2021
Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells
Zhao H, Liu L, Yu N, Zhu Y, Mei L, Chen J, Liang C. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells. Journal Of Neurophysiology 2021, 127: 313-327. PMID: 34907797, PMCID: PMC8759971, DOI: 10.1152/jn.00468.2021.Peer-Reviewed Original ResearchConceptsOuter hair cellsActive cochlear amplificationCochlear efferent systemDistortion product otoacoustic emissionsEfferent systemEfferent pathwaysHearing sensitivityMedial olivocochlear efferent fibersPresynaptic vesicular acetylcholine transportersGap junctionsOlivocochlear efferent fibersHair cellsApplication of acetylcholineCochlear supporting cellsProtection of hearingVesicular acetylcholine transporterActive cochlear amplifierCochlear amplificationPostsynaptic ACh receptorsProduct otoacoustic emissionsMOC efferent systemHair cell activityEfferent nervesEfferent inhibitionEfferent fibers
2017
A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones R, Zhao H. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiology Of Disease 2017, 108: 195-203. PMID: 28823936, PMCID: PMC5675824, DOI: 10.1016/j.nbd.2017.08.002.Peer-Reviewed Original ResearchConceptsCochlear lateral wallEndocochlear potentialHearing lossGap junctional functionDeafness mechanismLateral wallHeterozygous miceCx30 mutationsHair cell degenerationHomozygous knockout miceJunctional functionHeterozygous mouse modelGap junctionsOrgan of CortiSame gap junctional plaquesEP reductionFrequent causePathological changesMouse modelKnockout miceReceptor currentsCell degenerationNormal hearingHeterozygous mutationsMiceHypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency
Zhao H. Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency. Frontiers In Molecular Neuroscience 2017, 10: 162. PMID: 28603488, PMCID: PMC5445178, DOI: 10.3389/fnmol.2017.00162.Peer-Reviewed Original ResearchHearing lossDeafness mechanismCx26 deficiencyInner ear gap junctionsHair cell degenerationNonsyndromic hearing lossDisruption of permeabilityCongenital deafnessCell degenerationHair cellsHair cell excitationHereditary deafnessCell excitationConnexin26 MutationsGap junctional channelsGap junctionsDevelopmental disordersDeficiencyDeafnessExtracellular spaceReview articleJunctional channelsDegenerationProgressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing
Zong L, Chen J, Zhu Y, Zhao H. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochemical And Biophysical Research Communications 2017, 489: 223-227. PMID: 28552523, PMCID: PMC5555358, DOI: 10.1016/j.bbrc.2017.05.137.Peer-Reviewed Original ResearchConceptsActive cochlear amplificationHearing lossCochlear amplificationMice ageGap junctionsAge-related hearing lossSignificant hearing lossPostnatal day 25Cochlear gap junctionsAuditory sensory hair cellsSensory hair cellsNonsyndromic hearing lossHigh incidenceOuter pillar cellsDay 25Deiters' cellsConnexin expressionHair cellsConnexin 26Outer hair cell electromotilityHair cell electromotilityPillar cellsPrevious reportsCochleaAge
2016
Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication
Zong L, Zhu Y, Liang R, Zhao H. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Scientific Reports 2016, 6: 19884. PMID: 26814383, PMCID: PMC4728487, DOI: 10.1038/srep19884.Peer-Reviewed Original ResearchConceptsGenetic communicationGap junction channelsGene regulationGene expressionIntercellular transferJunction channelsSmall regulatory RNAsNovel mechanismSpecific cell typesPassage of ionsRegulatory RNAsCellular processesOrgan developmentConnexin mutationsDifferent miRNAsRecipient cellsMiRNAsCell typesNeighboring cellsCell proliferationConnexin expressionImportant roleMiRNA levelsGap junctionsCell lines
2015
Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development
Zhu Y, Zong L, Mei L, Zhao H. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Scientific Reports 2015, 5: 15647. PMID: 26490746, PMCID: PMC4614881, DOI: 10.1038/srep15647.Peer-Reviewed Original ResearchConceptsGenetic communicationOrgan developmentInner ear gap junctionsIntercellular communicationGap junctionsCochlear developmentInner ear developmentNon-coding RNAsCx26 knockout miceEar developmentGene expressionIntercellular transferCx26 deficiencyMiR-96 expressionCx30 deficiencyDevelopmental disordersPredominant isoformCell proliferationDeletionCx26Critical roleKnockout miceExpressionMiRNAsMicroRNAsPannexin 1 deficiency can induce hearing loss
Zhao H, Zhu Y, Liang C, Chen J. Pannexin 1 deficiency can induce hearing loss. Biochemical And Biophysical Research Communications 2015, 463: 143-147. PMID: 26002464, PMCID: PMC4464954, DOI: 10.1016/j.bbrc.2015.05.049.Peer-Reviewed Original ResearchConceptsDistortion product otoacoustic emissionsHearing lossAuditory brainstem response recordingsProgressive hearing lossProduct otoacoustic emissionsHigh incidenceCell degenerationOtoacoustic emissionsGap junction proteinAcoustic stimulationCell apoptotic pathwaysHair cellsResponse recordingsGene mutationsJunction proteinsExtensive expressionCochleaActive cochlear mechanicsGap junctionsApoptotic pathwayDeficiencyHearingCritical roleCochlear mechanics
2013
Active cochlear amplification is dependent on supporting cell gap junctions
Zhu Y, Liang C, Chen J, Zong L, Chen G, Zhao H. Active cochlear amplification is dependent on supporting cell gap junctions. Nature Communications 2013, 4: 1786. PMID: 23653198, PMCID: PMC3675877, DOI: 10.1038/ncomms2806.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory ThresholdCochlear Microphonic PotentialsConnexin 26ConnexinsEvoked Potentials, Auditory, Brain StemGap JunctionsGene DeletionGene TargetingHair Cells, Auditory, OuterHearing LossLabyrinth Supporting CellsMiceMice, KnockoutMolecular Motor ProteinsNonlinear DynamicsOtoacoustic Emissions, SpontaneousSpiral GanglionConceptsActive cochlear amplificationOuter hair cellsCell gap junctionsHearing lossCochlear amplificationHair cellsGap junctionsDistortion product otoacoustic emissionsOuter hair cell electromotilityHair cell electromotilitySevere hearing lossProduct otoacoustic emissionsShorter outer hair cellsHair-bundle movementsOuter pillar cellsLeftward shiftOtoacoustic emissionsAcoustic stimulationDeiters' cellsHearing sensitivityConnexin 26Active cochlear mechanicsNovel findingsPillar cellsBundle movement
2012
ATP activates P2X receptors to mediate gap junctional coupling in the cochlea
Zhu Y, Zhao H. ATP activates P2X receptors to mediate gap junctional coupling in the cochlea. Biochemical And Biophysical Research Communications 2012, 426: 528-532. PMID: 22982314, PMCID: PMC3471361, DOI: 10.1016/j.bbrc.2012.08.119.Peer-Reviewed Original ResearchConceptsP2X receptorsGap junctional couplingCochlear gap junctionsP2Y receptor agonist UTPGap junctionsJunctional couplingP2X receptor antagonistMetabotropic purinergic receptorsReceptor agonist UTPStimulation of ATPPhysiological levelsReceptor antagonistP2Y receptorsPurinergic controlPurinergic receptorsBenzoylbenzoyl-ATPNoise stressReceptorsIonic homeostasisCochleaDisulfonic acidCritical roleIntercellular channelsATPCells
2006
Gap Junctions and Cochlear Homeostasis
Zhao H, Kikuchi T, Ngezahayo A, White T. Gap Junctions and Cochlear Homeostasis. The Journal Of Membrane Biology 2006, 209: 177. PMID: 16773501, PMCID: PMC1609193, DOI: 10.1007/s00232-005-0832-x.Peer-Reviewed Original ResearchConceptsGap junction systemConnexin mutationsHuman deafnessConnective tissue cell gap junction systemEpithelial cell gap junction systemGap junctionsMammalian inner earNon-sensory cellsGap junction networkGap junction functionConnexin genesTransduction processesDifferent connexinsFunctional studiesMutant channelsHereditary deafnessJunction functionSensory cellsCochlear homeostasisMutationsRecycling mechanismCritical roleConnexinsHigh incidenceAnimal models
2005
Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications
Zhao H. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. European Journal Of Neuroscience 2005, 21: 1859-1868. PMID: 15869481, PMCID: PMC2548270, DOI: 10.1111/j.1460-9568.2005.04031.x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAffinity LabelsAnimalsAnionsAnti-Inflammatory AgentsCalciumCationsCell CommunicationCell CountCell Membrane PermeabilityCells, CulturedCochleaConnexin 26ConnexinsDose-Response Relationship, DrugEnzyme InhibitorsFluorescent DyesGap JunctionsGlycyrrhetinic AcidGuinea PigsIntracellular MembranesPlatelet Aggregation InhibitorsProadifenPyridoxal PhosphateSpectrometry, FluorescenceTime FactorsConceptsCharge selectivityLarge pore sizeCationic fluorescent dyeIntercellular signalingAnionic dyesDye sizeGap junctionsMetabolic communicationPore sizeMolecule permeabilityMolecular permeabilitySelectivityEnergy moleculesCationic probePassage of ionsFluorescent dyeGap junctional permeabilityMoleculesCochlear sensory epitheliumDyeCochlear gap junctions
2000
Directional rectification of gap junctional voltage gating between Dieters cells in the inner ear of guinea pig
Zhao H. Directional rectification of gap junctional voltage gating between Dieters cells in the inner ear of guinea pig. Neuroscience Letters 2000, 296: 105-108. PMID: 11108992, DOI: 10.1016/s0304-3940(00)01626-8.Peer-Reviewed Original ResearchVoltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels
Zhao H, Santos-Sacchi J. Voltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels. The Journal Of Membrane Biology 2000, 175: 17-24. PMID: 10811964, DOI: 10.1007/s002320001051.Peer-Reviewed Original Research
1998
Effect of Membrane Tension on Gap Junctional Conductance of Supporting Cells in Corti's Organ
Zhao H, Santos-Sacchi J. Effect of Membrane Tension on Gap Junctional Conductance of Supporting Cells in Corti's Organ. The Journal Of General Physiology 1998, 112: 447-455. PMID: 9758863, PMCID: PMC2229429, DOI: 10.1085/jgp.112.4.447.Peer-Reviewed Original ResearchConceptsTurgor pressureInner ear gap junctionsMembrane tensionPositive turgor pressureProtein kinase inhibitorsGap junctionsOsmotic pressure regulationPipette pressureSupporting cellsInner earMicroM HCochlear homeostasisGap junctional conductanceKinase inhibitorsMechanical forcesCell sizeJunctional conductance