural fluid collections at L4-L5 involving right and left neural foramen 15 wks: 2d surgery, removal of solid, encapsulated, purplish, mobile mass. Inspection revealed evidence of old hematoma + new organizing bone. Tissue removed from L4 nerve root revealed diffuse osteoid and woven bone, but surrounded by a fibrovascular stroma extensively populated by lymphocytes with occasional eosinophils 2 wks post Surgery 2: low back pain, radiate left lower extremity 3 mos post Surgery 2: enlargement of left side cyst, compression of left L4 nerve root. Surgery 3: Removal of cyst, same findings as at 2nd Surgery 	Multiple author disclosures	off-label use of rhBMP-2. Gross examination revealed mass to be a collection of consolidating fibrous and bony tissue with old hematoma. Concern with supraphysiologic doses of rhBMP-2 is in vivo amplification of the host inflammatory response.

Newman 2012 USA	Cauda equina after expansion of dura seal causing with burning and parathesias in the saddle region	One or more of the authors (JR) has received funding from Medtronic Sofamor Danek Riddle Hospital/Rothman Institute, Media, PA, USA	
Oluigbo 2008 UK	No adverse events reported.	NR	Bony fusion began at 3 week, solid spinal fusion confirmed within 8 weeks. There was no evidence of spinal canal encroachment and no adverse effects related to the rhBMP-2/ACS-carrier matrix.

There was no evidence of spinal canal breach or osseous induction within the spinal canal.

Author

Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Pargament	Case Report	Case 1	77	Case 1	
2009		Age	Neurogenic claudication and 10 yrs back pain.	rhBMP-2 + PLF with allograft, local	
USA		Diagnosis	High-grade spinal stenosis L3-L4 and L4-L5 Exogenous obesity, atherosclerotic	autogenous bone graft Case 2	
		Comorbidities	cardiovascular disease, gastroesophageal reflux disorder, urinary incontinence, hyperlipidemia, hypertension, hx of .	rhBMP-2 + PLF with allograft bone, local bone graft, segmental spinal fixation using polyaxial screws and rods.	
		Fusion Site	thromboembolic disease		
		Case 2	L4-S1		
		Age	60		
		Diagnosis	Grade I degenerative spondylolisthesis		
			(80mm2) at L4-L5 and L3-L4, spinal stenosis at		
			L3-L4, L4-L5 (40mm) and L5-S1 disc collapse		
			with a small central herniation, 12° left convex		
		Previous Surgery	degenerative type scoliosis and previous		
		Comorbidities	bilateral hemilaminotomy defects at L4-L		
			Lumbar discectomy 22 yrs previous		
			Chronic cigarette smoking, asthma, chronic		
		Fusion Site	obstructive pulmonary disease, sleep apnea,		
			gastroesophageal reflux disorder,		
			osteoarthritis, essential hypertension,		
			depression, osteopenia, and congestive heart		
			failure		
			L2-L5 (Infuse from L3-L5 only)		

2007	Duesderie er une en l	Covered vegers are viewer ACDE of CE CZ	rhBMP-2 + ACDF with Cornerstone- HSR	Wound reopened, serous fluid
	Previous surgery	Several years previous: ACDF of C5-C7.	implants and removal of anterior cervical	aspirated
USA	Medical hx	HIV, hypertension, gout, gastroesophageal	plate for a previous ACDF, subsequent	
	Fusion Site	reflux disease	adjacent levels of ACDF an re-application of	
		C3-C5	an anterior cervical plate fixation	

Author Year

Country Trial # or

Name	Adverse Events	Funding	Comments
Pargament	Patient 1:	Not reported	Swelling noted in the cervical spine with
2009	10 days: increasing back and new leg pain. Fluid collection, differential Dx: epidural abscess		high-dose rhBMP-2 may occur in a similar
USA	and "significant" postoperative swelling. No clinical evidence of infection of abscess. Pt		fashion in the lumbar spine and result in
	afebrile, blood count normal, erythrocyte sedimentation rate and C-reactive protein mildly		clinical symptoms. Be aware of clinical
	elevated at 30. Tx: pain control and 6-day SoluMedrol.		manifestation, avoid more aggressive Tx. Tx
	5 Weeks: Wound healed, no new leg pain, no swelling. R leg nondermatomal numbness.		should be observation w/ or w/out
	12 months: mild low back pain, no leg pain.		steroids. While soft-tissue swelling is
	Patient 2:		typical, it is clearly more notable with use
	4 days: hemoglobin decreased, requiring two-unit transfusion		of rhBMP-2 in doses of 1-2 Infuse kits.
	6 days: numbness of R buttock down R leg, preoperative		
	quadriceps and ankle dorsiflexors weaker (3/5), no compressive pathology, notable soft-		
	tissue swelling, edema,		
	and phlegmon in the paraspinal muscles and iliopsoas, no epidural hematoma. Tx: molded		
	ankle-foot orthosis		
	1 week: right leg strength improving (5/5) in the tibialis anterior, 4/5 in the toe extensors		
	and 4/5 in her quadriceps, continuing complaints of nondermatomal numbness and pain in		
	leg TX: gabapentin, 300mg 3x daily.		
	1 year: no motor deficits, ill-defined leg global "numbness" intermittent		

Perri	3-5 days: Increasing neck swelling and mild difficulty swallowing.	Nothing of value received	Case report is of the complications and
2007	Day 5: Massive swelling extending from the mandible to the sternal notch/clavicle border,	from a commercial entity	response to complications. Surgery details
USA	difficulty swallowing. Several pockets of air within the soft tissue and small fluid collection	related to this manuscript.	taken from medical record.
	on ipsilateral side		

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Robin	Case Study	Age	66	rhBMP-2 + posterior instrumentation with	Day 6: Irrigation and debridement,
2010 USA		Medical hx Diagnosis	Diabetes, hypothyroidism, gout, hyperlipidemia	arthrodesis and laminectomy	wound reopened, clear fluid released under pressure. Day 10:
		Fusion Site	Multilevel cervical spondylosis and superimposed stenosis. On examination found to be myelopathic with diffuse hyperreflexia and bilateral Hoffman signs C3-C7		Irrigation and debridement, excision of bone graft material, demineralized bone matrix, and tissue around the posterolateral gutters.
Saigal	Case Series	Age		L4-L5 laminectomy, facetectomy, L4-L5	Revision surgery for cage removal
2012		Diagnosis		discectomy, PLIF at L4-L5 with rhBMP-2,	
USA			Case 1	allograft, and pedicle screws	
		Fusion Site	56		
			Splaying of L4-L5 facet joings with compression		
		4.50	of the thecal sac, herniated disc, bilateral facet hypertrophy and ligamentum flavum	rnBMP-2 and TLIF at L4-L5 with rnBMP-2	
		Age Diagnosis	thickening	L4-L5 laminectomy, discectomy, TLIF with	
		Fusion Site	L4-L5	PEEK and BMP collagen with pedicle screws and allograft	
			Case 2		
		Age	62		
		Diagnosis	Grade 3 L3 over L4 spondylolisthesis		
		Fusion Site	L3-L5		
			Case 3		
			47		
			L5-S1 spondylolisthesis with L4-L5 disc degeneration		

Author Year Country Trial # or			
Name	Adverse Events	Funding	Comments
Robin	Day 5: Bilateral dull pain in shoulders.	No funds were received in	2 other patients were found to have had
2010	Day 6: Significant loss of strength in right elbow and wrist. MRI showed a large	support of this work. No	similar reactions in the last year at the
USA	hyperintense fluid collection in the epidural space consistent with seroma.	benefits in any	authors' hospital. Analysis of rhBMP-2, pro-
	Day 11: (5 days after second surgery) Bilateral pain in shoulders. MRI showed similar hyperintense fluid collection.	form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.	inflammatory cytokines, and anti- inflammatory revealed multiple elevations of proinflammatory and anti-inflammatory cytokines, especially IL-6 and IL-8.
Saigal	All three cases developed lumbar spine osteolysis after posterior spinal fusion usint rhBl	MP- The authors decleare that	
2012	2	they have no conflicts of	
USA		interest concerning this	
		article.	

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Shah	Case Report	Age	45	rhBMP- 2 (large INFUSE, 12 mg) + ALIF	
2010 USA		Diagnosis	Sudden severe back pain, weakness in lower extremities, inability to ambulate. Collapse of	circumferential with posterior spinal instrumentation and sextant pedicle	Revision 5 days postoperative: copiour
		Fusion Site	L5 vertebral body, severe tumor infiltration at L5 and elsewhere. Multiple myloma. L4-S1	screws. Disectomy L4-L5, L5-S1, corpectomy L5 with reconstruction using a cage.	irrigation with pulsatile lavage done on superficial and deeper levels, replacement and repositioning of cage, second large INFUSE kit applied to L5 corpectomy defect.
Shahlaie 2008 USA	Case Study	Age Diagnosis	53 Basilar invagination with stenosis and distortion of the cervicomedullary junction and	rhBMP-2 (large INFUSE, 12 mg) + posterior cervical fusion with occipital plate, lateral	Wound exploration, upon reopening wound a large, dark, thin fluid collection was encountered
UJA		Fusion Site	stenosis at the C3-C4 level resulting in canal compromise and spinal cord compression. 0-C6	laminectomy and sub-occipital craniectomy.	and evacuated. Tissues appeared to be grossly edematous and swollen.
Whang	Case Report	Age	42	Revision fusion procedure. Removal of	
2008 USA	Case Report	Diagnosis	Severe back pain, muscle spasms L buttock and posterolateral thigh. Degenerative change L-5-	interbody spacer. Placement of structural	
		Previous Surgery	S1.	allograft.	
			1+ year. TLIF procedure. Graft material: rhBMP	-	
		Fusion Site	2 (Infuse) + local autogenous bone. 12 mm polyethylethylketone spacer filled with graft material. Percutaneous pedicle screws L5-S1. L5-S1		

Author

Year Country Trial # or Name	Adverse Events	Funding	Comments
Name Shah 2010 USA	 5 days: Migration of L4-L5 cage. 4 months: Evidence of bone formation bridging L4-S1. Scans show development of osseous mass around vertebral body and anterior to the left psoas muscle. 10 months: Patient experiencing minor back pain and limited truncal flexibility. Scans showed L5 vertebral body largely absent from corpectomy, surgical fusion from L4-S1. Large mass of mature heterotopic ossicifcation identified, arising from left anterior margin of L4, extending inferiorly along anterior surface of te left iliopsas muscle, continuing anteriorly and inferiorly along the left medial pelvic wall to the posterior surface of the anterior abdominal wall. 	Not reported.	Left-sided paramedian retroperitoneal approach. Bony overgrowth a mojor concern when using rhBMP-2 to enhance lumbar spinal fusion. Role of cytokines in ossification, second surgery may have increased amount of osteo-inductive cytokines, leading to increased bone formation. Dexamethasone used for multiple myeloma, data does not indicate BMP-potentiating effect of this nature. Off- lable use of rhBMP-2
Shahlaie 2008 USA	Day 3: Numbness and weakness in arms and hands. MRI revealed significant paraspinal muscle edema and a non-enhancing, large fluid collections extending from C2 to C4.	No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.	
Whang 2008 USA	Clinical diagnosis: pseudoarthrosis. Histopathologic analysis of implant: no obvious bone production around or w/in spacer, microscopic findings similar to early fracture callus (cartilage, immature woven bone, smalls amounts of lamellar bone) and abundant osteoclasts and osteoblasts. Following corrective surgery: 12 weeks cleared for physical activity, 6 mos returned to work, 1 yr bridging bone across L5-S1 interspace.	Possibly Medtronic Sofamor Danek, Corresponding author Vaccaro = consultant for Medtronic	RCTS of rhBMP-2 and autogenous iliac crest bone graft show success, but none looked at results of revision surgeries or provide histologic analysis. This case study does not show failure of rhBMP-2, but rhBMP-2 should not be thought of as infallible. Uncertainties exist re: use of rhBMP-2, esp "off-label" use and dosing requirements.

Author Year Country Trial # or Name	Type of Report		Baseline Characteristics	Interventions	Additional Surgeries
Wong	Case Series	Case 1	29	TLIF	Only reported revision surgeries
2008		Age	Desiccated disc L5-S1, undisplaced L5	Case 1	done by senior author
USA		Diagnosis	spondylosis, bulge of disc	rhBMP-2 + sponge carrier, pedicle screw	Case 1
		Fusion Site	L5-S1	instrumentation	None
		Case 2		Case 2	Case 2
		Age	26	rBMP2 sponge, structural allograft and	Retention of ectopic bone in canal
		Diagnosis	Discogenic	cancellous allograft chips	and decompression of nerve roots
		Fusion Site	L5-S1	Case 3	Case 3
		Case 3		rBMP2 sponge (no further info)	Same as 2
		Age	38	Case 4	Case 4
		Diagnosis	Discogenic	rBMP2 sponge+ cage	Same as 2
		Fusion Site	L5-S1	Case 5	Case 5
		Case 4		2 rhBMP-2 + sponge carrier,	None
		Age	35	polyetheretherketone cage	
		Diagnosis	Discogenic		
		Fusion Site	L3-S1		
		Case 5			
		Age	39		
		Diagnosis	Grade I spondylolytic spondylolisthesis		
		Fusion Site	L5-S1		

Author Year Country Trial # or Name	Adverse Events	Funding	Comments
Wong	For all Cases: radicular symptoms increase postoperatively over weeks to months, 4/5	Grant research support	No evidence that ectopic bone formation
2008	increasing radicular pain, 1/5 (pt 3) numbness in radicular pattern.	from Stryker, Zimmer,	was preexisting. Factor influencing bone
USA	Ectopic Bone Formation: Average time to showing of definitive ectopic bone = 8.35 months	Archus, Cervitech	ectopic bone formation include dosage of rhBMP-2, properties of the carrier, any barrier that would resist migraton of rhBMP-2 into the canal. Speculate that adherence of neural structures to the ectopic bone at revision surgery may be a reaction to the inflammatory process involved in bone formation.