Arthur Horwich, MD

Sterling Professor of Genetics and Professor of Pediatrics; Investigator HHMI

Departments & Organizations

Genetics: Horwich Lab

Interdepartmental Neuroscience Program

Kavli Institute for Neuroscience

Yale Combined Program in the Biological and Biomedical Sciences (BBS): Biochemistry, Quantitative Biology, Biophysics and Structural Biology (BQBS) | Molecular Cell Biology, Genetics and Development | Neuroscience: Neural Disorders


Horwich received undergraduate and M.D. degrees from Brown University, trained in Pediatrics at Yale, was then a postdoctoral fellow first at Salk Institute in the Tumor Virology Laboratory, and then in Genetics at Yale, then joined the Yale faculty. His work was initially involved with protein import into mitochondria and resulted in discovery of a "folding machine" inside mitochondria, Hsp60. He has used genetic, biochemical, and biophysical tools to study the mechanism of action of these ring shaped so-called chaperonin machines that provide essential assistance to protein folding in many cellular compartments. More recently he has focused on neurodegenerative disease as caused by protein misfolding, seeking to understand how misfolded SOD1 enzyme in the cytosol of motor neurons leads to one form of ALS. His lab is modeling mutant SOD1-linked ALS in mice transgenic for a mutant SOD1-YFP, the YFP moiety offering a fluorescent reporter of the mutant protein and “tag” for biochemical studies. The transgenic mutant strain presents YFP fluorescent aggregates in motor neurons by the time of weaning, develops muscle weakness, and paralyzes by 6 months of age. By contrast, a wtSOD1-YFP transgenic strain with the same amount of total SOD1-YFP protein in spinal cord remains asymptomatic even after two years, and the cord remains free of aggregates. The nature of injury to the motor system of the mutant mice is under study, particularly at the level of lower motor neurons, examining their dendritic arbors, cell bodies, axons, and neuromuscular junctions, using both morphologic and electrophysiologic approaches. What is the most immediate target of the misfolded protein, and at what level in the motor system? Notably, endogenous molecular chaperones, Hsc70 and Hsp110, associate with the misfolded protein – they are obviously not able to fully protect the system. Can their overexpression alter the progression of motor dysfunction?

Education & Training

MD Brown University (1975)
Intern and Resident Yale School of Medicine

Honors & Recognition

  • Honorary Doctorate of Medical ScienceBrown University (2014)

  • Herbert Tabor Research Award of the ASBMB (2013)

  • Shaw Prize in Life Science and Medicine (2012)

  • Massry PrizeMassry Foundation (2011)

  • Lasker Award for Basic Medical ResearchAlbert and Mary Lasker Foundation (2011)

  • National Lecture Biophysical Society 2011 (2011)

  • NIH Director's Lecture (2010)

  • Rosenstiel Award for Distinguished Work in Basic Medical Science (2008)

  • Louisa Gross Horwitz Prize (2008)

  • Institute of Medicine (2008)

  • Wiley Prize in Biomedical Sciences (2007)

  • Stein and Moore Award, Protein Society (2006)

  • Gairdner International Award (2004)

  • National Academy of Sciences (2003)

  • Hans Neurath Award, Protein Society (2001)

Edit this profile