2025
APOE ε4 and Risk of Intracranial Hemorrhage in Patients With Atrial Fibrillation Taking Apixaban
Clocchiatti-Tuozzo S, Rivier C, Renedo D, Huo S, de Havenon A, Hawkes M, Gilmore E, Schwamm L, Sheth K, Gill T, Falcone G. APOE ε4 and Risk of Intracranial Hemorrhage in Patients With Atrial Fibrillation Taking Apixaban. JAMA Neurology 2025, 82 PMID: 40549373, PMCID: PMC12186128, DOI: 10.1001/jamaneurol.2025.0182.Peer-Reviewed Original ResearchRisk of intracranial hemorrhagePopulation-based studyYears of follow-up dataApo E4Cox proportional hazards modelsAPOE e4 alleleIntracranial hemorrhageRisk prediction scoreCerebral amyloid angiopathyClinical decision-makingProportional hazards modelAtrial fibrillationIncreased risk of ICHMultivariate Cox proportional hazards modelMain OutcomesIncident intracranial hemorrhageEuropean ancestryCohort studyInclusion criteriaHistory of ischemic strokeAmyloid angiopathyE4 variantHazards modelIncreased riskE4 alleleQuantitative Pupillometry Predicts Neurologic Deterioration in Patients with Large Middle Cerebral Artery Stroke
Du Y, Pohlmann J, Chatzidakis S, Brush B, Malinger L, Stafford R, Cervantes‐Arslanian A, Benjamin E, Gilmore E, Dupuis J, Greer D, Smirnakis S, Mohammed S, Ong C. Quantitative Pupillometry Predicts Neurologic Deterioration in Patients with Large Middle Cerebral Artery Stroke. Annals Of Neurology 2025, 97: 930-941. PMID: 39825740, PMCID: PMC12011534, DOI: 10.1002/ana.27178.Peer-Reviewed Original ResearchNeurological Pupil indexMiddle cerebral arteryQuantitative pupillometryNeurological deteriorationMiddle cerebral artery strokeDilation velocitySingle-center observational cohort studyAlberta Stroke Program Early CT ScoreCox proportional hazards modelsObservational cohort studyIntensive care unitProportional hazards modelCT scoreCohort studyYouden indexCerebral arteryCare unitHazards modelTukey testLinear mixed-effects modelsPatientsArtery strokeDilatationOptimal thresholdMixed-effects models
2015
Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome
Sivaraju A, Gilmore EJ, Wira CR, Stevens A, Rampal N, Moeller JJ, Greer DM, Hirsch LJ, Gaspard N. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Medicine 2015, 41: 1264-1272. PMID: 25940963, DOI: 10.1007/s00134-015-3834-x.Peer-Reviewed Original ResearchConceptsBetter outcomesPoor outcomeEpileptiform dischargesPost-cardiac arrest comatose patientsCritical care EEG terminologyPost-cardiac arrest comaMethodsProspective cohort studyContinuous EEG monitoringLow-voltage EEGPositive predictive valueAbsence of reactivityEEG terminologyCohort studySpontaneous circulationBrainstem reflexesClinical outcomesComatose patientsFalse positive ratePoor prognosisPrognostic significanceSuppression burstsClinical variablesClinical correlatesElectroencephalographic patternsElectroencephalographic predictorsTime Course and Predictors of Neurological Deterioration After Intracerebral Hemorrhage
Lord AS, Gilmore E, Choi HA, Mayer SA. Time Course and Predictors of Neurological Deterioration After Intracerebral Hemorrhage. Stroke 2015, 46: 647-652. PMID: 25657190, PMCID: PMC4739782, DOI: 10.1161/strokeaha.114.007704.Peer-Reviewed Original ResearchConceptsNeurological deteriorationIntracerebral hemorrhage volumeHematoma expansionInterventricular hemorrhageIntracerebral hemorrhageHemorrhage volumeAdmission Glasgow Coma ScaleEarly neurological deteriorationLate neurological deteriorationAcute neurological deteriorationRetrospective cohort studyHours of symptomsGlasgow Coma ScaleIntracerebral hemorrhage trialsTime coursePlacebo patientsCerebral edemaDevastating complicationRankin scoreCohort studyComa ScaleMedical complicationsPoor outcomeTomographic scanClinical evaluation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply