Skip to Main Content

Residency Research Opportunities

Program Application

Download Application


Clinician Scientist Track

Clinician Scientist Track: Any resident interested in engaging in research is encouraged to apply to the Department’s Clinical Scientist Track (CST). Each year, between one and five CA2 residents are selected for a 1-6-month block of research during their CA3 year, under the guidance of a mentor within or outside the Department. CST residents typically perform their research in clinical areas of the medical center (including the Operating Rooms, Intensive Care Units, or the Clinical Research Center) and/or a research laboratory. Creativity is encouraged. The goal of the CST is to support resident research projects that have great potential to generate impactful data, to provide a meaningful research experience, and to help launch and enhance careers in academic anesthesiology. CST committee members, who are clinical and research faculty in the Department, are always available to assist in study design, implementation, and analysis.


Vascular Cardiovascular Neuroscience Regional/Pain Environmental Obstetrics Education


Studies in vascular tissue mechanics showed several decades ago that the bulk of the mechanical properties of arteries derived not from the cellular components, but from the collagen- and elastin-based extracellular matrix. Using this principle, we have utilized banked human vascular smooth muscle cells to engineer implantable arteries. Our approach to vascular engineering involves seeding allogeneic vascular cells onto a degradable substrate to culture vascular tissues in a biomimetic bioreactor. After a period of 8-10 weeks, engineered tissues are then decellularized to produce an engineered extracellular matrix-based graft. The advantage of using allogeneic cells for graft production is that no biopsy need be harvested from the patient, and no patient-specific culture time is required. The acellular grafts can be stored for 6 months and are available at time of patient need. These grafts are being tested in 3, Phase I clinical trials in Europe and in the US. These tissue engineered vascular grafts have been tested most extensively as hemodialysis access in patients who are not candidates for autogenous arteriovenous fistula creation, with the first patient being implanted in December 2012 in Poland. Since that time, a total of 60 patients have been implanted with engineered, acellular grafts for dialysis access, 40 patients in Europe and 20 in the US. Patients utilize the grafts for dialysis access as soon as 4-8 weeks after graft implantation. This early experience supports the potential utility of this novel tissue engineered vascular graft to provide vascular access for hemodialysis.

The decellularization approach has also allowed us to generate scaffolds to support whole lung regeneration. Using rat, porcine and human sources of organs, lungs have been subjected to a range of decellularization procedures, with the goal of removing a maximal amount of cellular material while retaining matrix constituents. Next-generation proteomics approaches have shown that gentle decellularization protocols result in near-native retention of key matrix molecules involved in cell adhesion, including proteoglycans and glycoproteins. Repopulation of the acellular lung matrix with mixed populations of neonatal lung epithelial cells results in regio-specific epithelial seeding in correct anatomic locations. Survival and differentiation of lung epithelium is enhanced by culture in a biomimetic bioreactor that is designed to mimic some aspects of the fetal lung environment, including vascular perfusion and liquid ventilation. Current challenges involve the production of a uniformly recellularized scaffold within the vasculature, in order to shield blood elements from the collagenous matrix which can stimulate clot formation. In addition, we have developed methods to quantify barrier function of acellular and repopulated matrix, in order to predict functional gas exchange in vivo. Faculty Contact: Laura Niklasson Resident or Fellow Role: Participate in laboratory studies in biomedical engineering.


Currently, we are engaged in an industry sponsored clinical trial that seeks to determine whether reversal of residual neuromuscular blockade following isolated CABG will contribute to shorter times to extubation in the CTICU. Faculty Contact: Amit Bardia or Robert Schonberger Resident or Fellow Role: Participate as co-investigator in the above.

The perioperative period is increasingly recognized as an opportunity to identify undertreated cardiovascular risk factors. Anesthesiologists may have an opportunity to impact population health by intervening with surgical patients so that such risk factors receive appropriate follow-up and treatment. Faculty Contact: Robert Schonberger Resident or Fellow Role: Participate as co-investigator in the above.

My research work involves clinical, laboratory, and computer modeling projects within the broad areas of integrative cardiopulmonary monitoring, systemic consequences of perioperative lung “metabolotrauma” (how small molecules are added or extracted from the blood during lung transit), and development of novel neuromuscular blocking drugs and reversal agents. Faculty Contact: Paul Heerdt Resident or Fellow Role: Participate in rodent experiments of above.


At present, our group is looking at a variety of monitors including cerebral oximetry, tissue oximetry, and processed EEG to understand the association between regional blood flow, depth of anesthesia, and outcomes. Faculty Contact: LingZhong Meng Resident or Fellow Role: Participate as co-investigator in the above.

Characterizing the hemodynamic effects of Yoda1 in rodents: Resident or Fellow Role: Participate in analysis of existing datasets, as well as data collection in human and animal models of these areas. Piezo1 ion channels are mechanotransduction proteins that exists in several cell types including endothelial cells, renal tubular cells, primary (immotile) cilia and red blood cells. Impaired function of the Piezo1 gene (biallelic mutations) in humans is associated with lymphedema. Recent studies have shown that the Piezo1 ion channel controls blood pressure; and mice deficient for Piezo1 in the endothelium develop mild hypertension (systolic blood pressure increases from 120 mmHg to 135mmHg). Yoda1 is a synthetic Piezo1 channel activator which when applied to vessels can induce vasorelaxation in a dose-dependent manner in vitro. The role of Piezo1 ion channels on blood pressure and hemodynamic parameters in general has never before been investigated in a live animal. We are conducting a series new pilot experiments to explore and characterize the role of Piezo1 on hemodynamic parameters in vivo. Faculty Contact: Helene Beneviste

Resident or Fellow Role: Participate in rodent experiments of above.

The effects of dexmedetomidine and inhalational anesthetics on cerebrospinal fluid transport and water diffusivity in the rodent brain: The glymphatic pathway transports cerebrospinal fluid (CSF) through the brain thereby facilitating waste removal. A unique aspect of this pathway is that its function depends on the brain’s state of consciousness and is associated with norepinephrine (NE) activity. A current view is that all anesthetics will increase glymphatic transport by inducing unconsciousness. This implies that the effect of anesthetics on glymphatic transport should be independent of their mechanism of action, as long as they induce unconsciousness. We are testing this hypothesis by comparing the effects of dexmedetomidine (DEXM), which lowers NE, and inhalational agents such as ISO and SEVO, which does not. Faculty Contact: Helene Beneviste Resident or Fellow Role: Participate in rodent experiments of above.

An evaluation of the Prevalence and the Neuro-cognitive Effects of Chronic and Acute Sleep Deprivation among Anesthesia Residents at YNHH. The aim of the study is to evaluate the extent and the depth of fatigue on anesthesia residents according to their different type of calls and tasks. Faculty Contact: Jean Charchaflieh Resident or Fellow Role: Participate as co-investigator in the above.


My major research areas are roles of local anesthetic adjuvants/additives in peripheral nerve blocks. Specifically, I am working on optimization of current clinical protocols and use adjuvants to improve acute pain management perioperatively and to potentially minimize persistent postsurgical pain (PPP)/chronic pain. The major peripheral nerve blocks involved in my studies are adductor canal nerve blocks for total knee arthroplasty, thoracic paravertebral blocks and fascia layer blocks such as TAP/PEC/QL for rib fractures, chest and abdomen procedures, and femoral nerve blocks for elderly hip fracture patients. Faculty Contact: Jinlei Li Resident or Fellow Role: Participate in observational and interventional clinical studies in regional anesthesia.


The choices that we make in the OR carry important environmental effects. This program of research looks at the environmental consequences of different anesthetic choices and ways to modify behavior to lessen these impacts. Faculty Contact : Jodi Sherman Resident or Fellow Role: Participate as co-investigator in the above.


Non-invasive monitoring has the potential to guide intraoperative therapies by identifying early signs of hypovolemia, and changes in cardiac output, vascular resistance, and venous capacitance. Using both clinical and laboratory models, this group seeks to understand how best to apply such monitoring to improve patient care. Faculty Contact: Aymen Alian Resident or Fellow Role: Participate as co-investigator in the above.


My research covers the integration of technology into teaching and patient care, as well as looking at educational outcomes using these tools. I am also active in Global Health issues and am the Chair Designee for the SEA Global Health Outreach Committee. I have led the integration of the Flipped Classroom model for Anesthesia Resident Training at Yale. Faculty Contact: Viji Kurup Resident or Fellow Role: Participate as co-investigator in educational interventions in the department.

As the population ages, anesthesiologists are increasingly asked to care for the elderly and extreme elderly with little guidance as to the changes in pharmacokinetics and pharmacodynamics that may accompany extremes of age. Our group seeks to identify best practices for care of the elderly patients across the spectrum of anesthetic care. Faculty Contact: Shamsuddin Akhtar Resident or Fellow Role: Participate as co-investigator in the above.

For more information, contact: Robert Schonberger at