Featured Publications
Mechanical forces drive a reorientation cascade leading to biofilm self-patterning
Nijjer J, Li C, Zhang Q, Lu H, Zhang S, Yan J. Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nature Communications 2021, 12: 6632. PMID: 34789754, PMCID: PMC8599862, DOI: 10.1038/s41467-021-26869-6.Peer-Reviewed Original ResearchConceptsVibrio cholerae biofilmsSurface-attached aggregatesBacterial communitiesCell-surface interactionsDevelopmental processesBiofilm developmentBacterial cellsCell reorientationExtracellular matrixNonadherent mutantsDifferential growthBacterial biofilmsMechanical forcesBiofilmsBacterial growthDifferential orderingCellsGrowthMutantsLarge collectionMorphogenesis and cell ordering in confined bacterial biofilms
Zhang Q, Li J, Nijjer J, Lu H, Kothari M, Alert R, Cohen T, Yan J. Morphogenesis and cell ordering in confined bacterial biofilms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2107107118. PMID: 34330824, PMCID: PMC8346881, DOI: 10.1073/pnas.2107107118.Peer-Reviewed Original ResearchConceptsInherent developmental programsBiofilm-dwelling cellsBiofilm-forming speciesSingle-cell imagingDevelopmental programSpecific matrix componentsCell orderingBiofilm developmentSpherical biofilmsBacterial cellsCell communityExtracellular matrixBiofilm morphologyBacterial biofilmsBiophysical mechanismsMatrix componentsHost tissuesBiofilmsBiofilm growthStiff gelsCellsMorphogenesisMutagenesisSpeciesVibrio
2023
Vibrio cholerae biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization
Huang X, Nero T, Weerasekera R, Matej K, Hinbest A, Jiang Z, Lee R, Wu L, Chak C, Nijjer J, Gibaldi I, Yang H, Gamble N, Ng W, Malaker S, Sumigray K, Olson R, Yan J. Vibrio cholerae biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization. Nature Communications 2023, 14: 2104. PMID: 37055389, PMCID: PMC10102183, DOI: 10.1038/s41467-023-37660-0.Peer-Reviewed Original ResearchConceptsBiofilm matrix exopolysaccharideFacilitate host colonizationVibrio cholerae biofilmsΒ-propeller domainMatrix exopolysaccharideModular domainsHost colonizationRedundant rolesDistinct functionsAbiotic surfacesAdhesive proteinsHost surfaceHuman pathogensVibrio choleraeAdhesinsBacterial biofilmsHost tissuesColonization modelColonizationBAP1BiofilmsPathogensAntibiotic resistanceRBMCDomainNew Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology
Tai J, Ferrell M, Yan J, Waters C. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. Advances In Experimental Medicine And Biology 2023, 1404: 17-39. PMID: 36792869, PMCID: PMC10726288, DOI: 10.1007/978-3-031-22997-8_2.Peer-Reviewed Original ResearchConceptsV. cholerae biofilmsBacterial signal transduction networkSignal transduction networksBiofilm formationVibrio cholerae biofilmsKey model systemV. choleraeEcological roleMicrobial ecologyTransduction networksBiofilm maturationEnvironmental survivalCholera pathogenesisMolecular biophysicsRegulatory systemVibrio choleraeEl Tor biotypeBacterial surface attachmentRecent insightsModel systemBiofilmsLife cycleSurface attachmentCholeraeCentral functionMechanical Characterization and Single‐Cell Imaging of Bacterial Biofilms
Moreau A, Mukherjee S, Yan J. Mechanical Characterization and Single‐Cell Imaging of Bacterial Biofilms. Israel Journal Of Chemistry 2023, 63 DOI: 10.1002/ijch.202200075.Peer-Reviewed Original Research
2022
Molecular Mechanism of Vibrio cholerae biofilm adhesion
Weerasekera R, Hinbest A, Nero T, Huang X, Yan J, Olson R. Molecular Mechanism of Vibrio cholerae biofilm adhesion. The FASEB Journal 2022, 36 DOI: 10.1096/fasebj.2022.36.s1.l7499.Peer-Reviewed Original ResearchΒ-prism domainV. cholerae biofilmsBiofilm matrixAbiotic surfacesCommunity of microorganismsComplex N-glycansΒ-propeller domainHost colonizationSequence identityAdhesion proteinsDistinct functionsMolecular mechanismsN-glycansBacterial cellsFunctional assaysHost surfaceVirulence factorsVibrio choleraeProteinMain proteinsV. choleraeSpecific adhesion moleculesBiofilmsBAP1Cholerae
2021
Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces
Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Frontiers In Microbiology 2021, 12: 686793. PMID: 34305846, PMCID: PMC8295476, DOI: 10.3389/fmicb.2021.686793.Peer-Reviewed Original Research
2020
Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates
Fei C, Mao S, Yan J, Alert R, Stone H, Bassler B, Wingreen N, Košmrlj A. Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7622-7632. PMID: 32193350, PMCID: PMC7148565, DOI: 10.1073/pnas.1919607117.Peer-Reviewed Original ResearchConceptsBiofilm matrix productionBiofilm morphologyBacterial biofilmsAvailability of nutrientsDistinct spatiotemporal patternsImportant physiological consequencesAgar substrateMatrix productionMechanistic insightsPhysiological consequencesBiofilmsSoft substratesSimilar morphologyDiffusion of nutrientsPattern formation processNutrientsBasic mechanismsAgar concentrationEukaryotesMorphological patternsMorphogenesisFundamental determinantsOrganismsGrowthVibrio
2019
Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms
Yan J, Bassler B. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host & Microbe 2019, 26: 15-21. PMID: 31295420, PMCID: PMC6629468, DOI: 10.1016/j.chom.2019.06.002.Peer-Reviewed Original ResearchConceptsSurface-associated bacterial communitiesSingle-cell resolutionBiofilm formation processBiofilm resilienceBacterial communitiesPersister cellsAntibiotic toleranceBacterial toleranceBacterial biofilmsBiofilmsBacterial recurrenceToleranceAntibiotic resistanceRecent progressPersistencePhenotypeBiofilm eradicationNew strategyCommunityCellsHarmful roleMechanical instability and interfacial energy drive biofilm morphogenesis
Yan J, Fei C, Mao S, Moreau A, Wingreen NS, Košmrlj A, Stone HA, Bassler BL. Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife 2019, 8: e43920. PMID: 30848725, PMCID: PMC6453567, DOI: 10.7554/elife.43920.Peer-Reviewed Original ResearchConceptsSurface-attached bacterial communityBiofilm morphogenesisMorphogenesis programHigher organismsBiofilm expansionDiversity of morphologiesBacterial communitiesBiofilm surface morphologyRegulatory componentsBiofilm formationBacterial biofilmsModel systemEssential constituentBiofilmsMorphogenesisMutagenesisQuantitative image analysisOrganismsDiversityVibrio
2018
Verticalization of bacterial biofilms
Beroz F, Yan J, Meir Y, Sabass B, Stone H, Bassler B, Wingreen N. Verticalization of bacterial biofilms. Nature Physics 2018, 14: 954-960. PMID: 30906420, PMCID: PMC6426328, DOI: 10.1038/s41567-018-0170-4.Peer-Reviewed Original ResearchSingle-cell resolutionCommunities of bacteriaRod-shaped bacteriaFounder cellsThree-dimensional structureCell divisionBiofilm developmentFlat biofilmsCell growthShort cellsCell lengthLong cellsCellular scaleBacterial biofilmsBiofilm clustersBiofilmsCellsBacteriaEffective surface pressureSuch changesDivisionGrowth
2017
Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion
Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications 2017, 8: 327. PMID: 28835649, PMCID: PMC5569112, DOI: 10.1038/s41467-017-00401-1.Peer-Reviewed Original ResearchConceptsBiofilm-forming bacterial speciesSurface-attached communitiesVibrio choleraeActive cell growthModel organismsMatrix-producing cellsBacterial lifeNutrient uptakeEnvironmental perturbationsBacterial speciesBacterial cellsPlanktonic cellsSubmerged biofilmsExtracellular matrixCell growthMatrix productionOsmotic pressureBiofilm growthBiofilmsCholeraeCellsPhysical exclusionMatrix crosslinkingOsmotic swellingGrowthFlow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms
Nadell CD, Ricaurte D, Yan J, Drescher K, Bassler BL. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. ELife 2017, 6: e21855. PMID: 28084994, PMCID: PMC5283829, DOI: 10.7554/elife.21855.Peer-Reviewed Original ResearchConceptsMatrix mutantsWild-type cellsMicrobial communitiesMatrix producersEvolutionary stabilityNon-producing strainsMatrix organizationRelative abundanceExtracellular matrixMatrix secretionMatrix productionMutantsSimple flow regimesInitial frequencyBacteriaNatural environmentBiofilmsPseudomonas aeruginosaAbundanceCompetitive dynamicsPseudomonasSpatial competitionSpatial structureCompetitionPotential explanation
2016
Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging
Yan J, Sharo AG, Stone HA, Wingreen NS, Bassler BL. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e5337-e5343. PMID: 27555592, PMCID: PMC5018804, DOI: 10.1073/pnas.1611494113.Peer-Reviewed Original ResearchConceptsV. cholerae biofilmsSingle-cell live imagingSurface-associated bacterial communitiesVibrio cholerae biofilmsSingle-cell technologiesSingle founder cellRod-shaped bacteriaFounder cellsSingle geneBacterial communitiesLive imagingBiofilm architectureBiofilm componentsBiofilm structureCell heterogeneityIndividual cellsMatrix labelingMature biofilmsArt microscopy techniquesCompetition analysisBiofilmsSingle-cell resolution imagingGenesGrowth programCells