Featured Publications
Subtype-Aware Dynamic Unsupervised Domain Adaptation
Liu X, Xing F, You J, Lu J, Kuo C, Fakhri G, Woo J. Subtype-Aware Dynamic Unsupervised Domain Adaptation. IEEE Transactions On Neural Networks And Learning Systems 2024, 35: 2820-2834. PMID: 35895653, DOI: 10.1109/tnnls.2022.3192315.Peer-Reviewed Original ResearchTarget domainSource domain to target domainUnsupervised domain adaptationWithin-class compactnessHeart disease dataPseudo-labelsDomain adaptationClass centersLatent spaceCluster centroidsConditional alignmentLabel shiftTransfer knowledgeQueueing frameworkLocal proximityAlternative processing schemesSubtype labelsExperimental resultsProcessing schemeSubtype structureDomainNetVisDADisease dataDomainLabelingAttentive continuous generative self-training for unsupervised domain adaptive medical image translation
Liu X, Prince J, Xing F, Zhuo J, Reese T, Stone M, El Fakhri G, Woo J. Attentive continuous generative self-training for unsupervised domain adaptive medical image translation. Medical Image Analysis 2023, 88: 102851. PMID: 37329854, PMCID: PMC10527936, DOI: 10.1016/j.media.2023.102851.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationImage translationProblem of domain shiftSelf-trainingImage modality translationLabeled source domainTarget domain dataSelf-attention schemeAlternating optimization schemeHeterogeneous target domainContinuous value predictionPseudo-labelsDomain adaptationUDA methodsDomain shiftSoftmax probabilitiesSource domainTarget domainVariational BayesBackground regionsTranslation tasksTraining processDomain dataGeneration taskOptimization schemeMemory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation
Liu X, Xing F, El Fakhri G, Woo J. Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation. Medical Image Analysis 2022, 83: 102641. PMID: 36265264, PMCID: PMC10016738, DOI: 10.1016/j.media.2022.102641.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationUnsupervised domain adaptation methodsSource domain dataBN statisticsTarget domainLabeled source domain dataDomain dataLabeled source domainSelf-training strategyPatient data privacyHeterogeneous target domainBrain tumor segmentationPseudo-labelsDomain adaptationUnsupervised adaptationData privacySegmentation taskSource domainImage segmentationVital protocolAdaptation frameworkDecay strategyBoost performanceModel adaptationTumor segmentation
2022
ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training
Liu X, Xing F, Shusharina N, Lim R, Jay Kuo C, El Fakhri G, Woo J. ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training. Lecture Notes In Computer Science 2022, 13435: 66-76. PMID: 36780245, PMCID: PMC9911133, DOI: 10.1007/978-3-031-16443-9_7.Peer-Reviewed Original ResearchSemi-supervised domain adaptationUnsupervised domain adaptationSemi-supervised learningMedical image segmentationDomain adaptationDomain shiftLabel supervisionTarget domainImage segmentationDomain dataLeverage different knowledgePseudo-label noiseSignificant domain shiftSupervised joint trainingLabeled source domainUnlabeled target dataUnlabeled target domainLabeled target samplesTarget domain dataSource domain dataState-of-the-artMRI segmentation taskSubstantial performance gainsPseudo-labelsLabel noiseUnsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
Liu X, Yoo C, Xing F, Kuo C, Fakhri G, Kang J, Woo J. Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation. Frontiers In Neuroscience 2022, 16: 837646. PMID: 35720708, PMCID: PMC9201342, DOI: 10.3389/fnins.2022.837646.Peer-Reviewed Original ResearchUnsupervised domain adaptationDomain adaptationSource domainTarget domainLabeled source domain to unlabeled target domainTransfer of domain knowledgeTarget-specific representationsUnlabeled target domainTarget domain dataKnowledge distillation schemeDeep learning backbonesEntropy minimizationTrained model parametersDifficulty of labelingDomain knowledgeSensitive informationPrivacy concernsPerformance gainsNetwork parametersSegmentation modelDomain dataSource dataCross-center collaborationDistillation schemePotential leaksUnsupervised domain adaptation for segmentation with black-box source model
Liu X, Yoo C, Xing F, Kuo C, El Fakhri G, Kang J, Woo J. Unsupervised domain adaptation for segmentation with black-box source model. Proceedings Of SPIE--the International Society For Optical Engineering 2022, 12032: 1203210-1203210-6. PMID: 35983176, PMCID: PMC9385170, DOI: 10.1117/12.2607895.Peer-Reviewed Original ResearchUnsupervised domain adaptationSource domainDomain adaptationTarget-specific representationsLabeled source domainUnlabeled target domainTarget domain dataWell-labeled dataKnowledge distillation schemeTrained model parametersModel adaptation approachOriginal source dataDifficulty of labelingTarget domainSegmentation modelDomain dataTransfer knowledgeEntropy minimizationAdaptive approachSource dataConventional solutionsPractical solutionDistillation schemePrivacyLarge-scaleDeep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives
Liu X, Yoo C, Xing F, Oh H, Fakhri G, Kang J, Woo J. Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives. APSIPA Transactions On Signal And Information Processing 2022, 11: e25. DOI: 10.1561/116.00000192.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainLabeled source domain dataOut-of-distribution detectionUnlabeled target domain dataOut-of-distribution dataDomain dataTarget domain dataOut-of-distributionSource domain dataDeep neural networksNatural image processingMedical image analysisNatural language processingReal-world problemsDomain adaptationLabeled datasetSource domainDomain generalizationDeep learningNeural networkLanguage processingImpressive performanceTime series data analysisPerformance drop
2021
4D magnetic resonance imaging atlas construction using temporally aligned audio waveforms in speech
Xing F, Jin R, Gilbert I, Perry J, Sutton B, Liu X, Fakhri G, Shosted R, Woo J. 4D magnetic resonance imaging atlas construction using temporally aligned audio waveforms in speech. The Journal Of The Acoustical Society Of America 2021, 150: 3500-3508. PMID: 34852570, PMCID: PMC8580575, DOI: 10.1121/10.0007064.Peer-Reviewed Original ResearchConceptsAudio waveformTemporal domain informationMulti-subject dataAtlas constructionMutual information measureMR image datasetsImage datasetsTarget domainDomain informationPost-processing methodImage sequencesTemporal alignmentSpatiotemporal alignmentMatching patternsInformation measuresImage dataSquare errorAligned volumesAlignment mapOverall score increaseMR technologyCross-correlationDeformable registrationSpeechImagesAdversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate
Liu X, Guo Z, Li S, Xing F, You J, Kuo C, Fakhri G, Woo J. Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate. 2021, 00: 10347-10356. DOI: 10.1109/iccv48922.2021.01020.Peer-Reviewed Original ResearchUnsupervised domain adaptationDomain adaptationLabel shiftUnsupervised domain adaptation methodsAdversarial unsupervised domain adaptationAlternating optimization schemeUDA methodsTarget domainTraining stageOptimization schemeTesting stageExperimental resultsDistribution w.AdversaryP(x|yP(y|xDomainSchemeClassificationMethodInferenceAdaptationAdapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation
Liu X, Xing F, Yang C, El Fakhri G, Woo J. Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation. Lecture Notes In Computer Science 2021, 12902: 549-559. PMID: 34734216, PMCID: PMC8562716, DOI: 10.1007/978-3-030-87196-3_51.Peer-Reviewed Original ResearchUnsupervised domain adaptationSegmentation taskSource domainTarget domainUnsupervised domain adaptation methodsLabeled source domainSource domain dataUnsupervised learning methodDomain adaptationUDA methodsPrivacy issuesLearning methodsAdaptation frameworkDomain dataData storageTransfer knowledgeBatch statisticsSource dataOptimization objectivesAdaptation stageTaskFrameworkPrivacyDomainBraTSGenerative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis
Liu X, Xing F, Stone M, Zhuo J, Reese T, Prince J, El Fakhri G, Woo J. Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis. Lecture Notes In Computer Science 2021, 12903: 138-148. PMID: 34734217, PMCID: PMC8562649, DOI: 10.1007/978-3-030-87199-4_13.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainUDA methodsImage synthesisProblem of domain shiftUnsupervised domain adaptation frameworkSelf-trainingTraining deep learning modelsVariational Bayes learningUnlabeled target domainAlternating optimization schemePseudo-label selectionDeep learning modelsContinuous value predictionPseudo-labelsDomain adaptationDomain shiftCross-domainSynthesis qualityBayes learningDiscrete histogramsPrediction confidenceLearning modelsGeneration taskOptimization schemeDomain Generalization under Conditional and Label Shifts via Variational Bayesian Inference
Liu X, Hu B, Jin L, Han X, Xing F, Ouyang J, Lu J, El Fakhri G, Woo J. Domain Generalization under Conditional and Label Shifts via Variational Bayesian Inference. 2021, 881-887. DOI: 10.24963/ijcai.2021/122.Peer-Reviewed Original ResearchDomain generalizationDomain-invariant feature learningVariational Bayesian inference frameworkLabel shiftCross-domain accuracyLabeled source domainVariational Bayesian inferenceFeature learningBayesian inference frameworkLatent spaceSource domainTarget domainDistribution matchingTransfer knowledgeInference frameworkSuperior performanceP(x|yBayesian inferenceLabelingDomainFrameworkGeneralizationBenchmarksPosterior alignmentLearning