2023
Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes
Ghovanloo M, Tyagi S, Zhao P, Effraim P, Dib-Hajj S, Waxman S. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels 2023, 18: 2289256. PMID: 38055732, PMCID: PMC10761158, DOI: 10.1080/19336950.2023.2289256.Peer-Reviewed Original ResearchConceptsSexual dimorphismRodent dorsal root ganglion neuronsBiophysical propertiesDorsal root ganglion neuronsExpression patternsSex-dependent regulationVoltage-gated sodiumFunctional analysisGanglion neuronsRodent sensory neuronsMouse dorsal root ganglion neuronsNaïve WT miceNumber of cellsMixed populationDimorphismUniform experimental conditionsSex-dependent differencesSensory neuronsNative DRG neuronsPain pathwaysDRG neuronsWT miceClinical studiesNav currentsAdult males
2014
Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H
Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. Journal Of Neurophysiology 2014, 111: 1429-1443. PMID: 24401712, DOI: 10.1152/jn.00763.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiophysicsCells, CulturedElectric StimulationErythromelalgiaGanglia, SpinalHEK293 CellsHumansMembrane PotentialsMiceMice, KnockoutModels, BiologicalMutationNAV1.7 Voltage-Gated Sodium ChannelNeural ConductionNeuronsPatch-Clamp TechniquesSodium Channel BlockersTetrodotoxinTransfectionConceptsDRG neuronsMutant Nav1.7 channelsNav1.7 channelsDorsal root ganglion neuronsSodium influxPrimary nociceptive neuronsSmall DRG neuronsNet sodium influxSodium channel Nav1.7Current thresholdMechanistic linkAction potential generationNeuropathic painNociceptive neuronsNociceptor functionGanglion neuronsNociceptor hyperexcitabilityPain phenotypesChannel expressionChannel Nav1.7Subthreshold depolarizationHuman Nav1.7Electrophysiological recordingsDynamic-Clamp AnalysisIdentification of gain
2013
Sodium Channels Contribute to Degeneration of Dorsal Root Ganglion Neurites Induced by Mitochondrial Dysfunction in an In Vitro Model of Axonal Injury
Persson AK, Kim I, Zhao P, Estacion M, Black JA, Waxman SG. Sodium Channels Contribute to Degeneration of Dorsal Root Ganglion Neurites Induced by Mitochondrial Dysfunction in an In Vitro Model of Axonal Injury. Journal Of Neuroscience 2013, 33: 19250-19261. PMID: 24305821, PMCID: PMC6618782, DOI: 10.1523/jneurosci.2148-13.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsAxotomyCell DeathCells, CulturedGanglia, SpinalHumansHydrogen PeroxideImmunohistochemistryMiceMice, TransgenicMicrotubulesMitochondrial DiseasesNerve DegenerationNeuritesOxidantsRotenoneSodium Channel BlockersSodium ChannelsSodium-Calcium ExchangerSodium-Potassium-Exchanging ATPaseTetrodotoxinThioureaUncoupling AgentsConceptsAxonal degenerationNeurite degenerationSodium channelsKB-R7943Mouse peripheral sensory neuronsRotenone-induced mitochondrial dysfunctionOxidative stressMitochondrial dysfunctionPeripheral sensory neuronsDorsal root gangliaPeripheral nervous systemDegeneration of neuritesMitochondrial functionVoltage-gated sodium channelsMultiple neurodegenerative disordersSodium-calcium exchangerImpaired mitochondrial functionInjurious cascadeAxonal injuryActivity blockadeRoot gangliaAxonal neuropathySensory neuronsNCX activityDysfunctional intracellularSmall-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons
Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JG, Bekelaar K, Merkies IS, Faber CG, Dib-Hajj SD, Waxman SG. Small-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons. Journal Of Neuroscience 2013, 33: 14087-14097. PMID: 23986244, PMCID: PMC6618513, DOI: 10.1523/jneurosci.2710-13.2013.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsCells, CulturedGanglia, SpinalHumansIon Channel GatingMaleMembrane PotentialsMiceMice, TransgenicMiddle AgedMolecular Sequence DataMutation, MissenseNAV1.8 Voltage-Gated Sodium ChannelNeuronsPeripheral Nervous System DiseasesRatsRats, Sprague-DawleyConceptsDorsal root ganglion neuronsSmall DRG neuronsDRG neuronsGanglion neuronsAction potentialsIdiopathic small fiber neuropathySmall-diameter DRG neuronsWhole-cell voltage-clamp recordingsSmall-caliber nerve fibersVoltage-gated sodium channel Nav1.7Peripheral sensory neuronsCurrent-clamp studiesLimited treatment optionsSmall fiber neuropathySodium channel Nav1.8Voltage-clamp recordingsSodium channel Nav1.7Autonomic dysfunctionIncreases excitabilityTreatment optionsUnknown etiologyFunctional variantsNerve fibersSensory neuronsRamp depolarization
2011
Nav1.7 is the Predominant Sodium Channel in Rodent Olfactory Sensory Neurons
Ahn HS, Black JA, Zhao P, Tyrrell L, Waxman SG, Dib-Hajj SD. Nav1.7 is the Predominant Sodium Channel in Rodent Olfactory Sensory Neurons. Molecular Pain 2011, 7: 1744-8069-7-32. PMID: 21569247, PMCID: PMC3101130, DOI: 10.1186/1744-8069-7-32.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGanglia, SpinalGene Expression RegulationIn Situ HybridizationIon Channel GatingMaleMiceMice, Inbred C57BLNAV1.6 Voltage-Gated Sodium ChannelNAV1.7 Voltage-Gated Sodium ChannelOlfactory MucosaOlfactory Receptor NeuronsPolymerase Chain ReactionRatsRats, Sprague-DawleyRNA, MessengerSodium ChannelsConceptsDorsal root gangliaOlfactory sensory neuronsSodium channelsSensory neuronsNervous systemSodium channel transcriptsVoltage-gated sodium channel Nav1.7Peripheral nervous systemCentral nervous systemCompound heterozygous lossSodium channel Nav1.7Channel transcriptsPeripheral olfactory sensory neuronsCongenital insensitivityRoot gangliaSympathetic neuronsOSN axonsOlfactory bulbPostsynaptic cellOlfactory epitheliumChannel Nav1.7Nav1.7Nav1.6 channelsNull miceAnosmia
2005
Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy
Zhao P, Ma M, Qian H, Xia Y. Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neuroscience Research 2005, 53: 442-446. PMID: 16297477, DOI: 10.1016/j.neures.2005.09.003.Peer-Reviewed Original ResearchConceptsDelta-opioid receptorsDOR expressionHippocampal regionGenesis of epilepsyMutant mouse brainNHE1-null miceHippocampal CA1CA3 regionEpilepsy phenotypeEpileptic activityTemporal cortexMouse brainNull miceAutoradiographic resultsUnderlying mechanismEpilepsyImmunohistochemistryCortexMiceBrainReceptorsExpressionNull mutationHippocampusNew cluesIntermittent hypoxia modulates Na+ channel expression in developing mouse brain
Zhao P, Xue J, Gu X, Haddad G, Xia Y. Intermittent hypoxia modulates Na+ channel expression in developing mouse brain. International Journal Of Developmental Neuroscience 2005, 23: 327-333. PMID: 15927756, DOI: 10.1016/j.ijdevneu.2004.12.011.Peer-Reviewed Original Research
2003
Na+ Channel Expression and Neuronal Function in the Na+/H+ Exchanger 1 Null Mutant Mouse
Xia Y, Zhao P, Xue J, Gu X, Sun X, Yao H, Haddad G. Na+ Channel Expression and Neuronal Function in the Na+/H+ Exchanger 1 Null Mutant Mouse. Journal Of Neurophysiology 2003, 89: 229-236. PMID: 12522174, DOI: 10.1152/jn.00488.2002.Peer-Reviewed Original ResearchConceptsChannel expressionMutant miceCA1 neuronsMembrane excitabilityHippocampal CA1 neuronsNull mutant miceRecurrent seizuresCortical neuronsPrevious electrophysiological workNeuronal excitabilityEpileptic seizuresChannel upregulationNeuronal functionCortical regionsCortex formExcitabilityMiceSeizuresHippocampusSubtype IIAltered expressionNeuronsElectrophysiological workImmunoblotting techniquesSubtype I