Investigating genetic and environmental contributors to pancreatic cancer progression

Mandar Deepak Muzumdar, M.D.
Assistant Professor of Genetics and Medicine
Yale Cancer Biology Institute
Yale University School of Medicine
February 2, 2018
Financial Disclosures

• None
Pancreatic cancer: the problem

- Large disease burden
 - 55,440 new cases/year
 - 44,330 deaths/year
- Metastatic disease common at diagnosis (~50%)
- Standard of care: combination chemo
 - FOLFIRINOX
 - Gemcitabine + abraxane
- 5-year survival: 8%
- Unmet challenges
 - Prevention/interception
 - Better treatments for advanced disease
Pancreatic Cancer Progression

Inherited mutations:
- DNA repair (BRCA)
- Cell cycle (p16)
- Inflammation (PRSS1)

Somatic mutations:
- KRAS (>90%)
- p53 (75%)
- p16 (50%)
- SMAD4 (40%)

Prevention

Interception

Treatment

Targeting KRAS in pancreatic cancer

KRASmut

VS

KRAS

CRISPR screens identify targets in KRAS mutant pancreatic cancer cells
Pancreatic Cancer Progression

Inherited mutations:
- DNA repair (BRCA)
- Cell cycle (p16)
- Inflammation (PRSS1)

Somatic mutations:
- KRAS (>90%)
- p53 (75%)
- p16 (50%)
- SMAD4 (40%)

Normal → Initiation → Precancer → Progression → Cancer

Prevention → Interception → Treatment

Tracing tumor-progression in *KRAS* mutant cancers

Pancreas

Lung

p53 normal

p53 mutated
Tracing tumor-progression in \textit{KRAS} mutant cancers

Sort out Red and Green cells

Progressing cells

1000s of DNA-barcoded single-cell transcriptomes
Pancreatic Cancer Progression

Inherited mutations
- DNA repair (BRCA)
- Cell cycle (p16)
- Inflammation (PRSS1)

Somatic mutations
- KRAS (>90%)
- p53 (75%)
- p16 (50%)
- SMAD4 (40%)

Risk Factors
- Smoking
- Obesity
- Diabetes
- Age

Prevention
- Inherited mutations

Interception
- Somatic mutations

Treatment
- Prevention

Obesity as a risk factor for PDAC

Obesity is associated with an increased risk of developing pancreatic cancer.

Changes in % adult obesity prevalence over time in selected countries around the world.

Pancreatic Cancer Incidence Predictions (Globocan) to 2030.
Modeling obesity and pancreatic cancer

KC model recapitulates human pancreatic cancer
- Genetics (*Kras* mutation)
- Microscopic appearance (early to advanced progression)
- Metastatic behavior
- Response to chemotherapy

Leptin deficiency: obesity model
- Very obese (dose-response)
- Fast onset
- Reversible (leptin restoration)
Obesity induced shortened survival in *KRAS* mutant mice

![Graph showing percent survival over days for non-obese KC, obese KC, and KC (p53 mutation)]
Obesity promotes tumor progression

3 months

KC; +/+
KC; ob/+
KC; ob/ob

Tumor burden (% area disease/total)

**

NS

p<0.01, **p<0.0001
Early obesity reversal impedes tumor progression

6 weeks post-AAV infection

- Graph showing change in weight over time (weeks 0, 6, 12) for GFP and Leptin groups.
- Bar graph comparing tumor burden (% area disease/total) between GFP and Leptin groups, with significance indicated by **.
Late obesity reversal has no impact on survival
CCK-driven inflammatory/fibrotic circuit drives tumor progression in obesity

CCK is the top upregulated gene in pancreas of obese mice.

CCK is aberrantly expressed in pancreas of obese mice with tumors.
Pancreatic Cancer Progression

Inherited mutations
- DNA repair (BRCA)
- Cell cycle (p16)
- Inflammation (PRSS1)

Somatic mutations
- KRAS (>90%)
- p53 (75%)
- p16 (50%)
- SMAD4 (40%)

Risk Factors
- Smoking
- Obesity
- Diabetes
- Age

Prevention
- Normal
- Precancer

Interception
- Cancer

Treatment
- ?

Acknowledgements

Muzumdar Lab
Jaffar Singh

Jacks Lab
Tyler Jacks
Pan-Yu Chen
Kimberly Dorans
Katherine Chung
Rebecca Robbins
Arjun Bhutkar
Erin Hong
Rest of Jacks lab

Collaborators
Charles Fuchs
Brian Wolpin
Shuji Ogino
William Hahn
Andrew Aguirre
Feng Zhang
Ophir Shalem
Marco Herold
Andreas Trumpp

Core Facilities
Koch Institute
Swanson Biotechnology Center
- HTS Core
- FACS Core
- Microscopy Core
- Histology Core

MIT BioMicroCenter

http://medicine.yale.edu/lab/muzumdar/