Generating immunogenic animal models of pancreatic ductal adenocarcinoma

Nikhil Joshi
Assistant Professor of Immunobiology
Yale Medical School

Brittany Fitzgerald (grad student)
Gena Foster (Medical Fellow) 3rd year medical student
Gene Yoo
Cancer-immunity cycle

1. Release of cancer cell antigens (cancer cell death)
2. Cancer antigen presentation (dendritic cells/APCs)
3. Priming and activation (APCs & T cells)
4. Trafficking of T cells to tumors (CTLs)
5. Infiltration of T cells into tumors (CTLs, endothelial cells)
6. Recognition of cancer cells by T cells (CTLs, cancer cells)
7. Killing of cancer cells (immune and cancer cells)
Many factors limit efficacy of anti-tumor T cells

Weak tumor antigens

Limit T cell activation

Cancer antigen presentation

Limit innate activation

Priming and activation

Anti-CTLA4
Anti-CD137 (agonist)
Anti-OX40 (agonist)
Anti-CD27 (agonist)
IL-2
IL-12

Tumor antigen presentation

Vaccines
IFN-α
GM-CSF
Anti-CD40 (agonist)
TLR agonists

Release of cancer cell antigens

Chemotherapy
Radiation therapy
Targeted therapy

Limit T cell access/recognition

Limit T cell activation

Trafficking of T cells to tumors

Trafficking of T cells to tumors

Infiltration of T cells into tumors

Tumor

Recognition of cancer cells by T cells

Anti-VEGF

CARs

Killing of cancer cells

Anti-PD-L1
Anti-PD-1
IDO inhibitors

Chen DS and Mellman I. Oncology meets immunology: the cancer-immunity cycle. *Immunity.* July 2013
• Immunotherapy efficacy **uncertain** in PDAC

Spranger S, Gajewski T - J Immunother Cancer (2013)

Adapted from Merck graphic “Immunoregulatory Therapy in Oncology: Bending the survival curve,” Slide courtesy N. Joshi
KPC model of developing PDAC

Current Model: KPC Mouse

\[\text{Kras}^{\text{LSL.G12D}}; p53^{\text{R172H}}; \text{PdxCre}^{\text{tg}}/+ \]

- Tumors are induced in the pancreas
- Develops full range of precancerous lesions seen in humans
- Similar morphology
- 80% of PDA metastasizes
- Resistant to chemotherapy

Can we introduce neoantigens into more translationally relevant pancreatic cancer models?
NINJA: iNversion INduced JOneed neoAntigen system

[Diagram showing the process of gene manipulation involving Kras WT, p53 WT, Cre recombinase, Kras G12D, p53 null, Doxycycline, Tamoxifen, and resulting cell types (Normal cell, Transformed cell, Neoantigen+ Transformed cell).]

- **Normal cell (GEMM model)**
- **Transformed cell**
- **Neoantigen+ Transformed cell**

Locations:
- Pancreas
- Lung
- Muscle
NINJA lung tumors infiltrated by immune cells

Control tumor
(Cold tumor)

NINJA+ tumor
(Hot tumor)

T cells
Neoantigen
B cells
Lung cells
Making an autochthonous immunogenic PDAC model

Current Model: KPC Mouse

Kras<sup>LSL.G12D/+;p53^{R172H/+;PdxCre^{tg/+}}

- KP (no Cre)
 - No tumor
- KP pdx1-Cre
 - Focal tumors
 - Expressing neoantigens
- KP pdx1-Cre/NINJA
 - Focal tumors
 - Neoantigen throughout tissue

Brittany Fitzgerald, Gena Foster
KPC NINJA pancreatic cell lines:

16 week Kras\(^*\) p53 fl/+ NINJA/+ pdx1-cre

Early culture of cells (d2)

Current culture of cells (d36)

OFF

FlpoER

OFF

neoAntigen

OFF

neoAntigen

ON

neoAntigen

Ad FLPo

72 hours post-infection

Neoantigen off

GFP+

3%

GFP+

43.8%

Neoantigen ON

Brittany Fitzgerald

Gena Foster
Pancreatic organoids
Making organoids from normal mouse pancreas

Organoids from human PDAC – PDX tissue

Genomics/CyToF

Tumor infiltrating lymphocyte (TIL) expansion

Passage in mice

Immunocompromised Mouse

Day 10, 4-6 months

Surgical resection - Ronald Salem - Marie Robert

Co-culture?

In vitro screens

In vivo analyses?

Organoid culture

Gene Yoo
Ryan Sowell
Sue Kaech
Generating PDAC organoids from endoscopic biopsies

Only 15% of patients have resectable disease at diagnosis.

Organoids derived from biopsies can capture full spectrum of PDACs – including surgically non-resectable tumors and tumors of various stages.

Human PDAC organoids can be reliably established using endoscopic biopsies in a period of ~7 days.

Gene Yoo / James Farrell
Human PDAC Organoid Library

<table>
<thead>
<tr>
<th>Date</th>
<th>MRN</th>
<th>Path</th>
<th>Method of Bx</th>
<th>Organoid ID</th>
<th>Passage #</th>
<th>Frozen Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/2017</td>
<td></td>
<td>PNET</td>
<td>FNA</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10/24/2017</td>
<td></td>
<td>PDAC (Liver met)</td>
<td>FNA</td>
<td>Bx_htOrg_102417</td>
<td>P6</td>
<td>12/3/17</td>
</tr>
<tr>
<td>10/26/2017</td>
<td></td>
<td>PDAC</td>
<td>Core</td>
<td>Bx_htOrg_102617</td>
<td>P1</td>
<td>11/08/17</td>
</tr>
<tr>
<td>11/9/2017</td>
<td></td>
<td>PNET</td>
<td>Core</td>
<td>Bx_htOrg_110917</td>
<td>P2</td>
<td>11/23/17</td>
</tr>
<tr>
<td>11/14/2017</td>
<td></td>
<td>Poorly differentiated carcinoma</td>
<td>Core</td>
<td>Bx_htOrg_111417</td>
<td>P2</td>
<td>12/3/17</td>
</tr>
<tr>
<td>12/1/2017</td>
<td></td>
<td>PDAC (peripancreatic)</td>
<td>Core</td>
<td>Bx_htOrg_120117A</td>
<td>P0</td>
<td>in progress</td>
</tr>
<tr>
<td>12/1/2017</td>
<td></td>
<td>IPMN?</td>
<td>Cytology</td>
<td>Bx_htOrg_120117B</td>
<td>P0</td>
<td>in progress</td>
</tr>
</tbody>
</table>

- Transplantable tumor models in immunocompromised animals?
- Source of tissue for analysis / hypothesis generation
Orthotopic transplant into pancreas
Serial transplant to drive tumor progression
Mechanistic analyses of immune function / therapy

Tuveson Cell 2015 Transplant of mPanIN derived organoid
Acknowledgements

Collaborators:
- Charlie Fuchs
- James Farrell
- Ronald Salem
- Marie Robert
- Susan Kaech
 - Ryan Sowell
 - Jun Low
- Aaron Ring
- NIH tetramer core

Joshi Lab members:
- Martina Damo
- Brittany Fitzgerald
- Mursal Nader
- Diane Trotta
- Kelli Anne Connolly
- Yevgeniya Foster
- Gene Yoo
- Darwin Kwok
- Pete Fowles

Alumni members:
- Eleanor Sun
- Caroline Ayinon

Tyler Jacks
- Elliot Akama-Garren
- Greg Chang
- Da-Yae Lee
- Yisi Lu

Funding:
- Generous gift from Jan Leschly
- NIDDK P30KD034989

Yale University
School of Medicine