2023
Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes
Ghovanloo M, Tyagi S, Zhao P, Effraim P, Dib-Hajj S, Waxman S. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels 2023, 18: 2289256. PMID: 38055732, PMCID: PMC10761158, DOI: 10.1080/19336950.2023.2289256.Peer-Reviewed Original ResearchConceptsSexual dimorphismRodent dorsal root ganglion neuronsBiophysical propertiesDorsal root ganglion neuronsExpression patternsSex-dependent regulationVoltage-gated sodiumFunctional analysisGanglion neuronsRodent sensory neuronsMouse dorsal root ganglion neuronsNaïve WT miceNumber of cellsMixed populationDimorphismUniform experimental conditionsSex-dependent differencesSensory neuronsNative DRG neuronsPain pathwaysDRG neuronsWT miceClinical studiesNav currentsAdult males
2012
Nav1.7-related small fiber neuropathy
Han C, Hoeijmakers JG, Ahn H, Zhao P, Shah P, Lauria G, Gerrits MM, te Morsche R, Dib-Hajj SD, Drenth JP, Faber CG, Merkies IS, Waxman SG. Nav1.7-related small fiber neuropathy. Neurology 2012, 78: 1635-1643. PMID: 22539570, DOI: 10.1212/wnl.0b013e3182574f12.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyDorsal root gangliaDRG neuronsIdiopathic small fiber neuropathySmall-diameter peripheral axonsDRG neuron hyperexcitabilityIdentifiable underlying causeNerve conduction studiesQuantitative sensory testingSympathetic ganglion neuronsSFN symptomsNeuron hyperexcitabilityConduction studiesGanglion neuronsRoot gangliaSkin biopsiesDifferential diagnosisPeripheral axonsSensory testingVoltage-clamp analysisApparent causePatientsNoninactivating componentUnderlying causeSuprathreshold stimuli
2011
Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury
Tan AM, Chang YW, Zhao P, Hains BC, Waxman SG. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury. Experimental Neurology 2011, 232: 222-233. PMID: 21963650, DOI: 10.1016/j.expneurol.2011.08.028.Peer-Reviewed Original ResearchConceptsDorsal horn neuronsPeripheral nerve injuryChronic constriction injuryWide dynamic range dorsal horn neuronsRange dorsal horn neuronsNerve injuryNeuropathic painDendritic spinesTactile allodyniaThermal hyperalgesiaSpine morphologyInjury-induced hyperexcitabilityNoxious peripheral stimuliSpinal cord injuryMushroom-shaped spinesDendritic spine developmentDendritic spine morphologyConstriction injuryHyperexcitable responsesCCI animalsNeuronal hyperexcitabilityIpsilateral hindNociceptive thresholdSpine densityCord injury
2009
BDNF-Hypersecreting Human Mesenchymal Stem Cells Promote Functional Recovery, Axonal Sprouting, and Protection of Corticospinal Neurons after Spinal Cord Injury
Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD. BDNF-Hypersecreting Human Mesenchymal Stem Cells Promote Functional Recovery, Axonal Sprouting, and Protection of Corticospinal Neurons after Spinal Cord Injury. Journal Of Neuroscience 2009, 29: 14932-14941. PMID: 19940189, PMCID: PMC2825276, DOI: 10.1523/jneurosci.2769-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain-Derived Neurotrophic FactorCells, CulturedCytoprotectionDisease Models, AnimalFemaleGene ExpressionGenetic VectorsGrowth ConesHumansMesenchymal Stem Cell TransplantationNerve RegenerationNeuronal PlasticityPyramidal TractsRatsRats, Sprague-DawleyRecovery of FunctionSpinal Cord InjuriesTransfectionTransplantation, HeterologousTreatment OutcomeConceptsSpinal cord injuryMesenchymal stem cellsCord injuryFunctional outcomeBone marrowAcute spinal cord injuryBrain-derived neurotrophic factorCorticospinal tract neuronsNumber of FGImproved functional outcomesPrimary motor cortexSpinal gray matterPotential therapeutic effectsStem cellsM1 cortexTransection lesionCorticospinal neuronsTract neuronsAxonal sproutingFunctional recoveryVentral hornNeuronal densitySerotonergic fibersLesion cavityMotor cortex