Featured Publications
Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation
Liu X, Xing F, El Fakhri G, Woo J. Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation. Medical Image Analysis 2022, 83: 102641. PMID: 36265264, PMCID: PMC10016738, DOI: 10.1016/j.media.2022.102641.Peer-Reviewed Original ResearchConceptsUnsupervised domain adaptationUnsupervised domain adaptation methodsSource domain dataBN statisticsTarget domainLabeled source domain dataDomain dataLabeled source domainSelf-training strategyPatient data privacyHeterogeneous target domainBrain tumor segmentationPseudo-labelsDomain adaptationUnsupervised adaptationData privacySegmentation taskSource domainImage segmentationVital protocolAdaptation frameworkDecay strategyBoost performanceModel adaptationTumor segmentation
2022
ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training
Liu X, Xing F, Shusharina N, Lim R, Jay Kuo C, El Fakhri G, Woo J. ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training. Lecture Notes In Computer Science 2022, 13435: 66-76. PMID: 36780245, PMCID: PMC9911133, DOI: 10.1007/978-3-031-16443-9_7.Peer-Reviewed Original ResearchSemi-supervised domain adaptationUnsupervised domain adaptationSemi-supervised learningMedical image segmentationDomain adaptationDomain shiftLabel supervisionTarget domainImage segmentationDomain dataLeverage different knowledgePseudo-label noiseSignificant domain shiftSupervised joint trainingLabeled source domainUnlabeled target dataUnlabeled target domainLabeled target samplesTarget domain dataSource domain dataState-of-the-artMRI segmentation taskSubstantial performance gainsPseudo-labelsLabel noiseDeep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives
Liu X, Yoo C, Xing F, Oh H, Fakhri G, Kang J, Woo J. Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives. APSIPA Transactions On Signal And Information Processing 2022, 11: e25. DOI: 10.1561/116.00000192.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domainLabeled source domain dataOut-of-distribution detectionUnlabeled target domain dataOut-of-distribution dataDomain dataTarget domain dataOut-of-distributionSource domain dataDeep neural networksNatural image processingMedical image analysisNatural language processingReal-world problemsDomain adaptationLabeled datasetSource domainDomain generalizationDeep learningNeural networkLanguage processingImpressive performanceTime series data analysisPerformance drop
2021
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation
Liu X, Xing F, Yang C, El Fakhri G, Woo J. Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation. Lecture Notes In Computer Science 2021, 12902: 549-559. PMID: 34734216, PMCID: PMC8562716, DOI: 10.1007/978-3-030-87196-3_51.Peer-Reviewed Original ResearchUnsupervised domain adaptationSegmentation taskSource domainTarget domainUnsupervised domain adaptation methodsLabeled source domainSource domain dataUnsupervised learning methodDomain adaptationUDA methodsPrivacy issuesLearning methodsAdaptation frameworkDomain dataData storageTransfer knowledgeBatch statisticsSource dataOptimization objectivesAdaptation stageTaskFrameworkPrivacyDomainBraTS