2023
Modulation of potassium conductances optimizes fidelity of auditory information
Kaczmarek L. Modulation of potassium conductances optimizes fidelity of auditory information. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2216440120. PMID: 36930599, PMCID: PMC10041146, DOI: 10.1073/pnas.2216440120.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAuditory PathwaysMembrane PotentialsPhosphorylationPotassiumPotassium ChannelsConceptsPotassium currentAuditory brainstem neuronsAuditory stimuliHigh-frequency firingGroups of neuronsLow-frequency stimuliBrainstem neuronsHigh-frequency stimuliIntrinsic excitabilityEnsembles of neuronsPostsynaptic neuronsAuditory neuronsNeurotransmitter releaseModulatory mechanismsAuditory stimulationFiring ratePotassium conductanceNeuronsPotassium channelsSingle neuronsAmplitude of currentsLoud soundsEnvironmental sound levelsChannel activityPositive membrane potentials
2019
Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice
El-Hassar L, Song L, Tan WJT, Large CH, Alvaro G, Santos-Sacchi J, Kaczmarek LK. Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice. Journal Of Neuroscience 2019, 39: 4797-4813. PMID: 30936239, PMCID: PMC6561694, DOI: 10.1523/jneurosci.0839-18.2019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory PathwaysAuditory PerceptionBrain StemCochlear NucleusElectrophysiological PhenomenaEvoked Potentials, Auditory, Brain StemFemaleFragile X Mental Retardation ProteinFragile X SyndromeHydantoinsIn Vitro TechniquesMaleMiceMice, KnockoutPatch-Clamp TechniquesPyridinesShaw Potassium ChannelsConceptsAuditory brainstem responseWild-type animalsRepetitive firingABR wave ICurrent-clamp recordingsAuditory brainstem nucleiVoltage-clamp recordingsHigh-frequency firingSingle action potentialFragile X syndromeTrapezoid bodyBrainstem nucleiBrainstem responseMedial nucleusAuditory brainstemAuditory nerveWave IWave IVAction potentialsSensory stimuliKv3.1 channelsCentral processingMental retardation proteinHigh sound levelsMice
2017
Pharmacological modulation of Kv3.1 mitigates auditory midbrain temporal processing deficits following auditory nerve damage
Chambers AR, Pilati N, Balaram P, Large CH, Kaczmarek LK, Polley DB. Pharmacological modulation of Kv3.1 mitigates auditory midbrain temporal processing deficits following auditory nerve damage. Scientific Reports 2017, 7: 17496. PMID: 29235497, PMCID: PMC5727503, DOI: 10.1038/s41598-017-17406-x.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAuditory PathwaysAuditory PerceptionCochlear NerveCompulsive BehaviorDisease Models, AnimalImidazolesMembrane Transport ModulatorsMesencephalonMiceModels, BiologicalNeuronsOuabainPyrimidinesRecovery of FunctionShaw Potassium ChannelsTissue Culture TechniquesVestibulocochlear Nerve DiseasesConceptsTemporal processing deficitsAuditory nerve damageCochlear nerve synapsesTemporal sound featuresCentral auditory pathwayAuditory brainstem neuronsPromising therapeutic approachPatch-clamp recordingsOtotoxic drug exposurePrecise temporal codingTemporal firing patternsHigh-threshold channelsVoltage-gated potassium channelsProcessing deficitsNerve damageBrainstem neuronsAfferent inputCentral neuronsDrug exposureAfferent synapsesContralateral earSystemic injectionCompensatory plasticityTherapeutic approachesAuditory cortex
2011
Potassium channel modulation and auditory processing
Brown MR, Kaczmarek LK. Potassium channel modulation and auditory processing. Hearing Research 2011, 279: 32-42. PMID: 21414395, PMCID: PMC3137660, DOI: 10.1016/j.heares.2011.03.004.Peer-Reviewed Original ResearchConceptsAuditory brainstem nucleiBrainstem nucleiPotassium channelsPotassium channel modulationSynaptic stimulationFiring patternsOverall sensitivityChannel modulationNeuronsAuditory environmentAuditory processingAuditory systemHigh rateAuditory informationIntrinsic electrical propertiesKey proteinsReview article
2010
Fragile X Mental Retardation Protein Is Required for Rapid Experience-Dependent Regulation of the Potassium Channel Kv3.1b
Strumbos JG, Brown MR, Kronengold J, Polley DB, Kaczmarek LK. Fragile X Mental Retardation Protein Is Required for Rapid Experience-Dependent Regulation of the Potassium Channel Kv3.1b. Journal Of Neuroscience 2010, 30: 10263-10271. PMID: 20685971, PMCID: PMC3485078, DOI: 10.1523/jneurosci.1125-10.2010.Peer-Reviewed Original ResearchConceptsMental retardation proteinAnterior ventral cochlear nucleusFragile X Mental Retardation ProteinRNA-binding proteinProtein translationFMRPWild-type animalsSpecific mRNAsSound localization circuitVentral cochlear nucleusBrainstem synaptosomesExperience-dependent regulationProtein levelsAmplitude-modulated stimuliProteinTrapezoid bodyCochlear nucleusMale miceMedial nucleusNeuronal activityPotassium currentWT controlsSynaptic plasticityTonotopic axisAcoustic stimulationLocalization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons
Gazula V, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. The Journal Of Comparative Neurology 2010, 518: 3205-3220. PMID: 20575068, PMCID: PMC2894291, DOI: 10.1002/cne.22393.Peer-Reviewed Original ResearchConceptsPresynaptic terminalsBrainstem auditory neuronsPattern of stainingMNTB neuronsPrincipal neuronsSynaptic markersTrapezoid bodyCochlear nucleusAfferent inputAxonal stainingMedial nucleusAuditory brainstemPresynaptic endingsOlfactory bulbAuditory neuronsPotassium channel genesTonotopic axisTonotopic gradientNeuronsKv1.3 channelsProminent labelingPrincipal cellsAuditory stimuliKv1 familyKv1.3Controlling auditory excitability: the benefits of a cultured environment
Kaczmarek LK. Controlling auditory excitability: the benefits of a cultured environment. The Journal Of Physiology 2010, 588: 1387-1388. PMID: 20436041, PMCID: PMC2876793, DOI: 10.1113/jphysiol.2010.189712.Peer-Reviewed Original ResearchSpecific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat
Strumbos J, Polley D, Kaczmarek L. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010, 167: 567-572. PMID: 20219640, PMCID: PMC2854512, DOI: 10.1016/j.neuroscience.2010.02.046.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAdaptation, PhysiologicalAnimalsAntibody SpecificityAuditory PathwaysAuditory ThresholdImmunohistochemistryIon Channel GatingNerve Tissue ProteinsNeuronal PlasticityRatsRats, Sprague-DawleyReaction TimeRhombencephalonShaw Potassium ChannelsSound LocalizationSynaptic TransmissionTime FactorsUp-RegulationConceptsTotal cellular levelsCytoplasmic C-terminusCellular levelVoltage-gated potassium channel subunitsPotassium channel subunitsTonotopic distributionAdult ratsC-terminusChannel proteinsChannel subunitsSound localization circuitIon channelsProteinExperience-dependent plasticityCultured neuronsPotassium channelsHigh-frequency stimuliAcute slicesMedial nucleusSynaptic activityAuditory neuronsKv3.1 proteinMin of exposureAction potentialsAcoustic stimulation
2007
Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons
Yang B, Desai R, Kaczmarek LK. Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons. Journal Of Neuroscience 2007, 27: 2617-2627. PMID: 17344399, PMCID: PMC6672517, DOI: 10.1523/jneurosci.5308-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAuditory PathwaysBithionolBrain StemComputer SimulationElectric ConductivityElectric StimulationElectrophysiologyIn Vitro TechniquesMiceModels, NeurologicalNerve Tissue ProteinsNeuronsNeurons, AfferentPotassium ChannelsPotassium Channels, Sodium-ActivatedReaction TimeSodium
2005
Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels
Kaczmarek LK, Bhattacharjee A, Desai R, Gan L, Song P, von Hehn CA, Whim MD, Yang B. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hearing Research 2005, 206: 133-145. PMID: 16081004, DOI: 10.1016/j.heares.2004.11.023.Peer-Reviewed Original ResearchConceptsAnteroventral cochlear nucleusPotassium channelsAuditory pathwayAction potentialsCentral auditory pathwayVoltage-dependent potassium channelsMammalian auditory pathwayAmount of neurotransmitterProtein phosphorylationMNTB neuronsGene expressionBushy cellsPrincipal neuronsTrapezoid bodyCochlear nucleusIntrinsic excitabilityMedial nucleusVoltage-dependent channelsFiring patternsNeuronsAmplitude of currentsKv1 familySound stimuliLong-term modulationSound localizationLocalization of the Na+‐activated K+ channel Slick in the rat central nervous system
Bhattacharjee A, von Hehn CA, Mei X, Kaczmarek LK. Localization of the Na+‐activated K+ channel Slick in the rat central nervous system. The Journal Of Comparative Neurology 2005, 484: 80-92. PMID: 15717307, DOI: 10.1002/cne.20462.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory PathwaysCentral Nervous SystemCHO CellsComputer SimulationCricetinaeDNA, ComplementaryFacial NerveImmunoblottingImmunohistochemistryIn Situ HybridizationKineticsModels, NeurologicalNeuronsOlfactory BulbPotassium ChannelsPotassium Channels, Sodium-ActivatedRatsReverse Transcriptase Polymerase Chain ReactionRNA ProbesSubcellular FractionsConceptsRat central nervous systemCentral nervous systemNervous systemAuditory neuronsCortical layers IIHigh-frequency stimulationLow-frequency firingDeep cerebellar nucleiSubstantia nigraTrapezoid bodyVestibular nucleiHippocampal CA1Dentate gyrusMedial nucleusCA3 regionOculomotor nucleusCertain neuronsFacial nucleusNeuronal nucleiOlfactory bulbPontine nucleiImmunohistochemical techniquesRed nucleusLayers IISupraoptic nucleus
2004
Loss of Kv3.1 Tonotopicity and Alterations in cAMP Response Element-Binding Protein Signaling in Central Auditory Neurons of Hearing Impaired Mice
von Hehn CA, Bhattacharjee A, Kaczmarek LK. Loss of Kv3.1 Tonotopicity and Alterations in cAMP Response Element-Binding Protein Signaling in Central Auditory Neurons of Hearing Impaired Mice. Journal Of Neuroscience 2004, 24: 1936-1940. PMID: 14985434, PMCID: PMC6730406, DOI: 10.1523/jneurosci.4554-03.2004.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAge FactorsAnimalsAuditory PathwaysBrain StemCerebellumCyclic AMP Response Element-Binding ProteinDisease ProgressionMaleMiceMice, Inbred C57BLMice, Inbred CBAMice, Inbred DBANeuronsNeuropeptidesPhosphorylationPotassium ChannelsPotassium Channels, Voltage-GatedPresbycusisReflex, StartleShaw Potassium ChannelsConceptsCAMP response element-binding proteinResponse element-binding proteinTonotopic axisBL/6 miceElement-binding proteinCochlear hair cell lossPCREB-positive cellsAuditory brainstem neuronsCentral auditory neuronsHair cell lossCBA/JTranscription factor cAMP response element-binding proteinBrainstem neuronsKv3.1 potassium channel geneTrapezoid bodyImpaired miceMedial nucleusAuditory brainstemImmunopositive cellsAuditory neuronsMedial endPotassium channel genesGood hearingCell lossCREB expression
2001
Localization of two high‐threshold potassium channel subunits in the rat central auditory system
Li W, Kaczmarek L, Perney T. Localization of two high‐threshold potassium channel subunits in the rat central auditory system. The Journal Of Comparative Neurology 2001, 437: 196-218. PMID: 11494252, DOI: 10.1002/cne.1279.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory PathwaysCochlear NucleusFemaleGene ExpressionGeniculate BodiesImmunohistochemistryIn Situ HybridizationInferior ColliculiNeuronsNeuropeptidesOligonucleotide ProbesOlivary NucleusPotassium ChannelsPotassium Channels, Voltage-GatedRatsRats, Sprague-DawleyRNA, MessengerShaw Potassium ChannelsConceptsAuditory neuronsKv3.1 mRNAPotassium channelsMost auditory neuronsBrainstem auditory neuronsRat central auditory systemAction potential thresholdSubpopulation of neuronsCentral auditory systemLateral superior oliveRat auditory systemAuditory systemVoltage-sensitive potassium channelsRapid deactivation kineticsPotassium channel subunitsTrapezoid bodyRat brainstemMedial nucleusVentral nucleusLateral lemniscusTerminal arborizationsSynaptic inputsAuditory nucleiSuperior oliveChannel expressionCasein Kinase 2 Determines the Voltage Dependence of the Kv3.1 Channel in Auditory Neurons and Transfected Cells
Macica C, Kaczmarek L. Casein Kinase 2 Determines the Voltage Dependence of the Kv3.1 Channel in Auditory Neurons and Transfected Cells. Journal Of Neuroscience 2001, 21: 1160-1168. PMID: 11160386, PMCID: PMC6762230, DOI: 10.1523/jneurosci.21-04-01160.2001.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseAnimalsAuditory PathwaysBinding SitesBrain StemCasein Kinase IICDC2-CDC28 KinasesCHO CellsCricetinaeCyclin-Dependent Kinase 2Cyclin-Dependent KinasesElectric StimulationEnzyme InhibitorsIn Vitro TechniquesMembrane PotentialsNeuronsNeuropeptidesPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Voltage-GatedPrecipitin TestsProtein Kinase CProtein Serine-Threonine KinasesRatsShaw Potassium ChannelsTetradecanoylphorbol AcetateTransfectionConceptsCasein kinase 2Kinase 2Casein kinase IIProtein kinase CKv3.1 channelsChinese hamster ovary cellsHamster ovary cellsConstitutive phosphorylationPhosphatase treatmentKinase IIKinase CTransfected CellsVoltage-dependent activationOvary cellsWhole-cell conductancePhosphorylationPotassium channelsRectifier channelsBiophysical characteristicsInactivationKv3.1 potassium channelVoltage dependenceActivationKv3.1Patch-clamp recordings
2000
Modification of delayed rectifier potassium currents by the Kv9.1 potassium channel subunit
Richardson F, Kaczmarek L. Modification of delayed rectifier potassium currents by the Kv9.1 potassium channel subunit. Hearing Research 2000, 147: 21-30. PMID: 10962170, DOI: 10.1016/s0378-5955(00)00117-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory PathwaysComputer SimulationDelayed Rectifier Potassium ChannelsEvoked Potentials, AuditoryFemaleHumansIn Vitro TechniquesMembrane PotentialsModels, NeurologicalNeuronsOocytesPotassium ChannelsPotassium Channels, Voltage-GatedRatsRecombinant ProteinsShab Potassium ChannelsXenopus laevisConceptsRectifier potassium currentPotassium channel subunitsChannel subunitsPotassium currentInward currentsInhibition of firingHigh-frequency stimulationVariety of neuronsPotassium channel alpha subunitChannel alpha subunitFrequency stimulationAuditory pathwayInferior colliculusSustained depolarizationAction potentialsModel neuronsFiring patternsKv9.1NeuronsPotassium channelsAmplitude of currentsKv2.1Sound stimuliRate of activationTetraethyl ammonium ions
1998
High-frequency firing helps replenish the readily releasable pool of synaptic vesicles
Wang L, Kaczmarek L. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 1998, 394: 384-388. PMID: 9690475, DOI: 10.1038/28645.Peer-Reviewed Original ResearchConceptsReleasable poolPotassium channel blocker tetraethylammoniumChannel blocker Cd2Synaptic vesiclesPresynaptic action potentialHigh-frequency stimulationVoltage-gated Ca2Short-term synaptic depressionCentral nervous systemPatch-clamp recordingsHigh-frequency firingGiant synapsesPostsynaptic mechanismsBuffer EGTAMouse auditoryBlocker tetraethylammoniumSynaptic activitySynaptic depressionPresynaptic terminalsNervous systemAction potentialsRate of replenishmentSynapsesCa2Key signal