Whole Hemisphere Autoradiography in Alcoholism Research

Jari Tiihonen
Department of Forensic Psychiatry
University of Kuopio, Finland
Cloninger’s model of alcoholism

Temperament
- worrier (anxiety-prone)
- social dependency (dopaminergic deficit)

Character
- deliberate cautious friend
- emphatic compassionate
- impulsive risk-taking aloof
- antisocial vengeful

Alcoholism
- Type 1 alcoholic- 80%
 - adult onset
 - alternating binges
 - and abstinence
- Type 2 alcoholic-20%
 - teenage onset
 - no desire to quit
 - recurrent crime and violence

Cloninger, 1995
Type 1 Alcoholism

- Socially dependent character – co-operativeness
 - Emphatic, compassionate
- Social anxiety
 - Low “novelty seeking” (deliberate, rigid, orderly)
 - High “harm avoidance” (worried, fearful, pessimistic)
 - Gradual late onset of drinking
- “Parkinsonian personality”
Type 2 Alcoholism

• Antisocial character – Unco-operativeness
 – Lack of empathy, social tolerance, compassion, moral principles
• → hostility and depression
• → aggression and suicide
• Availability of tryptophan ↓ (Virkkunen et al. 1994)
• 5-HT in platelets ↓ (Benkefat et al. 1991)
• Low 5-HIAA in CSF (Kruesi et al. 1990)
Receptor visualization techniques

- In vivo: PET, SPET
- In vitro: in situ-hybridization histochemistry, ligand-binding essays, autoradiography
- Ex-vivo
DA D₁ receptors in human alcoholics

- no studies to date
- DA D₁ receptor protein ↑ in NAC of metamphetamine users
- No change in cocaine or heroine users
 - Worsley et al. 2000
- Animal data controversial

Erkki Tupala, MD, PhD
DA D_3 receptors in human alcoholics

- no studies to date
- NAC DA D_3 ↑ in cocaine overdose victims
- no change in delirium victims
 - Staley and Mash 1996
- animal data controversial
 - McBride 1997
Striatal D_2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence (Hietala et al. Psychopharmacology 1994)

- $[^{11}C]$raclopride in PET
- 8 healthy controls (mean age 36.3)
- 9 unclassified (non-violent) alcoholics
 - abstinence 1-68 weeks (mean 20)
- Striatal D_2 receptor ratio (B_{max}/K_d) 19.7% lower ($P=0.004$)
- no correlation between D_2 receptors and abstinence period
Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics (Tiihonen J et al. Nat Med 1995)

- $[^{123}\text{I}]$-CIT in SPET
- 19 healthy controls (mean age 34.3)
- 10 type 1 alcoholics (mean age 44.6)
 - abstinence > 2 months
 - striatal DAT ratio 25% lower (P<0.001)
- 19 type 2 alcoholics (mean age 30.5)
 - abstinence > 2 months
 - DAT ratio 8.5% higher (P<0.10)

Erkki Tupala, MD, PhD

- $[^{11}\text{C}]d\text{TMP}$ and $[^{11}\text{C}]\text{raclopride}$ in PET
- 17 healthy controls (mean age 47)
- 10 unclassified alcoholics (mean age 44)
 - inclusion: onset<25, exclusion: binges
 - abstinence 52 ± 48 days
- D_2 receptor ratio 22% lower
- no differences in DAT ratio ($n=5$)
- no correlation to abstinence

Erkki Tupala, MD, PhD
Dopamine transporter and D_2-receptor density in late onset alcoholism

(Repo et al. Psychopharmacology 1999)

- $[^{123}\text{I}]$PE2I and $[^{123}\text{I}]$epidepride in SPET
- 9 controls (mean age 46.3)
- 9 type 1 alcoholics (mean age 51.1)
 - abstinence 7-165 days (mean 43.5)
- striatal DAT ratio 21% lower ($P<0.005$)
 - no correlation between abstinence time
- no differences in D_2-receptor ratios

Erkki Tupala, MD, PhD
Dopamine transporters increase in human brain after alcohol withdrawal
(Laine P et al. Mol Psychiatry 1999)

• $[^{123}\text{I}]\
\text{-CIT}$ in SPET
• 27 controls (mean age 37.7) and 27 unclassified alcoholics (mean age 42.2)
• DAT ratio 10% lower before detoxification
• DAT increase 14% after four week abstinence ($P<0.0001$)
• >50% committed criminal offences

Erkki Tupala, MD, PhD

• (+)[11C]dihydroxytetrabenazine in PET
• labels VMAT2
• 7 controls (mean age 57)
• 7 unclassified alcoholics (mean age 52)
 – abstinence period > 2 months
• reduced binding in the caudate nucleus (8.6%; P<0.05) and putamen (6.2%)
Striatal presynaptic dopamine function measured with PET (Tiihonen et al. Mol Psychiatry 1998)

- 6-$[^{18}\text{F}]-\text{FDOPA}$ in PET
- 8 controls (mean age 44.2)
- 10 type 1 alcoholics (mean age 47.7)
 - abstinence 3 days - 42 mo (mean 137.9 d)
- FDOPA uptake ad 28% higher (P=0.008)
- compensatory to low postsynaptic function?

Erkki Tupala, MD, PhD
Pros and Cons - Autoradiography

PROS
- High resolution
- Quantifiable
- Pharmacological study easy
- Receptor discrimination
- WHA-whole hemisphere

CONS
- Postmortem/in vitro
- Post- and antemortem effects
- Normally drug treated
- Low (?) availability
- Diagnostics
Pros and Cons - PET and SPET

• **PROS**
 - In vivo
 - Behavior or disease state vs. binding
 - Quantifiable
 - Retestable

• **CONS**
 - Lower resolution
 - Ligand distribution, degradation
 - Pharmacological studies not easy
 - No (?) receptor discrimination
 - Expensive

Erkki Tupala, MD, PhD
Iodinated PE2I binding in brain

Horizontal sections through the level of the basal ganglia.

\[^{123}\text{I}]\text{PE2I}\) with SPET on a 26-year-old healthy male at 70 min after injection (150 MBq).

\[^{125}\text{I}]\text{PE2I}\) with postmortem whole hemisphere autoradiography on a 36-year-old control subject.

Erkki Tupala, MD, PhD
Brain sampling

- Dept. Of Forensic Medicine, University of Oulu and Kuopio
- left hemispheres frozen to -75°C
- medical records: cause of death, previous diseases, medical treatments
- postmortem blood chemistry for drugs incl. etOH

Erkki Tupala, MD, PhD
Autoradiography

- 125I- and 3H- labeled ligands
- Competing substance
- Incubation, normally 1 h
- Washing - unbound ligand
- Air-drying
- Exposure to radiation-sensitive film (2d-12 wk)

Erkki Tupala, MD, PhD
Image analysis

- Computerized densitometry
- Scanner
- Adobe Photoshop, Scionimage for Windows
- Commercial calibration scales
- Double-Blind
- Cresyl-violent staining - anatomical correlate

Erkki Tupala, MD, PhD
Dopamine Transporters in WHA using $[^{125}\text{I}]\text{PE2I}$

Control

+ 10 µM GBR 12909

Density
Low
High

Erkki Tupala, MD, PhD
Diagnostics

- DG by two physicians independently
- Mental disorders according to DSM III-R
- Alcoholic subtypes according to Cloninger (1981)
- Kappa coefficient 0.9 regarding alcoholism
- Other CNS disorders ruled out
- CNS medications excluded (Benzodiazepines)

Erkki Tupala, MD, PhD
Study subjects

- White caucasians
- 10 controls (8 males, 2 females; age 53.5)
- 9 type 1 alcoholics (8 males, 1 female; age 52.7)
- 8 type 2 alcoholics (males; age 34.6)
- postmortem interval < 24 h
- alcoholics intoxicated at the time of death (-one type 1 and two type 2 alcoholics)
- 1 control intoxicated at the time of death
Cryosectioning

- Dept. of Pharmacology and Toxicology, University of Kuopio, Finland
- CMC block
- Canto-meatal cutting plane
- Heavy-duty cryomicrotome
- 100 μm sections to gelatinized glass plates
- Air drying and storage at -25 °C before use

Erkki Tupala, MD, PhD
Dopamine Transporter Density in Nucleus Accumbens of Type 1 alcoholics

(Tupala et al. Lancet 2000)

- 7 type 1 alcoholics: (6 men, mean age 50.6 years)
- 7 controls: (5 men, mean age 54.3 years)
- $^{[125]}$IPE2I and \mathcal{M}-CIT in WHA
- DAT binding 35% lower in nucleus accumbens of the type 1 alcoholic group

Erkki Tupala, MD, PhD
Dopamine transporters in nucleus accumbens

Erkki Tupala, MD, PhD
Dopamine D$_2$/D$_3$-receptor and Transporter Densities in Nucleus Accumbens and Amygdala of Type 1 and 2 Alcoholics (Tupala et al. Mol Psychiatry 2001)

- 9 type 1 alcoholics, 7 men, mean age 52.9 years
- 8 type 2 alcoholics, all men, mean age 34.6 years
- 10 controls, 8 men, mean age 53.5 years
- $[^{125}\text{I}]\text{PE2I (}\sim\text{-CIT})$ and $[^{125}\text{I}]$epidepride (cis-flupenthixol)
- D$_2$/D$_3$ receptors 25% ↓ in nucleus accumbens and 41% ↓ in amygdala among type 1 alcoholics
- type 2 alcoholics at the same level with controls

Erkki Tupala, MD, PhD
Dopamine D$_2$/D$_3$ Receptors in Nucleus Accumbens and Amygdala

Erkki Tupala, MD, PhD
Dopamine D_1 and D_3 Receptors in Alcoholics

- 9 type 1 alcoholics, 7 men, mean age 52.9 years
- 8 type 2 alcoholics, all men, mean age 34.6 years
- 10 controls, 8 men, mean age 53.5 years
- $[^3H]$SCH 23390 (Cis-flupenthixol)
- $[^3H]$PD 128 907 (Raclopride)
- No differences between the groups

Erkki Tupala, MD, PhD
Dopamine Binding Sites in Controls and Type 1 Alcoholics

Erkki Tupala, MD, PhD
RESULTS: In the human cerebral cortex, serotonin transporter binding sites were concentrated in the perigenual anterior cingulate cortex. Substantially sparser serotonin transporter density (up to 35%) was observed in the perigenual anterior cingulate cortex of alcoholic subjects in relation to nonalcoholic comparison subjects. After adjustment for age and postmortem delay, this finding remained statistically significant. CONCLUSIONS: A lower serotonin transporter density among the alcoholic subjects was observed, specifically in the so-called "affect" region, suggesting an association between ethanol addiction and dysfunctional serotonergic neurotransmission in this area.
Autoradiogram Showing [3H]Citalopram Binding

Tuija Mantere, MD
Conclusions

• The results support Cloninger’s model of alcoholism
• DA deficit may be selective to D$_2$ receptor and type 1 alcoholism
• Alcoholics should be classified when DA system is studied/treatment strategies are applied
• Type 1 alcoholics may benefit from drugs that enhance DA activity (partial agonists?)

Erkki Tupala, MD, PhD
Acknowledgements

• Erkki Tupala
• Håkan Hall
• Terttu Särkioja
• Pirjo Halonen
• Kim Bergström
• Jyrki Kuikka
• Pirkko Räsänen
• Tuija Mantere

• Esa Korpi
• Jarmo Hietala
• Jukka Hiltunen
• Jouko Vepsäläinen
• Synnöve Eriksson
• Eila Hyvärinen
• Pirjo Hänninnen
• Kari Karkola