2024
Validating International Classification of Diseases Code (ICD) 10th Revision Algorithms for Accurate Identification of Pulmonary Embolism
Bikdeli B, Khairani C, Bejjani A, Lo Y, Mahajan S, Caraballo C, Jimenez J, Krishnathasan D, Zarghami M, Rashedi S, Jimenez D, Barco S, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Mojibian H, Aneja S, Khera R, Konstantinides S, Goldhaber S, Wang L, Zhou L, Monreal M, Piazza G, Krumholz H, Investigators P. Validating International Classification of Diseases Code (ICD) 10th Revision Algorithms for Accurate Identification of Pulmonary Embolism. Journal Of Thrombosis And Haemostasis 2024 PMID: 39505153, DOI: 10.1016/j.jtha.2024.10.013.Peer-Reviewed Original ResearchDischarge codesInternational ClassificationICD-10Yale New Haven Health SystemPositive predictive valueMass General Brigham hospitalsAccuracy of ICD-10ICD-10 codesPulmonary embolismHealth systemImage codingElectronic databasesF1 scorePre-specified protocolExcellent positive predictive valueIndependent physiciansHighest F1 scoreIdentification of pulmonary embolismAcute pulmonary embolismSecondary codePE codesScoresIdentified PERevised algorithm
2023
Predicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography
Oikonomou E, Holste G, Mcnamara R, Velazquez E, Nadkarni G, Ouyang D, Krumholz H, Wang Z, Khera R. Predicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography. European Heart Journal 2023, 44: ehad655.040. DOI: 10.1093/eurheartj/ehad655.040.Peer-Reviewed Original ResearchLeft ventricular ejection fractionSevere aortic stenosisAortic stenosisAS progressionAV VmaxTransthoracic echocardiographyYale New Haven Health SystemBaseline left ventricular ejection fractionAortic stenosis progressionModerate aortic stenosisRetrospective cohort studyVentricular ejection fractionTwo-dimensional echocardiographyMean rateModerate ASAS severityCohort studyEjection fractionPatient sexStenosis progressionTTE studiesEligible participantsSerial monitoringSpecialized centersTimely diagnosisDeveloping Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study
Bikdeli B, Lo Y, Khairani C, Bejjani A, Jimenez D, Barco S, Mahajan S, Caraballo C, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Wang Y, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Aneja S, Khera R, Goldhaber S, Zhou L, Monreal M, Krumholz H, Piazza G. Developing Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study. Thrombosis And Haemostasis 2023, 123: 649-662. PMID: 36809777, PMCID: PMC11200175, DOI: 10.1055/a-2039-3222.Peer-Reviewed Original ResearchConceptsElectronic health recordsNLP algorithmNatural language processing toolsLanguage processing toolsPrincipal discharge diagnosisICD-10 codesDischarge diagnosisNLP toolsChart reviewHealth systemProcessing toolsYale New Haven Health SystemPatient identificationElectronic databasesHealth recordsData validationHigh-risk PEPulmonary Embolism ResearchSecondary discharge diagnosisIdentification of patientsManual chart reviewNegative predictive valueCodeRadiology reportsAlgorithmQuantifying Blood Pressure Visit-to-Visit Variability in the Real-World Setting: A Retrospective Cohort Study
Lu Y, Linderman G, Mahajan S, Liu Y, Huang C, Khera R, Mortazavi B, Spatz E, Krumholz H. Quantifying Blood Pressure Visit-to-Visit Variability in the Real-World Setting: A Retrospective Cohort Study. Circulation Cardiovascular Quality And Outcomes 2023, 16: e009258. PMID: 36883456, DOI: 10.1161/circoutcomes.122.009258.Peer-Reviewed Original ResearchConceptsRetrospective cohort studyBlood pressure valuesPatient characteristicsReal-world settingCohort studyPatient subgroupsYale New Haven Health SystemMean body mass indexSystolic blood pressure valuesBlood pressure visitHistory of hypertensionCoronary artery diseaseManagement of patientsMultivariable linear regression modelsBlood pressure readingsBody mass indexPatient-level measuresBlood pressure variationAbsolute standardized differencesNon-Hispanic whitesAntihypertensive medicationsReal-world practiceVisit variabilityArtery diseaseRegression models
2022
A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
Khera R, Mortazavi BJ, Sangha V, Warner F, Patrick Young H, Ross JS, Shah ND, Theel ES, Jenkinson WG, Knepper C, Wang K, Peaper D, Martinello RA, Brandt CA, Lin Z, Ko AI, Krumholz HM, Pollock BD, Schulz WL. A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations. Npj Digital Medicine 2022, 5: 27. PMID: 35260762, PMCID: PMC8904579, DOI: 10.1038/s41746-022-00570-4.Peer-Reviewed Original ResearchCOVID-19 hospitalizationMayo ClinicDiagnosis codesCOVID-19 diagnosisPositive SARS-CoV-2 PCRYale New Haven Health SystemPositive SARS-CoV-2 testSARS-CoV-2 infectionSARS-CoV-2 PCRSARS-CoV-2 testCOVID-19Higher inhospital mortalitySARS-CoV2 infectionElectronic health record dataICD-10 diagnosisPositive laboratory testsHealth record dataInhospital mortalityAdditional patientsAntigen testSecondary diagnosisPrincipal diagnosisMulticenter evaluationPositive testComputable phenotype definitions