2014
Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease (690.2)
Chatsudthipong V, Yuajit C, Muanprasat C, Kittayaruksakul S, Fedeles S, Gallagher A, Somlo S. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease (690.2). The FASEB Journal 2014, 28 DOI: 10.1096/fasebj.28.1_supplement.690.2.Peer-Reviewed Original ResearchCyst-lining epithelial cellsRenal cyst growthCell proliferationCFTR expressionRenal epithelial cell proliferationMouse modelCyst growthEpithelial cell proliferationPolycystic kidney diseaseEffect of steviolMDCK cyst growthMTOR/S6K pathwayCFTR chloride channelActivation of AMPKCFTR channel activityKidney diseaseOrthologous mouse modelS6K pathwayEpithelial cellsCFTR degradationTransepithelial fluid secretionPKD mouse modelsProtein kinaseS6K expressionPKD genesSteviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease
Yuajit C, Muanprasat C, Gallagher AR, Fedeles SV, Kittayaruksakul S, Homvisasevongsa S, Somlo S, Chatsudthipong V. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochemical Pharmacology 2014, 88: 412-421. PMID: 24518257, DOI: 10.1016/j.bcp.2014.01.038.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseRenal cyst growthCyst-lining epithelial cellsMouse modelKidney diseaseEpithelial cell proliferationEffect of steviolCyst enlargementCyst growthCell proliferationEpithelial cellsBlood urea nitrogenHuman autosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseOrthologous mouse modelChloride channel expressionRenal epithelial cell proliferationTransepithelial fluid secretionADPKD mouse modelRenal failureKidney functionKidney weightDaily treatmentCreatinine values
2013
Mechanoprotection by Polycystins Against Apoptosis is Mediated Through the Opening of Stretch‐Activated K2P Channels
Duprat F, Peyronnet R, Sharif‐Naeini R, Folgering J, Arhatte M, Jodar M, Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters D, Somlo S, Sachs F, Patel A, Honoré E. Mechanoprotection by Polycystins Against Apoptosis is Mediated Through the Opening of Stretch‐Activated K2P Channels. The FASEB Journal 2013, 27: 912.2-912.2. DOI: 10.1096/fasebj.27.1_supplement.912.2.Peer-Reviewed Original ResearchCell apoptosisTwo-pore KAutosomal dominant polycystic kidney diseaseRenal epithelial cellsTubular cell apoptosisPKD2 geneEpithelial cell proliferationK2P channelsCell proliferationMechanoprotectionPolycystinsApoptosisEpithelial cellsDominant polycystic kidney diseasePKD1Tubular epithelial cell proliferationPolycystic kidney diseaseFunctional relationshipMechanical stressUnresolved questionsCellsFondation de FranceKidney diseaseKidney failureGenes