Methods

Four modeling approaches are considered here:

1. Logistic Regression (LR): fits a conventional logistic regression model using the same 9 parsimonious variables as included in the McNamara et al. study.

2. Logistic Regression with Lasso (Lasso): couples a conventional logistic regression approach with a cost function (Lasso), which results in a parsimonious set of variables that maximizes predictive capabilities.

3. Gradient Descent Boosting (XGBoost): leverages the creation of many weak decision trees to produce a final, accurate prediction via weighted majority vote (“boosting”); unlike logistic regression, XGBoost is able to account for nonlinear, higher-order interactions among variables.

Results

Table 1: Summary of model performance for LR, Lasso, XGBoost, and Meta models

Model	ROC AUC (C-statistic)	PR AUC	Sensitivity	Specificity	PPV	NPV	Brier Score
LR	0.872	0.900	0.55	0.55	0.55	0.55	0.044
Lasso	0.41	0.45	0.53	0.93	0.53	0.53	0.044
XGBoost	0.929	0.929	0.93	0.93	0.93	0.93	0.044
Meta	0.930	0.930	0.93	0.93	0.93	0.93	0.044

Table 2: Shift table comparison of individual risk estimates from Lasso and XGBoost/Meta models

<table>
<thead>
<tr>
<th>Lasso risk</th>
<th>XGBoost/Meta risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (< 1%)</td>
<td>0.2% (88.777)</td>
</tr>
<tr>
<td>Moderate (1-5%)</td>
<td>1.8% (1.233)</td>
</tr>
<tr>
<td>High (> 5%)</td>
<td>9.5% (258)</td>
</tr>
</tbody>
</table>

Table 2. Each cell represents a cohort of patients whose individual Lasso risk falls within the Lasso range and whose individual XGBoost/Meta classifier risk falls within the given XGBoost/Meta risk range. Event rate is given as a percentage for each cohort, and the sample size is shown in parentheses.