Activation neuroimaging studies
- GABA_A receptor function
- alcohol cues
in alcoholism

Professor David Nutt
Psychopharmacology Unit, University of Bristol.
MRC Clinical Sciences Centre, London.
Study 1. GABA A receptor sensitivity

Hypothesis
• Alcoholics would have reduced GABA-A receptor sensitivity = tolerance

Test = challenge with midazolam – controlling for brain entry and receptor occupation – new PET pk/pd paradigm

- Friston et al 1996 JCBFM
Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control ± s.d [n=10]</th>
<th>Alcoholics ± s.d [n=11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>46.2 ± 8.1</td>
<td>44.45 ± 6.12</td>
</tr>
<tr>
<td>SADQ [10,10]</td>
<td>4.1 ± 5.7</td>
<td>36.5 ± 10.0</td>
</tr>
<tr>
<td>Years of heavy drinking</td>
<td>N/A</td>
<td>20.1 ± 6.1</td>
</tr>
<tr>
<td>SSAI [8,11]</td>
<td>27.4 ± 6.7</td>
<td>32.5 ± 9.4</td>
</tr>
<tr>
<td>STAI [10,11]</td>
<td>32.7 ± 5.8</td>
<td>40.4 ± 15.3</td>
</tr>
<tr>
<td>BDI [10,7]</td>
<td>3.1 ± 2.8</td>
<td>6.3 ± 3.9</td>
</tr>
<tr>
<td>Family history</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Scanned at least 6 weeks after withdrawal
Inject tracer $[^{11}\text{C}]$flumazenil

T=0

PET scan (105 min)
Inject tracer \[^{11}C\text{flumazenil}\]

Infuse midazolam
50\(\mu\)g/kg over 5 min

\(T=0\) \(\leftrightarrow\) \(T=30\text{min}\)

PET scan (105 min)
PET scan (105 min)

Inject tracer [11C]flumazenil

Infuse midazolam 50\,\mu g/kg over 5 min

T=0

\leftrightarrow

T=30\,\text{min}

EEG

saccadic eye movements

blood for midazolam concentration
Whole head time-radioactivity curve for 11C-flumazenil.

- K_1
- k_2

- k2 increases post-midazolam
- $[k_2d]$

- midazolam

- time (secs)
EEG beta activity.

EEG beta activity.

midazolam

time (secs)
Benzodiazepine kinetics.

Plasma midazolam level

betta amplitude

time (secs)
Results.

No differences in
- midazolam levels
- 11C-flumazenil metabolism
- rate constants describing 11C-flumazenil uptake [K_1, k_2, k_{2d}]
- brain receptor occupancy
Brain receptor occupancy by midazolam

Displacement: \(\frac{k_2 d}{k_2} \)

Control
Alcohol dependent
Change in EEG beta activity after midazolam infusion

- EEG beta power
- Minutes after infusion
- Alcohol dependent
- Non-alcohol dependent

Infusion: midazolam 50mcg/kg
Subjective sleep ratings.

controls
alcoholics

midazolam
Saccadic eye movements
Time first able to perform SEMs.

![Bar chart showing the number of subjects who were able to perform SEMs at different times after midazolam administration.](chart.png)
Reduced total EEG sleep time after midazolam

* : \(p < 0.05 \)
Conclusion.

Reduced function of the GABA-BZ receptor in alcohol dependence

- for induced sleep
- but not EEG beta response.

Issues

? due to changes in the subunit profile of the GABA-benzodiazepine receptor

? tolerance or predisposing trait marker
Functional neuroimaging (activation studies) to map the neural circuits associated with addiction

Abstinent alcoholics > 6 weeks
In abstinence-focused program
Imaging of craving

- **PET**
 - $\text{H}_2\text{H}^{15}\text{O}$
 - $^{18}\text{F-FDG}$
- **fMRI**
- **Drug**
 - Cocaine
 - Alcohol
 - Opiate
- **Paradigm** *(individual/generic)*
 - ‘Spontaneous’
 - Cue-induced
 - Visual
 - Auditory
 - Actual drug given
 - Alcohol
 - Cocaine
Cue exposure & craving: our PET protocol – six repetitions

- **H$_2^{15}$O infusion**
- **Image acquisition (90 s)**
- **Stimulus presentation**
- **VAS scales**
Heroin addicts – cue exposure

Region of activation covering left anterior cingulate and medial pre-frontal gyri

All subjects (n=12)

Activation centered on Talairach co-ordinates -10,46,24 mm

Peak t = 4.52 (p<0.005 corrected for multiple comparisons)

Daglish et al 2001
Activation in the left orbitofrontal cortex covaries with opiate craving

- Area of rCBF that co-varies with the composite score (craving & urge to use)
- Subjects who craved during the experiment (n=8)
- Activation centered on Talairach co-ordinates -26, 44, -14 mm
- Peak t = 5.19 (p<0.05 corrected for multiple comparisons)
Subjects

• Alcohol Dependent Group
 – 6 male abstinent (> 6 weeks) alcohol dependent subjects
 – mean age: 41.5 yr
 – SADQ: 31.8 ± 12
 – OCDS: 16.7 ± 3.2
 – ACQ: 144 ± 46

• Control Group
 – 6 male control subjects
 – mean age: 36.8 years
 – SADQ: 2.25 ± 1.9
 – OCDS: 4.8 ± 2.2
 – ACQ: 69 ± 29
Cue exposure – real booze
Subjective Effects of Alcohol Stimuli
urge to use questionnaire - Bohn

Composite Score

- Alcohol Dependent Neutral Stimulus
- Alcohol Dependent Alcohol Stimulus
- Control Subject Neutral Stimulus
- Control Subject Alcohol Stimulus

Stimulus Repeat

Before After Before After Before After Before After Before After Before After

1 2 3 4 5 6

Subjective Effects of Alcohol Stimuli urge to use questionnaire - Bohn
Heroin addicts’ craving

Composite ‘crave & urge’ score derived as mean of ‘crave’ and ‘urge to use’ VAS scales

Plotted for each repetition of the neutral and craving stimuli
Activation in the occipital lobe.

- occipital cortex activation in alcohol dependent and control subjects (n=12)

- increase in rCBF on L was statistically significant (Talairach co-ordinates –20, -94, -14mm, t= 3.81, number of voxels = 208, cluster-level p<0.05).

- increase in rCBF on R was smaller and almost significant (Talairach co-ordinates 24, -90, -8mm, t= 3.96, number of voxels = 168, cluster-level p=0.09).
Activation in alcoholics but not controls in response to the alcohol cue.

In left medial pre-frontal region: -18,48,28mm.

Significant increase in rCBF in response to alcohol stimulus [cluster-level p<0.05 corrected for small volume 10mm radius], but not in control group.
Activation in L medial prefrontal gyrus

Significant increase in alcohol dependent subjects compared to controls: voxel level $p=0.057$, cluster level $p=0.038$
Summary.

• Robust craving for alcohol is difficult to induce in the scanner

• Activation in:
 – left medial frontal cortex in alcoholics only,
 - represents monitoring and manipulation of information within working memory and attention
 – occipital cortex in both controls and alcoholics
 • represents perception of the alcohol cue and maintenance or sustained attention to it
Why no robust craving?

- Choice of patients
 - length of abstinence
 - severity of alcoholism, level of craving
- Choice of controls
 - unlike other neuroimaging studies in cocaine and opiates, control subjects have experienced alcohol
- Wrong paradigm
 - worked outside the scanner
Acknowledgements

Psychopharmacology Unit, Bristol, UK

Prof. David Nutt Dr Judy Myles
Dr Mark Daglish Dr Anne Lingford-Hughes Dr Aviv Weinstein
Dr Andrea Malizia Dr Brian Stevenson Dr Susan Wilson
Dr Adrian Feeney Dr Jan Melichar

MRC Clinical Science Centre (Cyclotron Unit), UK

Prof. Paul Grasby, Prof David Brooks

All patients and staff at
Bristol Specialist Drug & Alcohol Services

This work was funded by an MRC Programme Grant