WEBVTT

NOTE duration:"01:02:21" NOTE recognizability:0.841

NOTE language:en-us

NOTE Confidence: 0.919615251111111

 $00:00:00.000 \longrightarrow 00:00:02.132$ Hey, good afternoon, everyone.

NOTE Confidence: 0.919615251111111

 $00:00:02.132 \longrightarrow 00:00:05.506$ So it's a great pleasure to introduce

NOTE Confidence: 0.919615251111111

00:00:05.506 --> 00:00:06.918 today's Grand Round speaker,

NOTE Confidence: 0.919615251111111

 $00:00:06.920 \longrightarrow 00:00:09.125$ a speaker that many of us know

NOTE Confidence: 0.919615251111111

00:00:09.125 --> 00:00:11.278 extremely well, Doctor Diane Krause,

NOTE Confidence: 0.919615251111111

 $00:00:11.280 \dashrightarrow 00:00:13.336$ the Anthony N Brady Professor of

NOTE Confidence: 0.919615251111111

00:00:13.336 --> 00:00:14.920 Laboratory Medicine, Pathology

NOTE Confidence: 0.869458246666667

 $00:00:14.920 \dashrightarrow 00:00:17.360$ and Cell Biology here at Yale. Diane

NOTE Confidence: 0.654115713333333

 $00:00:17.360 \longrightarrow 00:00:20.128$ did her MD PhD training at 10 at

NOTE Confidence: 0.654115713333333

 $00{:}00{:}20.128 \dashrightarrow 00{:}00{:}21.826$ Penn and she also followed this

NOTE Confidence: 0.654115713333333

 $00{:}00{:}21.826 \dashrightarrow 00{:}00{:}23.318$ by clinical pathology training

NOTE Confidence: 0.928602042

 $00:00:23.680 \longrightarrow 00:00:25.760$ at Penn as well. She

NOTE Confidence: 0.8557028725

 $00:00:25.760 \longrightarrow 00:00:28.665$ moved on to postdoctoral training at Johns

00:00:28.665 --> 00:00:31.760 Hopkins and joined the Yale faculty in 1997,

NOTE Confidence: 0.8557028725

 $00{:}00{:}31.760 \dashrightarrow 00{:}00{:}34.305$ and since then she's developed an

NOTE Confidence: 0.8557028725

 $00:00:34.305 \longrightarrow 00:00:35.666$ internationally recognized research

NOTE Confidence: 0.8557028725

 $00:00:35.666 \longrightarrow 00:00:38.000$ program focusing on leukemiogenesis

NOTE Confidence: 0.8557028725

 $00:00:38.000 \longrightarrow 00:00:40.160$ and hematopoietic differentiation.

NOTE Confidence: 0.8557028725

00:00:40.160 --> 00:00:43.865 Some major research areas in Diane's

NOTE Confidence: 0.8557028725

00:00:43.865 --> 00:00:46.093 group have included functionally

NOTE Confidence: 0.8557028725

 $00:00:46.093 \longrightarrow 00:00:48.502$ characterizing gene products involved

NOTE Confidence: 0.8557028725

 $00:00:48.502 \longrightarrow 00:00:50.878$ in acute megakaryoblastic leukemias,

NOTE Confidence: 0.8557028725

 $00:00:50.880 \longrightarrow 00:00:52.880$ defining transcriptional mechanisms

NOTE Confidence: 0.8557028725

 $00:00:52.880 \longrightarrow 00:00:55.880$ that regulate megacaryocyte maturation,

NOTE Confidence: 0.8557028725

 $00:00:55.880 \longrightarrow 00:00:57.728$ and elucidating factors that regulate

NOTE Confidence: 0.8557028725

 $00:00:57.728 \longrightarrow 00:00:59.456$ how the erythroid megacaryocyte

NOTE Confidence: 0.8557028725

00:00:59.456 --> 00:01:01.664 precursor cell in the bone marrow

NOTE Confidence: 0.8557028725

 $00:01:01.664 \longrightarrow 00:01:03.560$ differentiates down the erythroid versus

NOTE Confidence: 0.795772965

 $00:01:03.560 \longrightarrow 00:01:05.480$ the platelet lineage.

00:01:05.480 --> 00:01:07.422 Diane wears many hats at Yale.

NOTE Confidence: 0.795772965

00:01:07.422 --> 00:01:08.277 As many of you know,

NOTE Confidence: 0.805733884

 $00:01:08.280 \longrightarrow 00:01:10.576$ she's director of the Wine HH Stem

NOTE Confidence: 0.805733884

00:01:10.576 --> 00:01:12.080 Cell Processing Laboratory, associate

NOTE Confidence: 0.805733884

 $00:01:12.080 \dashrightarrow 00:01:14.120$ director of the Blood Bank, Associate

NOTE Confidence: 0.892690221428571

00:01:14.120 --> 00:01:16.880 Director of the Yale Stem Cell Center Co,

NOTE Confidence: 0.723387105714286

00:01:16.880 --> 00:01:19.028 Director of Yale's Immunohematology

NOTE Confidence: 0.723387105714286

00:01:19.028 --> 00:01:20.639 T32 training Grant.

NOTE Confidence: 0.723387105714286

 $00:01:20.640 \longrightarrow 00:01:23.594$ And she's also the director of an

NOTE Confidence: 0.723387105714286

 $00{:}01{:}23.600 \dashrightarrow 00{:}01{:}25.518$ NIHU 54 grant that has established the

NOTE Confidence: 0.758519411428571

00:01:25.560 --> 00:01:27.204 Yale Cooperative Center of

NOTE Confidence: 0.758519411428571

00:01:27.204 --> 00:01:28.437 Excellence in Hematology,

NOTE Confidence: 0.758519411428571

 $00{:}01{:}28.440 \dashrightarrow 00{:}01{:}30.760$ one of five centers nationwide

NOTE Confidence: 0.876656233076923

 $00{:}01{:}30.760 \dashrightarrow 00{:}01{:}32.725$ funded to increase to provide

NOTE Confidence: 0.876656233076923

 $00:01:32.725 \longrightarrow 00:01:34.690$ resources for investigators in the

00:01:34.753 --> 00:01:36.910 field of hematology and to provide

NOTE Confidence: 0.876656233076923

 $00{:}01{:}36.910 \dashrightarrow 00{:}01{:}39.020$ training to promote, you know,

NOTE Confidence: 0.876656233076923

00:01:39.020 --> 00:01:40.560 a field of growing investigators

NOTE Confidence: 0.488559468

 $00:01:40.560 \longrightarrow 00:01:42.880$ in non legit heme. Diana

NOTE Confidence: 0.841068021666667

 $00:01:42.880 \longrightarrow 00:01:44.525$ is a recipient of numerous awards and

NOTE Confidence: 0.841068021666667

 $00{:}01{:}44.525 \dashrightarrow 00{:}01{:}46.370$ just to name a few, the Klaus Meyer

NOTE Confidence: 0.841068021666667

00:01:46.370 --> 00:01:48.600 Award from Morial Sloan Kettering,

NOTE Confidence: 0.841068021666667

 $00:01:48.600 \longrightarrow 00:01:50.399$ the Tibor Greenwald Award from the American

NOTE Confidence: 0.905523254

00:01:50.400 --> 00:01:52.064 Association of Blood Banks,

NOTE Confidence: 0.905523254

 $00:01:52.064 \longrightarrow 00:01:53.880$ and she's been also inducted into

NOTE Confidence: 0.905523254

 $00{:}01{:}53.880 \dashrightarrow 00{:}01{:}55.368$ the National Blood Foundation

NOTE Confidence: 0.905523254

00:01:55.368 --> 00:01:57.639 Hall of Fame. There's one local

NOTE Confidence: 0.865799702857143

 $00:01:57.640 \longrightarrow 00:01:59.397$ award that I'd really like to mention.

NOTE Confidence: 0.865799702857143

 $00:01:59.400 \longrightarrow 00:02:01.560$ In 2018, she received the Yale

NOTE Confidence: 0.865799702857143

00:02:01.560 --> 00:02:02.852 Postdoctoral Mentoring Award,

NOTE Confidence: 0.865799702857143

 $00:02:02.852 \longrightarrow 00:02:04.830$ and I think this award really

 $00:02:04.830 \longrightarrow 00:02:06.906$ speaks to her complete dedication

NOTE Confidence: 0.865799702857143

 $00{:}02{:}06.906 \dashrightarrow 00{:}02{:}09.928$ to advance the success of women

NOTE Confidence: 0.865799702857143

 $00:02:09.928 \longrightarrow 00:02:11.216$ and those from underrepresented

NOTE Confidence: 0.865799702857143

 $00:02:11.216 \longrightarrow 00:02:13.426$ groups in science and medicine.

NOTE Confidence: 0.865799702857143

00:02:13.426 --> 00:02:15.880 She's extremely generous with her time,

NOTE Confidence: 0.865799702857143

 $00:02:15.880 \longrightarrow 00:02:18.560$ and despite her many responsibilities,

NOTE Confidence: 0.865799702857143

 $00:02:18.560 \longrightarrow 00:02:20.832$ she always finds time to serve as a

NOTE Confidence: 0.865799702857143

 $00{:}02{:}20.832 \dashrightarrow 00{:}02{:}22.994$ truly dedicated mentor to a large number

NOTE Confidence: 0.865799702857143

00:02:22.994 --> 00:02:25.118 of trainees and many junior faculty,

NOTE Confidence: 0.865799702857143

00:02:25.120 --> 00:02:26.880 including Pallavi and myself.

NOTE Confidence: 0.865799702857143

 $00:02:26.880 \longrightarrow 00:02:28.160$ So we are really delighted

NOTE Confidence: 0.865799702857143

 $00:02:28.160 \longrightarrow 00:02:29.552$ that she's taken the time today

NOTE Confidence: 0.865799702857143

00:02:29.552 --> 00:02:30.800 to accept her invitation

NOTE Confidence: 0.974645148333333

 $00:02:30.800 \longrightarrow 00:02:33.480$ and present her work to you. Welcome, Dan.

NOTE Confidence: 0.891239725

00:02:38.600 --> 00:02:41.162 Thanks so much, Karen, for that really

00:02:41.162 --> 00:02:43.079 nice introduction I should have.

NOTE Confidence: 0.891239725

 $00{:}02{:}43.080 --> 00{:}02{:}44.074$ I do have a recording of it.

NOTE Confidence: 0.891239725

 $00:02:44.080 \longrightarrow 00:02:46.558$ I can. That's me. Name my CD.

NOTE Confidence: 0.891239725

 $00:02:46.560 \longrightarrow 00:02:47.490$ I really wanted to start

NOTE Confidence: 0.891239725

 $00:02:47.490 \longrightarrow 00:02:48.234$ with the title slide.

NOTE Confidence: 0.891239725

 $00:02:48.240 \longrightarrow 00:02:49.600$ Because of this beautiful picture.

NOTE Confidence: 0.891239725

 $00:02:49.600 \longrightarrow 00:02:52.237$ I'm going to give too much in this talk.

NOTE Confidence: 0.891239725

 $00:02:52.240 \longrightarrow 00:02:53.992$ More than one should put into a one

NOTE Confidence: 0.891239725

 $00{:}02{:}53.992 \dashrightarrow 00{:}02{:}55.569$ hour talk because I'm talking to

NOTE Confidence: 0.891239725

00:02:55.569 --> 00:02:57.201 pathology and I just couldn't not

NOTE Confidence: 0.891239725

 $00:02:57.257 \longrightarrow 00:02:58.969$ present some of the stuff in our lab

NOTE Confidence: 0.891239725

 $00:02:58.969 \longrightarrow 00:03:00.936$ that is just so visually beautiful

NOTE Confidence: 0.891239725

 $00:03:00.936 \longrightarrow 00:03:03.240$ and really maybe even attract some

NOTE Confidence: 0.891239725

 $00:03:03.240 \longrightarrow 00:03:05.260$ pathology trainees and faculty to

NOTE Confidence: 0.891239725

 $00:03:05.260 \longrightarrow 00:03:07.959$ collaborate on some of the work.

NOTE Confidence: 0.891239725

 $00:03:07.960 \longrightarrow 00:03:09.568$ But I'll tell you mostly what's

 $00{:}03{:}09.568 --> 00{:}03{:}10.640$ going on in lab.

NOTE Confidence: 0.891239725

 $00{:}03{:}10.640 \dashrightarrow 00{:}03{:}12.560$ This picture is a mega karyocyte,

NOTE Confidence: 0.891239725

00:03:12.560 --> 00:03:14.440 a primary human mega karyocyte.

NOTE Confidence: 0.891239725

 $00:03:14.440 \longrightarrow 00:03:16.414$ And what you can see is that

NOTE Confidence: 0.891239725

 $00:03:16.414 \longrightarrow 00:03:18.000$ there's a lot of detail.

NOTE Confidence: 0.891239725

 $00:03:18.000 \longrightarrow 00:03:20.358$ You can even see the Golgi,

NOTE Confidence: 0.891239725

 $00:03:20.360 \longrightarrow 00:03:23.118$ the Golgi and the endoplasmic reticulum.

NOTE Confidence: 0.891239725

 $00{:}03{:}23.120 \dashrightarrow 00{:}03{:}25.395$ And what this is, is expansion microscopy.

NOTE Confidence: 0.891239725

 $00:03:25.400 \longrightarrow 00:03:27.157$ So this was taken with the confocal,

NOTE Confidence: 0.891239725

 $00:03:27.160 \longrightarrow 00:03:28.525$ but you really have a lot of

NOTE Confidence: 0.891239725

00:03:28.525 --> 00:03:30.360 the kind of detail that you can

NOTE Confidence: 0.891239725

 $00:03:30.360 \longrightarrow 00:03:31.556$ get with electron microscopy.

NOTE Confidence: 0.891239725

00:03:31.560 --> 00:03:33.240 So it's a pretty picture,

NOTE Confidence: 0.891239725

 $00{:}03{:}33.240 \dashrightarrow 00{:}03{:}34.815$ but what I'll be telling you about

NOTE Confidence: 0.891239725

 $00:03:34.815 \longrightarrow 00:03:35.923$ today is hematopoiesis For those

00:03:35.923 --> 00:03:37.274 of you who don't think about this,

NOTE Confidence: 0.891239725

 $00:03:37.280 \longrightarrow 00:03:39.072$ it in our bone marrow there's a

NOTE Confidence: 0.891239725

 $00{:}03{:}39.072 \dashrightarrow 00{:}03{:}40.347$ hematopoietic stem cell Like other

NOTE Confidence: 0.891239725

00:03:40.347 --> 00:03:41.943 stem cells it self renews for the

NOTE Confidence: 0.891239725

 $00:03:41.943 \longrightarrow 00:03:43.980$ life of the Organism and it can

NOTE Confidence: 0.891239725

 $00:03:43.980 \longrightarrow 00:03:44.859$ differentiate the hematopoietic

NOTE Confidence: 0.891239725

 $00:03:44.859 \longrightarrow 00:03:46.396$ stem cell differentiates into all

NOTE Confidence: 0.891239725

 $00:03:46.396 \longrightarrow 00:03:48.580$ of the cells in our peripheral blood

NOTE Confidence: 0.891239725

 $00{:}03{:}48.580 \longrightarrow 00{:}03{:}50.200$ leukocytes as well as the red,

NOTE Confidence: 0.891239725

 $00:03:50.200 \longrightarrow 00:03:52.720$ red blood cells and platelets.

NOTE Confidence: 0.891239725

 $00{:}03{:}52.720 \dashrightarrow 00{:}03{:}55.261$ And my lab really focuses on this

NOTE Confidence: 0.891239725

 $00:03:55.261 \longrightarrow 00:03:58.235$ bright orange cell which we have here as MEP.

NOTE Confidence: 0.891239725

 $00:03:58.240 \longrightarrow 00:04:00.400$ I'm going to try not to talk in

NOTE Confidence: 0.891239725

 $00:04:00.400 \longrightarrow 00:04:01.960$ too many abbreviations,

NOTE Confidence: 0.891239725

 $00:04:01.960 \longrightarrow 00:04:04.624$ but the name of the MEP is a

NOTE Confidence: 0.891239725

 $00:04:04.624 \longrightarrow 00:04:06.320$ megacarycytic erythroid precursor cell,

00:04:06.320 --> 00:04:07.760 and it's kind of a mouthful,

NOTE Confidence: 0.891239725

 $00:04:07.760 \longrightarrow 00:04:09.960$ so I'll only sometimes say the whole thing.

NOTE Confidence: 0.891239725

 $00:04:09.960 \longrightarrow 00:04:12.221$ So this is the bipotent precursor of

NOTE Confidence: 0.891239725

 $00:04:12.221 \longrightarrow 00:04:13.957$ megacarycytes that make platelets and

NOTE Confidence: 0.891239725

 $00:04:13.957 \longrightarrow 00:04:16.087$ the erythroid lineage that ends up

NOTE Confidence: 0.891239725

 $00:04:16.087 \longrightarrow 00:04:17.719$ making enucleated red blood cells.

NOTE Confidence: 0.96920333

 $00:04:20.080 \longrightarrow 00:04:21.120$ And just to remind you,

NOTE Confidence: 0.96920333

 $00:04:21.120 \longrightarrow 00:04:22.626$ we make about 2,000,000 platelets and

NOTE Confidence: 0.96920333

 $00:04:22.626 \longrightarrow 00:04:24.518$ 2 million red blood cells every second.

NOTE Confidence: 0.96920333

 $00:04:24.520 \longrightarrow 00:04:27.364$ So this cell is very busy making its

NOTE Confidence: 0.96920333

 $00{:}04{:}27.364 \dashrightarrow 00{:}04{:}29.474$ progenitors and trying to decide.

NOTE Confidence: 0.96920333

 $00:04:29.480 \longrightarrow 00:04:31.316$ I I don't really love using the word decide,

NOTE Confidence: 0.96920333

 $00:04:31.320 \longrightarrow 00:04:33.609$ but it really helps you ask the

NOTE Confidence: 0.96920333

 $00:04:33.609 \longrightarrow 00:04:35.319$ question which lineage to go down.

NOTE Confidence: 0.96920333

 $00:04:35.320 \longrightarrow 00:04:38.230$ So what is determining the fate

 $00:04:38.230 \longrightarrow 00:04:41.120$ specification of this bipotent progenitor?

NOTE Confidence: 0.96920333

00:04:41.120 --> 00:04:42.450 Just because I wouldn't be

NOTE Confidence: 0.96920333

 $00:04:42.450 \longrightarrow 00:04:43.514$ complete without saying this,

NOTE Confidence: 0.96920333

 $00:04:43.520 \longrightarrow 00:04:45.494$ there is evidence in the literature that

NOTE Confidence: 0.96920333

00:04:45.494 --> 00:04:47.672 megacary sites can also be derived directly

NOTE Confidence: 0.96920333

 $00:04:47.672 \longrightarrow 00:04:49.592$ from a hematopoietic stem cell population.

NOTE Confidence: 0.96920333

 $00:04:49.600 \longrightarrow 00:04:51.796$ So if that is the case,

NOTE Confidence: 0.96920333

00:04:51.800 --> 00:04:53.851 then I'm not talking about that lineage

NOTE Confidence: 0.96920333

 $00:04:53.851 \longrightarrow 00:04:55.760$ to megacarycytes, I'm talking about

NOTE Confidence: 0.96920333

 $00:04:55.760 \longrightarrow 00:04:57.960$ this bipotent lineage to megacarycytes.

NOTE Confidence: 0.96920333

 $00:04:57.960 \longrightarrow 00:04:59.400$ Why did we pick MEP?

NOTE Confidence: 0.96920333

00:04:59.400 --> 00:05:00.416 Well, first of all,

NOTE Confidence: 0.96920333

 $00:05:00.416 \longrightarrow 00:05:02.286$ it's a model of bipotent fate specification

NOTE Confidence: 0.96920333

 $00:05:02.286 \longrightarrow 00:05:04.288$ which is important in all of the

NOTE Confidence: 0.96920333

00:05:04.288 --> 00:05:06.160 stem and progenitor cell biology,

NOTE Confidence: 0.96920333

 $00{:}05{:}06.160 \dashrightarrow 00{:}05{:}09.520$ tissue repair and response to injury.

 $00:05:09.520 \longrightarrow 00:05:09.933$ Secondly,

NOTE Confidence: 0.96920333

 $00{:}05{:}09.933 \dashrightarrow 00{:}05{:}11.998$ it's important in regenerative medicine.

NOTE Confidence: 0.96920333

 $00:05:12.000 \longrightarrow 00:05:13.878$ As most of you are aware,

NOTE Confidence: 0.96920333

 $00:05:13.880 \longrightarrow 00:05:15.576$ the place that we get our red cells

NOTE Confidence: 0.96920333

 $00{:}05{:}15.576 \dashrightarrow 00{:}05{:}17.051$ and platelets that we transfuse into

NOTE Confidence: 0.96920333

 $00:05:17.051 \longrightarrow 00:05:18.557$ patients is from healthy donors and

NOTE Confidence: 0.96920333

00:05:18.603 --> 00:05:20.115 there really aren't enough of them.

NOTE Confidence: 0.96920333

 $00{:}05{:}20.120 \dashrightarrow 00{:}05{:}22.199$ And there's a huge amount of work

NOTE Confidence: 0.96920333

 $00:05:22.199 \longrightarrow 00:05:24.277$ in finding and collecting cells from

NOTE Confidence: 0.96920333

 $00:05:24.277 \longrightarrow 00:05:26.881$ healthy donors in order to maintain an

NOTE Confidence: 0.96920333

 $00{:}05{:}26.948 \dashrightarrow 00{:}05{:}29.118$ adequate supply for the recipients.

NOTE Confidence: 0.96920333

 $00{:}05{:}29.120 \dashrightarrow 00{:}05{:}30.554$ And sometimes we really run low

NOTE Confidence: 0.96920333

 $00{:}05{:}30.554 \dashrightarrow 00{:}05{:}32.120$ on platelets in red blood cells,

NOTE Confidence: 0.96920333

 $00:05:32.120 \longrightarrow 00:05:34.640$ particularly in the last year or so.

NOTE Confidence: 0.96920333

 $00:05:34.640 \longrightarrow 00:05:36.344$ We've had several times when we're

 $00:05:36.344 \longrightarrow 00:05:37.196$ near crisis situation.

NOTE Confidence: 0.96920333

 $00:05:37.200 \longrightarrow 00:05:38.676$ So if we could figure out a way to

NOTE Confidence: 0.96920333

 $00:05:38.676 \longrightarrow 00:05:40.600$ make them in vitro, that would be great.

NOTE Confidence: 0.96920333

00:05:40.600 --> 00:05:41.160 And finally,

NOTE Confidence: 0.96920333

00:05:41.160 --> 00:05:43.200 just as potential therapeutics

NOTE Confidence: 0.96920333

 $00:05:43.200 \longrightarrow 00:05:45.750$ might be identified in erythroid

NOTE Confidence: 0.96920333

 $00:05:45.750 \longrightarrow 00:05:48.239$ and megacary acidic diseases,

NOTE Confidence: 0.96920333

 $00:05:48.240 \longrightarrow 00:05:49.970$ so how does one distinguish

NOTE Confidence: 0.96920333

 $00{:}05{:}49.970 \dashrightarrow 00{:}05{:}51.936$ whether you have a bipotent MEP?

NOTE Confidence: 0.96920333

 $00{:}05{:}51.936 \dashrightarrow 00{:}05{:}54.240$ What you have to do is a colony

NOTE Confidence: 0.96920333

 $00:05:54.304 \longrightarrow 00:05:55.200$ forming assay.

NOTE Confidence: 0.96920333

00:05:55.200 --> 00:05:56.677 Just if you think about a bacterium,

NOTE Confidence: 0.96920333

 $00:05:56.680 \longrightarrow 00:05:57.760$ it's going to form a colony.

NOTE Confidence: 0.96920333

 $00:05:57.760 \longrightarrow 00:06:00.000$ When we do him out of aquatic assays,

NOTE Confidence: 0.96920333

 $00:06:00.000 \longrightarrow 00:06:01.638$ we take a stemmer progenitor cell,

NOTE Confidence: 0.96920333

 $00:06:01.640 \longrightarrow 00:06:03.328$ we put it into a semi solid medium

 $00{:}06{:}03.328 \rightarrow 00{:}06{:}05.891$ in a very dilute fashion and if that

NOTE Confidence: 0.96920333

00:06:05.891 --> 00:06:07.279 cell divides and differentiates,

NOTE Confidence: 0.96920333

 $00:06:07.280 \longrightarrow 00:06:09.800$ it's going to form a colony of cells.

NOTE Confidence: 0.96920333

 $00:06:09.800 \longrightarrow 00:06:11.609$ And what we do is we over the course

NOTE Confidence: 0.96920333

 $00{:}06{:}11.609 \dashrightarrow 00{:}06{:}13.571$ of the two weeks that cell makes 2

NOTE Confidence: 0.96920333

00:06:13.571 --> 00:06:15.490 cell types with one of them being

NOTE Confidence: 0.96920333

00:06:15.490 --> 00:06:16.910 megakaryocytes and other cells of

NOTE Confidence: 0.96920333

 $00:06:16.910 \longrightarrow 00:06:17.896$ the erythroid lineage.

NOTE Confidence: 0.96920333

 $00:06:17.896 \longrightarrow 00:06:19.984$ Then the cell that started that

NOTE Confidence: 0.96920333

 $00:06:19.984 \longrightarrow 00:06:21.199$ process is the MEP,

NOTE Confidence: 0.96920333

 $00:06:21.200 \longrightarrow 00:06:24.360$ the bipotent progenitor that is

NOTE Confidence: 0.96920333

 $00:06:24.360 \longrightarrow 00:06:25.480$ the assay we used.

NOTE Confidence: 0.96920333

 $00{:}06{:}25.480 \dashrightarrow 00{:}06{:}27.952$ We identified in in this paper

NOTE Confidence: 0.96920333

 $00:06:27.952 \longrightarrow 00:06:30.751$ from 2016 a really good sorting

NOTE Confidence: 0.96920333

00:06:30.751 --> 00:06:33.396 strategy for primary human MEP.

 $00:06:33.400 \longrightarrow 00:06:35.872$ What we did is we worked out the

NOTE Confidence: 0.96920333

 $00:06:35.872 \longrightarrow 00:06:38.576$ as say and then tested different flow

NOTE Confidence: 0.96920333

 $00:06:38.576 \longrightarrow 00:06:40.510$ sorting approaches to come up with

NOTE Confidence: 0.96920333

 $00:06:40.510 \longrightarrow 00:06:43.120$ the best possible way of isolating the cells.

NOTE Confidence: 0.96920333

 $00:06:43.120 \longrightarrow 00:06:44.904$ What happens is after the course of two

NOTE Confidence: 0.96920333

 $00:06:44.904 \longrightarrow 00:06:46.678$ weeks a single cell forms a colony.

NOTE Confidence: 0.96920333

 $00:06:46.680 \longrightarrow 00:06:48.198$ This is a colony of cells.

NOTE Confidence: 0.96920333

 $00:06:48.200 \longrightarrow 00:06:49.892$ It's been stained with anti glycoporin

NOTE Confidence: 0.96920333

 $00:06:49.892 \longrightarrow 00:06:52.070$ A which is a surface marker for

NOTE Confidence: 0.96920333

 $00:06:52.070 \longrightarrow 00:06:53.394$ red blood cell lineage.

NOTE Confidence: 0.96920333

 $00{:}06{:}53.400 \dashrightarrow 00{:}06{:}55.104$ This and this colony is entirely

NOTE Confidence: 0.96920333

00:06:55.104 --> 00:06:56.988 made-up of cells that are committed

NOTE Confidence: 0.96920333

 $00:06:56.988 \longrightarrow 00:06:58.360$ to the erythroid lineage.

NOTE Confidence: 0.96920333

 $00:06:58.360 \longrightarrow 00:07:00.200$ Here's a colony that's stained

NOTE Confidence: 0.96920333

00:07:00.200 --> 00:07:02.040 with anti CD 41 only

NOTE Confidence: 0.748385634444445

 $00:07:02.040 \dashrightarrow 00:07:04.119$ CD 41 is on the mega carry site lineage.

 $00:07:04.120 \longrightarrow 00:07:06.127$ So this is a colony of cells that are

NOTE Confidence: 0.748385634444445

 $00:07:06.127 \longrightarrow 00:07:08.303$ mega carry site only and then we often

NOTE Confidence: 0.748385634444445

 $00{:}07{:}08.303 \dashrightarrow 00{:}07{:}10.841$ get colonies that have cells of both the

NOTE Confidence: 0.748385634444445

 $00:07:10.841 \longrightarrow 00:07:12.511$ megakaryocyte and the erythroid lineage.

NOTE Confidence: 0.748385634444445

 $00:07:12.520 \longrightarrow 00:07:13.600$ And just to be more complete,

NOTE Confidence: 0.748385634444445

 $00:07:13.600 \longrightarrow 00:07:15.841$ my lab has now switched to an assay and

NOTE Confidence: 0.748385634444445

 $00:07:15.841 \longrightarrow 00:07:17.369$ rather than using immunohistochemistry for

NOTE Confidence: 0.748385634444445

00:07:17.369 --> 00:07:20.280 glia in 41 we now do immunofluorescence.

NOTE Confidence: 0.878716792666667

 $00:07:22.840 \longrightarrow 00:07:24.618$ Based on the data obtained we now

NOTE Confidence: 0.878716792666667

 $00:07:24.618 \longrightarrow 00:07:27.223$ can get a population of primary human

NOTE Confidence: 0.878716792666667

00:07:27.223 --> 00:07:28.999 mega karvocyte erythroid progenitor

NOTE Confidence: 0.878716792666667

 $00:07:28.999 \longrightarrow 00:07:31.191$ cells where if you played 100 cells

NOTE Confidence: 0.878716792666667

 $00{:}07{:}31.191 \dashrightarrow 00{:}07{:}33.745$ in a plate you get about 70 colonies

NOTE Confidence: 0.878716792666667

00:07:33.745 --> 00:07:36.355 and of those colonies about 50%

NOTE Confidence: 0.878716792666667

 $00:07:36.360 \longrightarrow 00:07:39.066$ shown here in blue are cells are

 $00:07:39.066 \longrightarrow 00:07:40.952$ comprised of cells with both of cells

NOTE Confidence: 0.878716792666667

 $00:07:40.952 \longrightarrow 00:07:42.884$ of both the mega karyocyte and the

NOTE Confidence: 0.878716792666667

 $00:07:42.884 \longrightarrow 00:07:44.500$ erythroid lineage with the remainder

NOTE Confidence: 0.878716792666667

 $00:07:44.500 \longrightarrow 00:07:46.432$ being erythroid only and mega only.

NOTE Confidence: 0.878716792666667

 $00:07:46.440 \longrightarrow 00:07:48.092$ We also came up with sorting strategies

NOTE Confidence: 0.878716792666667

00:07:48.092 --> 00:07:49.800 for the mega karyocyte progenitor,

NOTE Confidence: 0.878716792666667

 $00:07:49.800 \longrightarrow 00:07:51.560$ with most of the colonies are mega only

NOTE Confidence: 0.878716792666667

 $00:07:51.560 \longrightarrow 00:07:53.573$ and the erythroid progenitis under your

NOTE Confidence: 0.878716792666667

 $00:07:53.573 \longrightarrow 00:07:55.473$ similarly where they're mostly erythroid.

NOTE Confidence: 0.878716792666667

00:07:55.480 --> 00:07:56.992 One of the questions you may ask you

NOTE Confidence: 0.878716792666667

 $00{:}07{:}56.992 \dashrightarrow 00{:}07{:}58.722$ may be asking yourself and will kind

NOTE Confidence: 0.878716792666667

 $00:07:58.722 \longrightarrow 00:08:00.251$ of be answered throughout the course

NOTE Confidence: 0.878716792666667

 $00:08:00.251 \longrightarrow 00:08:01.880$ of the talk is do we really have a

NOTE Confidence: 0.878716792666667

00:08:01.880 --> 00:08:03.998 good sorting strategy for the MEP?

NOTE Confidence: 0.878716792666667

 $00:08:04.000 \longrightarrow 00:08:05.400$ Because it looks like half of the

NOTE Confidence: 0.878716792666667

 $00:08:05.400 \longrightarrow 00:08:06.757$ colonies are E only and MK only.

 $00:08:06.760 \longrightarrow 00:08:08.832$ And what I'm going to tell you is

NOTE Confidence: 0.878716792666667

 $00:08:08.832 \longrightarrow 00:08:10.723$ that the data very strongly suggest

NOTE Confidence: 0.878716792666667

 $00:08:10.723 \longrightarrow 00:08:13.450$ that what we have is quite a pure

NOTE Confidence: 0.878716792666667

 $00:08:13.450 \longrightarrow 00:08:15.460$ population and that there is a

NOTE Confidence: 0.878716792666667

00:08:15.460 --> 00:08:17.120 probability that a bipotent cell,

NOTE Confidence: 0.878716792666667

 $00:08:17.120 \longrightarrow 00:08:19.478$ when put into the culture will,

NOTE Confidence: 0.878716792666667

 $00:08:19.480 \longrightarrow 00:08:20.576$ with the First Division,

NOTE Confidence: 0.878716792666667

 $00:08:20.576 \longrightarrow 00:08:22.640$ come up with two cells that then

NOTE Confidence: 0.878716792666667

00:08:22.640 --> 00:08:24.112 subsequently all decide Erythroid

NOTE Confidence: 0.878716792666667

 $00{:}08{:}24.112 \dashrightarrow 00{:}08{:}25.952$ or subsequently all decide Meg.

NOTE Confidence: 0.878716792666667

 $00{:}08{:}25.960 \dashrightarrow 00{:}08{:}27.647$ And it doesn't mean that the starting

NOTE Confidence: 0.878716792666667

00:08:27.647 --> 00:08:28.915 cell didn't have the potential

NOTE Confidence: 0.878716792666667

00:08:28.915 --> 00:08:30.160 to go down both lineages,

NOTE Confidence: 0.878716792666667

 $00:08:30.160 \dashrightarrow 00:08:33.280$ and I'll try to convince you of that.

NOTE Confidence: 0.878716792666667

 $00:08:33.280 \longrightarrow 00:08:34.972$ So this enrichment of these populations

 $00:08:34.972 \longrightarrow 00:08:37.073$ has allowed us to study the fate

NOTE Confidence: 0.878716792666667

 $00{:}08{:}37.073 \dashrightarrow 00{:}08{:}38.301$ transitions from the bipotent

NOTE Confidence: 0.878716792666667

 $00:08:38.301 \longrightarrow 00:08:39.903$ progenitor to the Meg progenitor

NOTE Confidence: 0.878716792666667

 $00:08:39.903 \longrightarrow 00:08:41.483$ and from the bipotent progenitor

NOTE Confidence: 0.878716792666667

 $00:08:41.483 \longrightarrow 00:08:44.520$ to the erythroid progenitor.

NOTE Confidence: 0.878716792666667

00:08:44.520 --> 00:08:46.812 I'm going to tell you four stories today,

NOTE Confidence: 0.878716792666667

00:08:46.812 --> 00:08:48.356 hopefully not too quickly,

NOTE Confidence: 0.878716792666667

 $00{:}08{:}48.360 \dashrightarrow 00{:}08{:}49.395$ but quickly enough that I'm

NOTE Confidence: 0.878716792666667

 $00:08:49.395 \longrightarrow 00:08:50.879$ done by the end of the hour.

NOTE Confidence: 0.878716792666667

 $00:08:50.880 \longrightarrow 00:08:53.071$ The 1st is some really novel data

NOTE Confidence: 0.878716792666667

 $00{:}08{:}53.071 \dashrightarrow 00{:}08{:}56.045$ that came out of our single cell RNA

NOTE Confidence: 0.878716792666667

 $00:08:56.045 \longrightarrow 00:08:58.010$ sequencing of these populations that

NOTE Confidence: 0.878716792666667

 $00{:}08{:}58.080 \dashrightarrow 00{:}09{:}00.240$ revealed that the cell cycle speed

NOTE Confidence: 0.878716792666667

 $00:09:00.240 \longrightarrow 00:09:02.916$ of the MEP actually seems to predict

NOTE Confidence: 0.878716792666667

 $00:09:02.916 \longrightarrow 00:09:05.388$ whether that's going to be megacaryocyte

NOTE Confidence: 0.878716792666667

 $00:09:05.388 \longrightarrow 00:09:07.995$ output or erythroid output and that we

 $00:09:07.995 \longrightarrow 00:09:10.426$ can actually toggle the fate of the

NOTE Confidence: 0.878716792666667

 $00:09:10.426 \longrightarrow 00:09:12.631$ MEP by toggling its cell cycle speed.

NOTE Confidence: 0.878716792666667

 $00:09:12.640 \longrightarrow 00:09:14.464$ Then I'll tell you about the role of

NOTE Confidence: 0.878716792666667

 $00:09:14.464 \longrightarrow 00:09:16.460$ the Runks 1 transcription factor and

NOTE Confidence: 0.878716792666667

 $00:09:16.460 \longrightarrow 00:09:18.320$ how it's post translational modification

NOTE Confidence: 0.878716792666667

00:09:18.320 --> 00:09:20.479 effects MEP fate and then we'll talk about,

NOTE Confidence: 0.878716792666667

 $00:09:20.480 \longrightarrow 00:09:22.405$ we'll show show you some really cool

NOTE Confidence: 0.878716792666667

 $00{:}09{:}22.405 \dashrightarrow 00{:}09{:}24.275$ data watching MEP fate specification that

NOTE Confidence: 0.878716792666667

 $00:09:24.275 \longrightarrow 00:09:26.261$ really gave us those probabilities that

NOTE Confidence: 0.878716792666667

 $00{:}09{:}26.261 \dashrightarrow 00{:}09{:}28.318$ I told you about that a bipotent cell

NOTE Confidence: 0.878716792666667

00:09:28.318 --> 00:09:30.916 can form an E only or an MK only colony.

NOTE Confidence: 0.878716792666667

 $00:09:30.920 \longrightarrow 00:09:32.160$ And finally expansion microscopy

NOTE Confidence: 0.878716792666667

00:09:32.160 --> 00:09:33.400 that I already introduced

NOTE Confidence: 0.733817814444444

 $00:09:36.720 \longrightarrow 00:09:38.997$ what we did once we had fact sort facts,

NOTE Confidence: 0.733817814444444

00:09:39.000 --> 00:09:42.040 gating strategies for enriching MEP,

 $00:09:42.040 \longrightarrow 00:09:44.280$ Meg progenitors and erythroid progenitors.

NOTE Confidence: 0.733817814444444

 $00{:}09{:}44.280 \to 00{:}09{:}46.170$ We also sorted the upstream common

NOTE Confidence: 0.733817814444444

 $00:09:46.170 \longrightarrow 00:09:48.053$ myeloid progenitors and we sent these

NOTE Confidence: 0.733817814444444

 $00:09:48.053 \longrightarrow 00:09:49.757$ for single cell RNA SEC analysis.

NOTE Confidence: 0.733817814444444

00:09:49.760 --> 00:09:51.112 And this was work done by Yi Shan

NOTE Confidence: 0.733817814444444

00:09:51.112 --> 00:09:53.344 Liu in the lab, an amazing post doc

NOTE Confidence: 0.733817814444444

 $00:09:53.344 \longrightarrow 00:09:55.600$ who published this work in 2018.

NOTE Confidence: 0.733817814444444

 $00:09:55.600 \longrightarrow 00:09:57.035$ What you can see when you look

NOTE Confidence: 0.733817814444444

 $00{:}09{:}57.035 \dashrightarrow 00{:}09{:}58.781$ at the single cell RNA SEC and if

NOTE Confidence: 0.733817814444444

00:09:58.781 --> 00:10:00.280 you're not used to looking at this,

NOTE Confidence: 0.733817814444444

 $00{:}10{:}00.280 \dashrightarrow 00{:}10{:}03.577$ the data from the individual cells has

NOTE Confidence: 0.733817814444444

 $00:10:03.577 \longrightarrow 00:10:06.652$ now been categorized into four groups.

NOTE Confidence: 0.733817814444444

 $00:10:06.652 \longrightarrow 00:10:09.560$ The CMP, the common myeloid progenitor group,

NOTE Confidence: 0.733817814444444

 $00:10:09.560 \longrightarrow 00:10:11.600$ the MEP or the Meg erythroid

NOTE Confidence: 0.733817814444444

00:10:11.600 --> 00:10:12.280 progenitor group,

NOTE Confidence: 0.733817814444444

 $00:10:12.280 \longrightarrow 00:10:14.116$ the Meg progenitors or the Meg

 $00:10:14.116 \longrightarrow 00:10:15.340$ committed and the erythroid

NOTE Confidence: 0.733817814444444

 $00:10:15.393 \longrightarrow 00:10:17.237$ progenitors or Erythroid committed.

NOTE Confidence: 0.733817814444444

 $00:10:17.240 \longrightarrow 00:10:18.591$ And what you can see is when

NOTE Confidence: 0.733817814444444

 $00:10:18.591 \longrightarrow 00:10:19.880$ we fact sort out these MEP,

NOTE Confidence: 0.733817814444444

 $00:10:19.880 \longrightarrow 00:10:22.200$ it's really a distinct population.

NOTE Confidence: 0.733817814444444

00:10:22.200 --> 00:10:23.680 There's a bit of a graduation to it,

NOTE Confidence: 0.733817814444444

 $00:10:23.680 \longrightarrow 00:10:25.320$ but it's a distinct population.

NOTE Confidence: 0.733817814444444

 $00:10:25.320 \longrightarrow 00:10:28.395$ It looks very different from CMPMKP or ERP,

NOTE Confidence: 0.733817814444444

 $00:10:28.395 \longrightarrow 00:10:30.252$ but it looks like it had still has

NOTE Confidence: 0.733817814444444

 $00{:}10{:}30.252 \dashrightarrow 00{:}10{:}31.827$ some genes that are still on from

NOTE Confidence: 0.7338178144444444

00:10:31.827 --> 00:10:33.713 the CMP that are going to be turned

NOTE Confidence: 0.733817814444444

 $00{:}10{:}33.713 \dashrightarrow 00{:}10{:}36.292$ off and some genes that are on in

NOTE Confidence: 0.733817814444444

 $00{:}10{:}36.292 \dashrightarrow 00{:}10{:}38.714$ erythroid and mega caries like Destin

NOTE Confidence: 0.7338178144444444

 $00:10:38.714 \longrightarrow 00:10:40.838$ cells that are just coming on.

NOTE Confidence: 0.733817814444444

 $00:10:40.840 \longrightarrow 00:10:44.319$ So it really is a transitional state.

00:10:44.320 --> 00:10:46.770 When we looked at the gene expression

NOTE Confidence: 0.733817814444444

 $00{:}10{:}46.770 \dashrightarrow 00{:}10{:}48.912$ analysis and compared MEP to the

NOTE Confidence: 0.733817814444444

 $00:10:48.912 \longrightarrow 00:10:49.600$ other populations,

NOTE Confidence: 0.733817814444444

 $00:10:49.600 \longrightarrow 00:10:51.850$ what we found that the pathways

NOTE Confidence: 0.733817814444444

 $00:10:51.850 \longrightarrow 00:10:54.259$ that were over represented in the

NOTE Confidence: 0.733817814444444

 $00:10:54.259 \longrightarrow 00:10:55.519$ differentially expressed genes

NOTE Confidence: 0.733817814444444

 $00:10:55.519 \longrightarrow 00:10:58.080$ were almost always the cell cycle.

NOTE Confidence: 0.733817814444444

 $00:10:58.080 \longrightarrow 00:10:59.744$ And so you can see it's here from

NOTE Confidence: 0.733817814444444

 $00:10:59.744 \longrightarrow 00:11:01.555$ the MEP to the Meg progenitor cell

NOTE Confidence: 0.733817814444444

00:11:01.555 --> 00:11:02.356 cycle shows up,

NOTE Confidence: 0.733817814444444

 $00:11:02.360 \longrightarrow 00:11:04.320$ from the MEP to the erythroid shows up

NOTE Confidence: 0.733817814444444

 $00:11:04.320 \longrightarrow 00:11:06.835$ and the other things were were less specific.

NOTE Confidence: 0.733817814444444

00:11:06.840 --> 00:11:08.575 We weren't entirely surprised by

NOTE Confidence: 0.733817814444444

00:11:08.575 --> 00:11:10.310 this because we had preliminary

NOTE Confidence: 0.733817814444444

 $00:11:10.367 \longrightarrow 00:11:12.317$ data that were consistent with this.

NOTE Confidence: 0.733817814444444

00:11:12.320 --> 00:11:13.958 What we had done prior to getting

00:11:13.958 --> 00:11:16.067 the single cell RNA C data is we had

NOTE Confidence: 0.733817814444444

00:11:16.067 --> 00:11:17.273 tried a candidate approach where

NOTE Confidence: 0.733817814444444

 $00:11:17.273 \longrightarrow 00:11:18.797$ we would add various drugs and

NOTE Confidence: 0.733817814444444

00:11:18.797 --> 00:11:21.600 cytokines to the MEP to see if it

NOTE Confidence: 0.733817814444444

 $00:11:21.600 \longrightarrow 00:11:23.232$ affected their hematopoietic output.

NOTE Confidence: 0.733817814444444

 $00:11:23.240 \longrightarrow 00:11:25.144$ We already knew that in response to

NOTE Confidence: 0.733817814444444

00:11:25.144 --> 00:11:26.799 all trans retinoic acid which goes

NOTE Confidence: 0.733817814444444

 $00:11:26.799 \longrightarrow 00:11:28.633$ to the nucleus and binds directly as

NOTE Confidence: 0.733817814444444

 $00{:}11{:}28.686 \dashrightarrow 00{:}11{:}30.396$ a transcription factor on the DNA,

NOTE Confidence: 0.733817814444444

 $00{:}11{:}30.400 \dashrightarrow 00{:}11{:}33.214$ that we had a dose dependent increase

NOTE Confidence: 0.7338178144444444

 $00:11:33.214 \longrightarrow 00:11:35.253$ in megacaryocyte only colonies when

NOTE Confidence: 0.733817814444444

 $00:11:35.253 \longrightarrow 00:11:36.396$ we added ATRA.

NOTE Confidence: 0.733817814444444

 $00{:}11{:}36.400 \dashrightarrow 00{:}11{:}38.003$ We also knew that when we added

NOTE Confidence: 0.7338178144444444

 $00{:}11{:}38.003 \dashrightarrow 00{:}11{:}39.558$ rapamycin which is an mtor inhibitor,

NOTE Confidence: 0.733817814444444

 $00:11:39.560 \longrightarrow 00:11:40.622$ it's affecting metabolism.

00:11:40.622 --> 00:11:43.601 We had a similarly A dose dependent

NOTE Confidence: 0.733817814444444

 $00:11:43.601 \longrightarrow 00:11:45.766$ increase in megacaryocyte biased and

NOTE Confidence: 0.733817814444444

00:11:45.766 --> 00:11:48.604 what we realized is that both ATRA

NOTE Confidence: 0.733817814444444

 $00:11:48.604 \longrightarrow 00:11:51.033$ and rapamycin can slow the cell cycle.

NOTE Confidence: 0.733817814444444

 $00:11:51.040 \longrightarrow 00:11:52.784$ So we tested that.

NOTE Confidence: 0.733817814444444

00:11:52.784 --> 00:11:56.632 What we've done here is a dilution assay,

NOTE Confidence: 0.733817814444444

00:11:56.632 --> 00:11:58.480 CFSE, dilution assay,

NOTE Confidence: 0.733817814444444

 $00:11:58.480 \longrightarrow 00:11:59.628$ for those of you who are not

NOTE Confidence: 0.733817814444444

 $00:11:59.628 \longrightarrow 00:12:00.120$ familiar with this,

NOTE Confidence: 0.733817814444444

00:12:00.120 --> 00:12:01.835 you stain all your cells at time

NOTE Confidence: 0.733817814444444

 $00{:}12{:}01.835 \dashrightarrow 00{:}12{:}03.520$ zero with a fluorescent dye.

NOTE Confidence: 0.733817814444444

00:12:03.520 --> 00:12:05.080 Each time the cells divide,

NOTE Confidence: 0.733817814444444

 $00:12:05.080 \longrightarrow 00:12:06.837$ they have less of the fluorescent dye.

NOTE Confidence: 0.733817814444444

 $00:12:06.840 \longrightarrow 00:12:08.760$ So the further to the left they are,

NOTE Confidence: 0.733817814444444

 $00:12:08.760 \longrightarrow 00:12:10.720$ the more division there's been.

NOTE Confidence: 0.733817814444444

 $00:12:10.720 \longrightarrow 00:12:12.253$ And what you can see is the

00:12:12.253 --> 00:12:13.640 controls here are shown in blue.

NOTE Confidence: 0.733817814444444

00:12:13.640 --> 00:12:14.680 When you treat with ATRA,

NOTE Confidence: 0.924257633333333

00:12:14.680 --> 00:12:16.136 there's less division. Similarly,

NOTE Confidence: 0.924257633333333

00:12:16.136 --> 00:12:17.956 when you treat with rapamycin,

NOTE Confidence: 0.924257633333333

 $00:12:17.960 \longrightarrow 00:12:20.018$ there's been less division proving that

NOTE Confidence: 0.924257633333333

00:12:20.018 --> 00:12:22.039 they're both slowing the cell cycle.

NOTE Confidence: 0.924257633333333

00:12:22.040 --> 00:12:22.905 Now I'm not necessarily talking

NOTE Confidence: 0.924257633333333

 $00{:}12{:}22.905 \dashrightarrow 00{:}12{:}24.159$ about the speed of the cell cycle,

NOTE Confidence: 0.924257633333333

 $00:12:24.160 \longrightarrow 00:12:25.918$ we haven't tested that, but there's

NOTE Confidence: 0.924257633333333

 $00{:}12{:}25.920 \dashrightarrow 00{:}12{:}27.640$ they're dividing less frequently.

NOTE Confidence: 0.941363015833333

 $00:12:29.680 \longrightarrow 00:12:31.129$ What we did next then is just

NOTE Confidence: 0.941363015833333

 $00:12:31.129 \longrightarrow 00:12:32.639$ add a cell cycle inhibitor.

NOTE Confidence: 0.941363015833333

 $00{:}12{:}32.640 \dashrightarrow 00{:}12{:}34.320$ We used CDK 46 inhibitor.

NOTE Confidence: 0.941363015833333

 $00:12:34.320 \longrightarrow 00:12:36.640$ These cells completely stopped dividing.

NOTE Confidence: 0.941363015833333

 $00:12:36.640 \longrightarrow 00:12:39.232$ We then washed that out and put them

 $00:12:39.232 \longrightarrow 00:12:42.072$ into the colony assays and again saw

NOTE Confidence: 0.941363015833333

 $00{:}12{:}42.072 \dashrightarrow 00{:}12{:}44.704$ this dose dependent increase in the

NOTE Confidence: 0.941363015833333

 $00:12:44.704 \longrightarrow 00:12:46.864$ mega carrier site lineage specification

NOTE Confidence: 0.941363015833333

 $00:12:46.864 \longrightarrow 00:12:49.080$ of the MEP that proved this long.

NOTE Confidence: 0.941363015833333

 $00:12:49.080 \longrightarrow 00:12:50.960$ The cell cycle gave us a Meg bias.

NOTE Confidence: 0.941363015833333

 $00:12:50.960 \longrightarrow 00:12:52.136$ But what happens if you speed

NOTE Confidence: 0.941363015833333

 $00:12:52.136 \longrightarrow 00:12:52.920$ up the cell cycle?

NOTE Confidence: 0.941363015833333

 $00:12:52.920 \longrightarrow 00:12:54.315$ Well how do you speed up the cell cycle?

NOTE Confidence: 0.941363015833333

 $00:12:54.320 \longrightarrow 00:12:56.744$ One thing is that you can

NOTE Confidence: 0.941363015833333

00:12:56.744 --> 00:12:58.288 knock down CDK inhibitors.

NOTE Confidence: 0.941363015833333

 $00:12:58.288 \longrightarrow 00:13:00.912$ The CDK is that was pretty much toxic

NOTE Confidence: 0.941363015833333

 $00:13:00.912 \longrightarrow 00:13:03.196$ to the cells and didn't turn out.

NOTE Confidence: 0.941363015833333

00:13:03.200 --> 00:13:04.761 What we ended up getting to work

NOTE Confidence: 0.941363015833333

 $00:13:04.761 \longrightarrow 00:13:06.679$ is when we over expressed cyclins.

NOTE Confidence: 0.941363015833333

 $00:13:06.680 \longrightarrow 00:13:09.284$ So we got two different vectors from

NOTE Confidence: 0.941363015833333

 $00:13:09.284 \longrightarrow 00:13:11.160$ Claudia Vaskal's group in Germany,

00:13:11.160 --> 00:13:13.540 one that expresses CDK 2 and cycling

NOTE Confidence: 0.941363015833333

00:13:13.540 --> 00:13:16.266 E So this is the cycling dependent

NOTE Confidence: 0.941363015833333

 $00:13:16.266 \longrightarrow 00:13:19.006$ kinase 2 and the cyclin here the cyclin

NOTE Confidence: 0.941363015833333

 $00:13:19.006 \longrightarrow 00:13:21.053$ E that activates it and separately

NOTE Confidence: 0.941363015833333

00:13:21.053 --> 00:13:23.482 the CDK four and it's cyclin CDK

NOTE Confidence: 0.941363015833333

 $00:13:23.482 \longrightarrow 00:13:25.778$ Cyclin D We call this guy 2E and

NOTE Confidence: 0.941363015833333

 $00:13:25.778 \longrightarrow 00:13:28.320$ this one 4D for obvious reasons.

NOTE Confidence: 0.941363015833333

 $00:13:28.320 \longrightarrow 00:13:31.152$ And what we found is both 2E and

NOTE Confidence: 0.941363015833333

00:13:31.152 --> 00:13:33.497 4D accelerated the cycling of MEP

NOTE Confidence: 0.941363015833333

 $00:13:33.497 \longrightarrow 00:13:35.572$ getting more more cycling in vitro.

NOTE Confidence: 0.941363015833333

 $00:13:35.572 \longrightarrow 00:13:38.213$ And when we looked at the output of

NOTE Confidence: 0.941363015833333

 $00:13:38.213 \longrightarrow 00:13:40.741$ those MEP you can see that whether we

NOTE Confidence: 0.941363015833333

 $00{:}13{:}40.815 \dashrightarrow 00{:}13{:}43.235$ gave them 2E or 4D on a cell by cell

NOTE Confidence: 0.941363015833333

 $00:13:43.240 \longrightarrow 00:13:45.480$ basis now we had an erythroid bias.

NOTE Confidence: 0.941363015833333

00:13:45.480 --> 00:13:47.678 So the opposite with more cell cycle,

 $00{:}13{:}47.680 \dashrightarrow 00{:}13{:}49.690$ more E fate specification and we

NOTE Confidence: 0.941363015833333

 $00{:}13{:}49.690 \dashrightarrow 00{:}13{:}52.586$ did not see this effect if we took

NOTE Confidence: 0.941363015833333

 $00:13:52.586 \longrightarrow 00:13:54.806$ cells that were already MK committed

NOTE Confidence: 0.941363015833333

 $00:13:54.876 \longrightarrow 00:13:57.000$ or already Erythroid committed.

NOTE Confidence: 0.941363015833333

 $00:13:57.000 \longrightarrow 00:13:58.912$ So part one is when we slow the

NOTE Confidence: 0.941363015833333

 $00:13:58.912 \longrightarrow 00:14:00.357$ cell cycle we get more MKP.

NOTE Confidence: 0.941363015833333

 $00:14:00.360 \longrightarrow 00:14:01.912$ When we speed up the cell cycle we

NOTE Confidence: 0.941363015833333

00:14:01.912 --> 00:14:03.745 get more Erythroid. Why, how there?

NOTE Confidence: 0.941363015833333

 $00:14:03.745 \longrightarrow 00:14:05.635$ We have a lot of ideas.

NOTE Confidence: 0.941363015833333

 $00:14:05.640 \longrightarrow 00:14:07.082$ I'm going to show you that where

NOTE Confidence: 0.941363015833333

 $00:14:07.082 \longrightarrow 00:14:08.782$ we are in terms of answering that

NOTE Confidence: 0.941363015833333

00:14:08.782 --> 00:14:10.318 which is the runks one story

NOTE Confidence: 0.911813228695652

 $00:14:12.720 \longrightarrow 00:14:14.763$ and we I'm not showing you the data but

NOTE Confidence: 0.911813228695652

 $00:14:14.763 \longrightarrow 00:14:16.715$ we've shown that MEP actually cycle more

NOTE Confidence: 0.911813228695652

 $00:14:16.715 \longrightarrow 00:14:18.839$ slowly than both Meg or Erythroid cells.

NOTE Confidence: 0.911813228695652

 $00:14:18.840 \longrightarrow 00:14:20.220$ So that's kind of an interesting

 $00:14:20.220 \longrightarrow 00:14:21.896$ concept that they have to speed up

NOTE Confidence: 0.911813228695652

 $00:14:21.896 \longrightarrow 00:14:23.318$ whether they're going Meg or Erythroid,

NOTE Confidence: 0.911813228695652

 $00:14:23.320 \longrightarrow 00:14:26.596$ it's just the degree to which they speed up.

NOTE Confidence: 0.911813228695652

 $00:14:26.600 \longrightarrow 00:14:28.472$ So I want to tell you about Runx 1.

NOTE Confidence: 0.911813228695652

00:14:28.480 --> 00:14:30.776 Runx one also was revealed in our

NOTE Confidence: 0.911813228695652

 $00{:}14{:}30.776 \dashrightarrow 00{:}14{:}33.225$ single cell RNA seq data and then

NOTE Confidence: 0.911813228695652

 $00:14:33.225 \longrightarrow 00:14:35.313$ subsequently in bulk RNA seq data.

NOTE Confidence: 0.911813228695652

 $00{:}14{:}35.320 \dashrightarrow 00{:}14{:}37.070$ When we looked at the single cell

NOTE Confidence: 0.911813228695652

 $00{:}14{:}37.070 \dashrightarrow 00{:}14{:}39.144$ RNA seq data and said what's what

NOTE Confidence: 0.911813228695652

 $00:14:39.144 \longrightarrow 00:14:40.719$ is likely regulating the genes,

NOTE Confidence: 0.911813228695652

 $00:14:40.720 \longrightarrow 00:14:43.191$ the change from MEP to MKP and

NOTE Confidence: 0.911813228695652

00:14:43.191 --> 00:14:44.680 from MEP to ERP,

NOTE Confidence: 0.911813228695652

 $00{:}14{:}44.680 \dashrightarrow 00{:}14{:}46.955$ from Meg to erythroid and Meg to,

NOTE Confidence: 0.911813228695652

00:14:46.960 --> 00:14:48.976 I'm sorry, from the bipotent to the Meg

NOTE Confidence: 0.911813228695652

 $00:14:48.976 \longrightarrow 00:14:51.120$ and from the bipotent to the erythroid.

 $00:14:51.120 \longrightarrow 00:14:53.424$ Ronx One was the predicted transcription

NOTE Confidence: 0.911813228695652

 $00:14:53.424 \longrightarrow 00:14:56.039$ factor that would be regulating this.

NOTE Confidence: 0.911813228695652

 $00:14:56.040 \longrightarrow 00:14:57.916$ Of the genes that are down regulated

NOTE Confidence: 0.911813228695652

 $00{:}14{:}57.916 \dashrightarrow 00{:}15{:}00.231$ from CMP to MEP and down regulated from

NOTE Confidence: 0.911813228695652

00:15:00.231 --> 00:15:02.360 the MEP to the erythroid progenitor,

NOTE Confidence: 0.911813228695652

 $00:15:02.360 \longrightarrow 00:15:04.592$ it was the number one ranked

NOTE Confidence: 0.911813228695652

 $00{:}15{:}04.592 \dashrightarrow 00{:}15{:}06.428$ transcription factor that was able

NOTE Confidence: 0.911813228695652

 $00:15:06.428 \longrightarrow 00:15:08.516$ to regulate the target genes that

NOTE Confidence: 0.911813228695652

 $00{:}15{:}08.516 \dashrightarrow 00{:}15{:}09.560$ were differentially expressed.

NOTE Confidence: 0.911813228695652

 $00:15:09.560 \longrightarrow 00:15:12.733$ It was also the number three potential

NOTE Confidence: 0.911813228695652

 $00{:}15{:}12.733 \mathrel{--}{>} 00{:}15{:}14.491$ regulator of genes that are up

NOTE Confidence: 0.911813228695652

 $00:15:14.491 \longrightarrow 00:15:16.129$ regulated in the megacaryocyte fate

NOTE Confidence: 0.911813228695652

 $00:15:16.129 \longrightarrow 00:15:17.545$ specification and amongst those

NOTE Confidence: 0.911813228695652

00:15:17.545 --> 00:15:19.353 is Mipple which is thrombopotin

NOTE Confidence: 0.911813228695652

 $00:15:19.353 \longrightarrow 00:15:21.691$ receptor and FLEA one which is a

NOTE Confidence: 0.911813228695652

 $00{:}15{:}21.691 \dashrightarrow 00{:}15{:}23.960$ known transcription factor that's

 $00:15:23.960 \longrightarrow 00:15:28.880$ critical for megacaryois what we oops,

NOTE Confidence: 0.911813228695652

 $00:15:28.880 \longrightarrow 00:15:30.116$ this is supposed to come next.

NOTE Confidence: 0.911813228695652

 $00:15:30.120 \longrightarrow 00:15:32.346$ What we did then was we over

NOTE Confidence: 0.911813228695652

 $00:15:32.346 \longrightarrow 00:15:34.447$ expressed Runks 1 and when we do

NOTE Confidence: 0.911813228695652

 $00:15:34.447 \longrightarrow 00:15:36.607$ that you can see that we actually

NOTE Confidence: 0.911813228695652

00:15:36.607 --> 00:15:39.427 caused those bipotent cells to go

NOTE Confidence: 0.911813228695652

 $00:15:39.427 \longrightarrow 00:15:41.185$ towards the megacaryocyte lineage.

NOTE Confidence: 0.911813228695652

 $00:15:41.185 \longrightarrow 00:15:43.600$ And then when we inhibited Bronx 1,

NOTE Confidence: 0.911813228695652

00:15:43.600 --> 00:15:46.160 Runks 2 and Runks 3 with a drug,

NOTE Confidence: 0.911813228695652

 $00:15:46.160 \longrightarrow 00:15:48.472$ we could see the opposite effect where we

NOTE Confidence: 0.911813228695652

 $00:15:48.472 \longrightarrow 00:15:50.977$ see an increased in E fate specification

NOTE Confidence: 0.911813228695652

 $00:15:50.977 \longrightarrow 00:15:53.510$ which really proved that the Runcs one

NOTE Confidence: 0.911813228695652

 $00:15:53.510 \longrightarrow 00:15:57.640$ activity is promoting the MK fate in the MEP.

NOTE Confidence: 0.911813228695652 00:15:57.640 --> 00:15:57.961 However, NOTE Confidence: 0.911813228695652

00:15:57.961 --> 00:16:00.529 when we looked at Runcs One RNA and

00:16:00.529 --> 00:16:02.836 protein levels in these three lineages,

NOTE Confidence: 0.911813228695652

 $00{:}16{:}02.840 \dashrightarrow 00{:}16{:}04.394$ the Meg erythroid progenitor and then the

NOTE Confidence: 0.911813228695652

 $00:16:04.394 \longrightarrow 00:16:06.200$ Meg and the erythroid committed cells,

NOTE Confidence: 0.911813228695652

 $00:16:06.200 \longrightarrow 00:16:08.234$ there was no difference in either

NOTE Confidence: 0.911813228695652

 $00:16:08.234 \longrightarrow 00:16:10.027$ protein or RNA expression between

NOTE Confidence: 0.911813228695652

 $00:16:10.027 \longrightarrow 00:16:11.922$ the Meg committed cells and

NOTE Confidence: 0.911813228695652

 $00:16:11.922 \longrightarrow 00:16:13.438$ the erythroid committed cells.

NOTE Confidence: 0.911813228695652

00:16:13.440 --> 00:16:15.216 Which told us it's not happening

NOTE Confidence: 0.911813228695652

 $00:16:15.216 \longrightarrow 00:16:16.400$ at the transcriptional level

NOTE Confidence: 0.911813228695652

 $00:16:16.449 \longrightarrow 00:16:17.757$ or the translational level.

NOTE Confidence: 0.911813228695652

 $00{:}16{:}17.760 \dashrightarrow 00{:}16{:}19.308$ It's probably post translational.

NOTE Confidence: 0.911813228695652

 $00:16:19.308 \longrightarrow 00:16:21.630$ So we started looking at post

NOTE Confidence: 0.911813228695652

 $00{:}16{:}21.698 \dashrightarrow 00{:}16{:}24.158$ translational modifications of Runx one.

NOTE Confidence: 0.911813228695652

 $00:16:24.160 \longrightarrow 00:16:26.106$ And one that has been heavily studied

NOTE Confidence: 0.911813228695652

 $00:16:26.106 \longrightarrow 00:16:27.720$ before is serine and threonine.

NOTE Confidence: 0.911813228695652

 $00:16:27.720 \longrightarrow 00:16:30.186$ Phosphorylation of Runx one is known

 $00:16:30.186 \longrightarrow 00:16:33.398$ to be necessary for its activation for

NOTE Confidence: 0.911813228695652

 $00:16:33.398 \longrightarrow 00:16:35.878$ its ability to activate transgenes.

NOTE Confidence: 0.911813228695652

 $00:16:35.880 \longrightarrow 00:16:37.704$ So activate transcription.

NOTE Confidence: 0.911813228695652 00:16:37.704 --> 00:16:38.920 I'm sorry. NOTE Confidence: 0.911813228695652

 $00:16:38.920 \longrightarrow 00:16:40.915$ What we did is we got antibodies

NOTE Confidence: 0.911813228695652

 $00:16:40.915 \longrightarrow 00:16:42.697$ that are specific for different

NOTE Confidence: 0.911813228695652

 $00:16:42.697 \longrightarrow 00:16:43.996$ phosphoserines on Ronks.

NOTE Confidence: 0.911813228695652

00:16:44.000 --> 00:16:45.972 One from our collaborator,

NOTE Confidence: 0.911813228695652

00:16:45.972 --> 00:16:46.958 Alan Friedman,

NOTE Confidence: 0.911813228695652

 $00:16:46.960 \longrightarrow 00:16:48.960$ he'd published this and pulled them out of

NOTE Confidence: 0.911813228695652

00:16:48.960 --> 00:16:51.040 the freezer for us and they work beautifully.

NOTE Confidence: 0.911813228695652

 $00:16:51.040 \longrightarrow 00:16:51.960$ And what you can see,

NOTE Confidence: 0.911813228695652

 $00{:}16{:}51.960 \dashrightarrow 00{:}16{:}54.093$ and this is work that was done by two

NOTE Confidence: 0.911813228695652

 $00{:}16{:}54.093 \dashrightarrow 00{:}16{:}56.320$ very talented people in the laboratory.

NOTE Confidence: 0.911813228695652

00:16:56.320 --> 00:16:58.330 I already introduced you to Yi

 $00:16:58.330 \longrightarrow 00:17:00.610$ Shen and Nayeong Kwan is a grad

NOTE Confidence: 0.911813228695652

 $00:17:00.610 \longrightarrow 00:17:02.640$ student in the lab and she's really

NOTE Confidence: 0.821214104

00:17:02.709 --> 00:17:04.683 been the mastermind between all of

NOTE Confidence: 0.821214104

00:17:04.683 --> 00:17:08.200 all the work I'm about to show you.

NOTE Confidence: 0.821214104

 $00:17:08.200 \longrightarrow 00:17:10.699$ What she did is she did intracellular

NOTE Confidence: 0.821214104

 $00:17:10.699 \longrightarrow 00:17:12.605$ flow cytometry for total runks

NOTE Confidence: 0.821214104

00:17:12.605 --> 00:17:14.520 one and phosphoserine runks 1.

NOTE Confidence: 0.821214104

 $00:17:14.520 \longrightarrow 00:17:15.682$ And I'm going to show you data

NOTE Confidence: 0.821214104

 $00{:}17{:}15.682 \dashrightarrow 00{:}17{:}16.920$ for several of the phosphoserines.

NOTE Confidence: 0.821214104

 $00:17:16.920 \longrightarrow 00:17:18.120$ This is phosphoserine 76.

NOTE Confidence: 0.821214104

 $00:17:18.120 \longrightarrow 00:17:19.920$ I just bother to show you.

NOTE Confidence: 0.821214104

 $00:17:19.920 \longrightarrow 00:17:22.664$ The 276 is here and phosphoserine 303

NOTE Confidence: 0.821214104

 $00:17:22.664 \longrightarrow 00:17:25.838$ which is here in the Runks one protein.

NOTE Confidence: 0.821214104

 $00{:}17{:}25.840 \dashrightarrow 00{:}17{:}27.984$ And what she showed and this is just

NOTE Confidence: 0.821214104

00:17:27.984 --> 00:17:29.453 representative data on the left and

NOTE Confidence: 0.821214104

 $00:17:29.453 \longrightarrow 00:17:31.148$ then graphed here on the right for

00:17:31.148 --> 00:17:32.753 multiple replicates is that either

NOTE Confidence: 0.821214104

 $00:17:32.753 \longrightarrow 00:17:34.610$ with commitment to erythroid or

NOTE Confidence: 0.821214104

 $00:17:34.610 \longrightarrow 00:17:36.320$ megacarocyte fate specification,

NOTE Confidence: 0.821214104

 $00:17:36.320 \longrightarrow 00:17:40.759$ you see an increase in the phosphosurine

NOTE Confidence: 0.821214104

 $00:17:40.759 \longrightarrow 00:17:44.074$ levels of Bronx One and there's a

NOTE Confidence: 0.821214104

 $00{:}17{:}44.074 \dashrightarrow 00{:}17{:}45.670$ significantly higher increase when

NOTE Confidence: 0.821214104

00:17:45.738 --> 00:17:48.160 you go to the Meg Fate specification.

NOTE Confidence: 0.821214104

 $00:17:48.160 \longrightarrow 00:17:51.420$ Similarly with the Erythroid, Similarly,

NOTE Confidence: 0.821214104

00:17:51.420 --> 00:17:53.320 I'm sorry, with phosphosurine 303,

NOTE Confidence: 0.821214104

 $00:17:53.320 \longrightarrow 00:17:56.312$ you see this increase and then a further

NOTE Confidence: 0.821214104

 $00:17:56.312 \longrightarrow 00:17:58.151$ significant increase between erythroid

NOTE Confidence: 0.821214104

 $00{:}17{:}58.151 \dashrightarrow 00{:}18{:}00.195$ progenitors and Meg progenitors.

NOTE Confidence: 0.821214104

 $00:18:00.200 \longrightarrow 00:18:01.718$ So that's just shown schematically here.

NOTE Confidence: 0.821214104

 $00{:}18{:}01.720 \dashrightarrow 00{:}18{:}04.478$ The phosphoserine runcs 1 levels go up

NOTE Confidence: 0.821214104

 $00{:}18{:}04.478 \dashrightarrow 00{:}18{:}07.635$ from MEP to MKP and go down or don't

 $00:18:07.635 \longrightarrow 00:18:10.557$ go up with when you go to Erythroid.

NOTE Confidence: 0.821214104

 $00:18:10.560 \longrightarrow 00:18:12.240$ So this is where we are.

NOTE Confidence: 0.821214104

 $00:18:12.240 \longrightarrow 00:18:14.424$ Is there a link now with the cell

NOTE Confidence: 0.821214104

 $00:18:14.424 \longrightarrow 00:18:16.160$ cycle data that I showed you?

NOTE Confidence: 0.821214104

00:18:16.160 --> 00:18:17.648 I'll just show you one example

NOTE Confidence: 0.821214104

 $00:18:17.648 \longrightarrow 00:18:18.640$ to for this link.

NOTE Confidence: 0.821214104

00:18:18.640 --> 00:18:21.440 The link is basically that the slowing

NOTE Confidence: 0.821214104

 $00:18:21.440 \longrightarrow 00:18:24.560$ of the cell cycle requires Runcs 1.

NOTE Confidence: 0.821214104

 $00{:}18{:}24.560 \dashrightarrow 00{:}18{:}26.288$ You if you slow the cell cycle and

NOTE Confidence: 0.821214104

00:18:26.288 --> 00:18:27.943 there's no Runx One activity then you

NOTE Confidence: 0.821214104

 $00{:}18{:}27.943 \dashrightarrow 00{:}18{:}29.840$ don't get the Meg Fate specification.

NOTE Confidence: 0.821214104

 $00:18:29.840 \longrightarrow 00:18:31.639$ They still go down the erythroid lineage.

NOTE Confidence: 0.821214104

 $00:18:31.640 \longrightarrow 00:18:33.320$ But let me show that to you slowly.

NOTE Confidence: 0.821214104

 $00:18:33.320 \longrightarrow 00:18:35.357$ So here's your control with the bipotent,

NOTE Confidence: 0.821214104

 $00:18:35.360 \longrightarrow 00:18:37.320$ the erythroid only and the Meg only.

NOTE Confidence: 0.821214104

 $00:18:37.320 \longrightarrow 00:18:39.561$ This is the effect of the Runx 1 inhibitor

 $00:18:39.561 \longrightarrow 00:18:41.398$ that gives us more erythroid only.

NOTE Confidence: 0.821214104

00:18:41.400 --> 00:18:43.101 This is the effect I showed you

NOTE Confidence: 0.821214104

00:18:43.101 --> 00:18:44.372 previously of ATRA or rapamycin

NOTE Confidence: 0.821214104

 $00:18:44.372 \longrightarrow 00:18:46.101$ where they slow the cell cycle and

NOTE Confidence: 0.821214104

 $00:18:46.101 \longrightarrow 00:18:47.960$ you get more Meg Fate specification.

NOTE Confidence: 0.821214104

00:18:47.960 --> 00:18:50.438 And here I'm showing you the combination.

NOTE Confidence: 0.821214104

00:18:50.440 --> 00:18:52.820 You do not see this increase in

NOTE Confidence: 0.821214104

 $00:18:52.820 \longrightarrow 00:18:54.527$ Meg phase specification with ATRA

NOTE Confidence: 0.821214104

00:18:54.527 --> 00:18:56.381 or with rapamycin in the presence

NOTE Confidence: 0.821214104

 $00:18:56.381 \longrightarrow 00:18:58.679$ of the inhibitor of the Ronx one.

NOTE Confidence: 0.821214104

 $00:18:58.680 \longrightarrow 00:19:01.025$ Really suggesting that we have a link

NOTE Confidence: 0.821214104

 $00:19:01.025 \longrightarrow 00:19:03.573$ now between slowing the cell cycle and

NOTE Confidence: 0.821214104

 $00{:}19{:}03.573 \dashrightarrow 00{:}19{:}05.423$ getting increased Ronx 1 phosphorylation

NOTE Confidence: 0.821214104

 $00{:}19{:}05.423 \dashrightarrow 00{:}19{:}07.798$ and increased MK phase specification.

NOTE Confidence: 0.70433965

 $00:19:11.600 \longrightarrow 00:19:12.638$ Oh, so I did include this,

 $00:19:12.640 \longrightarrow 00:19:13.599$ I wasn't sure if I'd show this.

NOTE Confidence: 0.70433965

 $00:19:13.600 \longrightarrow 00:19:15.224$ So then we actually did prove that

NOTE Confidence: 0.70433965

 $00:19:15.224 \longrightarrow 00:19:17.207$ if you slow the cell cycle like

NOTE Confidence: 0.70433965

00:19:17.207 --> 00:19:18.747 with the Pelvicyclib that actually

NOTE Confidence: 0.70433965

 $00:19:18.747 \longrightarrow 00:19:20.192$ slowed the cell cycle and then

NOTE Confidence: 0.70433965

00:19:20.192 --> 00:19:22.132 you wash it out and then you show

NOTE Confidence: 0.70433965

 $00:19:22.132 \longrightarrow 00:19:23.836$ the cells are Meg fate specified,

NOTE Confidence: 0.70433965

 $00:19:23.840 \longrightarrow 00:19:26.594$ you actually get increased levels of

NOTE Confidence: 0.70433965

 $00:19:26.594 \dashrightarrow 00:19:29.607$ phosphosurine runks one at both 276 and 303.

NOTE Confidence: 0.70433965

00:19:29.607 --> 00:19:31.490 It ends up you also get increased

NOTE Confidence: 0.70433965

 $00:19:31.556 \longrightarrow 00:19:33.076$ levels of total runks one,

NOTE Confidence: 0.70433965

 $00:19:33.080 \longrightarrow 00:19:35.432$ but the ratios suggest that we probably

NOTE Confidence: 0.70433965

 $00:19:35.432 \longrightarrow 00:19:37.775$ have a higher percentage of the

NOTE Confidence: 0.70433965

 $00{:}19{:}37.775 \dashrightarrow 00{:}19{:}39.880$ total runks that is phosphorylated.

NOTE Confidence: 0.70433965

 $00{:}19{:}39.880 \longrightarrow 00{:}19{:}43.136$ So that's our link for now with fate

NOTE Confidence: 0.70433965

 $00{:}19{:}43.136 \dashrightarrow 00{:}19{:}45.160$ specification and the cell cycle.

 $00:19:45.160 \longrightarrow 00:19:47.386$ We then wanted to test the effects

NOTE Confidence: 0.70433965

 $00{:}19{:}47.386 \dashrightarrow 00{:}19{:}49.899$ on primary cells if we get rid of

NOTE Confidence: 0.70433965

 $00:19:49.899 \longrightarrow 00:19:51.394$ the serines and threonines that

NOTE Confidence: 0.70433965

00:19:51.461 --> 00:19:53.519 are phosphorylated in the Runx 1,

NOTE Confidence: 0.70433965

00:19:53.520 --> 00:19:54.560 So I'd shown you previously,

NOTE Confidence: 0.70433965

 $00:19:54.560 \longrightarrow 00:19:55.880$ when we overexpressed Runx one,

NOTE Confidence: 0.70433965

 $00:19:55.880 \longrightarrow 00:19:58.196$ we get more MK fate specification.

NOTE Confidence: 0.70433965

00:19:58.200 --> 00:20:01.196 What if we mutate these four residues,

NOTE Confidence: 0.70433965

 $00:20:01.200 \longrightarrow 00:20:03.520$ 3 serines and one threonine

NOTE Confidence: 0.70433965

00:20:03.520 --> 00:20:05.840 to alanine in that case?

NOTE Confidence: 0.70433965

 $00{:}20{:}05.840 --> 00{:}20{:}08.078$ We didn't get quite no effect.

NOTE Confidence: 0.70433965

 $00:20:08.080 \longrightarrow 00:20:08.772$ We got some effect,

NOTE Confidence: 0.70433965

 $00{:}20{:}08.772 \dashrightarrow 00{:}20{:}10.046$ but it was a less strong effect

NOTE Confidence: 0.70433965

00:20:10.046 --> 00:20:10.996 than in the wild type.

NOTE Confidence: 0.70433965

 $00:20:11.000 \longrightarrow 00:20:13.555$ And in contrast when we changed the

 $00:20:13.555 \longrightarrow 00:20:15.485$ serines and threonines to aspartic

NOTE Confidence: 0.70433965

00:20:15.485 --> 00:20:17.795 acid which mimics the phospho serine,

NOTE Confidence: 0.70433965

 $00{:}20{:}17.800 \longrightarrow 00{:}20{:}19.886$ so all of the overexpressed brunx one

NOTE Confidence: 0.70433965

 $00:20:19.886 \longrightarrow 00:20:22.558$ is pre in a pre phosphorylated state.

NOTE Confidence: 0.70433965

 $00:20:22.560 \longrightarrow 00:20:25.283$ We got a far stronger effect with

NOTE Confidence: 0.70433965

 $00:20:25.283 \longrightarrow 00:20:27.248$ almost no erythroid fate specification

NOTE Confidence: 0.70433965

 $00:20:27.248 \longrightarrow 00:20:29.710$ and a lot of MK only suggesting

NOTE Confidence: 0.70433965

 $00:20:29.710 \longrightarrow 00:20:31.570$ that this is really playing a

NOTE Confidence: 0.70433965

 $00{:}20{:}31.570 \dashrightarrow 00{:}20{:}33.720$ role in MK fate specification.

NOTE Confidence: 0.70433965

 $00:20:33.720 \longrightarrow 00:20:35.172$ In order to study this we

NOTE Confidence: 0.70433965

 $00{:}20{:}35.172 --> 00{:}20{:}36.840$ then used a cell line model.

NOTE Confidence: 0.70433965

 $00:20:36.840 \longrightarrow 00:20:38.600$ So human erythro leukemia

NOTE Confidence: 0.70433965

 $00{:}20{:}38.600 \to 00{:}20{:}40.521$ cells are an OK model.

NOTE Confidence: 0.70433965

 $00:20:40.521 \longrightarrow 00:20:42.256$ When you add TPA they

NOTE Confidence: 0.70433965

 $00:20:42.256 \longrightarrow 00:20:44.360$ go down the Meg lineage,

NOTE Confidence: 0.70433965

 $00:20:44.360 \longrightarrow 00:20:45.872$ when you add hemen they kind of sort

 $00:20:45.872 \longrightarrow 00:20:47.517$ of go down the erythroid lineage.

NOTE Confidence: 0.70433965

 $00:20:47.520 \longrightarrow 00:20:49.298$ Anyway it's the best system we have

NOTE Confidence: 0.70433965

 $00:20:49.298 \longrightarrow 00:20:51.251$ for looking at this and what we wanted

NOTE Confidence: 0.70433965

 $00:20:51.251 \longrightarrow 00:20:53.160$ to do is over express the wild type,

NOTE Confidence: 0.70433965

 $00:20:53.160 \longrightarrow 00:20:55.600$ the 4A mutant that has the alanine mutations,

NOTE Confidence: 0.70433965

 $00{:}20{:}55.600 \rightarrow 00{:}20{:}57.693$ the 4D mutant with the aspartic acid

NOTE Confidence: 0.70433965

00:20:57.693 --> 00:21:00.059 mutations and so that we can do some

NOTE Confidence: 0.70433965

 $00{:}21{:}00.059 \dashrightarrow 00{:}21{:}01.866$ molecular studies like cut and run

NOTE Confidence: 0.70433965

 $00{:}21{:}01.866 \to 00{:}21{:}03.556$ and and gene expression changes.

NOTE Confidence: 0.70433965

 $00:21:03.560 \longrightarrow 00:21:06.080$ And first thing you can see is even

NOTE Confidence: 0.70433965

 $00:21:06.080 \longrightarrow 00:21:07.716$ without inducing these cells to

NOTE Confidence: 0.70433965

 $00:21:07.716 \longrightarrow 00:21:09.606$ differentiate with TPA we just we

NOTE Confidence: 0.70433965

 $00{:}21{:}09.606 \dashrightarrow 00{:}21{:}11.920$ get them to go down the Meg lineage.

NOTE Confidence: 0.70433965

 $00:21:11.920 \longrightarrow 00:21:14.840$ CD 42 comes on in more mature megakaryocytes.

NOTE Confidence: 0.70433965

00:21:14.840 --> 00:21:16.835 You can see that they already start

00:21:16.835 --> 00:21:18.800 to mature down the Meg lineage

NOTE Confidence: 0.70433965

 $00:21:18.800 \longrightarrow 00:21:20.965$ just by over expressing this pre

NOTE Confidence: 0.70433965

 $00:21:20.965 \longrightarrow 00:21:22.905$ phosphorylated Bronx one compared

NOTE Confidence: 0.70433965

 $00:21:22.905 \longrightarrow 00:21:26.400$ to the 4A or the wild type.

NOTE Confidence: 0.70433965

 $00:21:26.400 \longrightarrow 00:21:28.010$ We then looked at gene expression changes

NOTE Confidence: 0.70433965

 $00:21:28.010 \longrightarrow 00:21:29.879$ and cut and run in these health cells.

NOTE Confidence: 0.70433965

 $00:21:29.880 \longrightarrow 00:21:31.518$ I'm just showing you gene expression changes.

NOTE Confidence: 0.70433965

 $00:21:31.520 \longrightarrow 00:21:33.350$ First glycoprotein 1B beta is a

NOTE Confidence: 0.70433965

 $00{:}21{:}33.350 \dashrightarrow 00{:}21{:}35.121$ gene that's very important in Meg

NOTE Confidence: 0.70433965

00:21:35.121 --> 00:21:36.603 maturation and what you can see

NOTE Confidence: 0.70433965

 $00{:}21{:}36.603 \dashrightarrow 00{:}21{:}38.494$ and this is just two duplicates of

NOTE Confidence: 0.70433965

 $00:21:38.494 \longrightarrow 00:21:40.200$ each for the empty vector cells.

NOTE Confidence: 0.70433965

 $00:21:40.200 \longrightarrow 00:21:42.360$ For the cells that we're expressing

NOTE Confidence: 0.70433965

 $00:21:42.360 \longrightarrow 00:21:43.870$ 4A that cannot be phosphorylated

NOTE Confidence: 0.70433965

 $00:21:43.870 \longrightarrow 00:21:45.078$ on this four residues,

NOTE Confidence: 0.70433965

 $00:21:45.080 \longrightarrow 00:21:47.565$ the wild type and the 4D that's

 $00:21:47.565 \longrightarrow 00:21:48.275$ pre phosphorylated.

NOTE Confidence: 0.70433965

 $00{:}21{:}48.280 --> 00{:}21{:}49.966$ And what you can see is

NOTE Confidence: 0.70433965

00:21:49.966 --> 00:21:51.090 this gradual increase in

NOTE Confidence: 0.891751959166667

00:21:51.158 --> 00:21:53.270 the glycoprotein 1B beta consistent with

NOTE Confidence: 0.891751959166667

 $00{:}21{:}53.270 \dashrightarrow 00{:}21{:}55.932$ the increased CD 42 that we had seen when

NOTE Confidence: 0.891751959166667

 $00:21:55.932 \longrightarrow 00:21:58.200$ we looked at where is that Runx one bound.

NOTE Confidence: 0.891751959166667

 $00:21:58.200 \longrightarrow 00:22:00.223$ So the over expressed 4A4D and wild

NOTE Confidence: 0.891751959166667

 $00{:}22{:}00.223 \dashrightarrow 00{:}22{:}02.390$ tape are all HA tagged and when we

NOTE Confidence: 0.891751959166667

 $00:22:02.390 \longrightarrow 00:22:04.659$ did anti HA cut and run what we

NOTE Confidence: 0.891751959166667

 $00:22:04.659 \longrightarrow 00:22:06.279$ found is there's no difference,

NOTE Confidence: 0.891751959166667

 $00:22:06.280 \longrightarrow 00:22:07.920$ they all bind just fine.

NOTE Confidence: 0.891751959166667

 $00{:}22{:}07.920 \dashrightarrow 00{:}22{:}10.524$ This isn't a complete surprise because

NOTE Confidence: 0.891751959166667

 $00{:}22{:}10.524 \dashrightarrow 00{:}22{:}12.946$ the DNA binding domain of Runx One

NOTE Confidence: 0.891751959166667

 $00:22:12.946 \longrightarrow 00:22:15.240$ is not near those phosphocytes.

NOTE Confidence: 0.891751959166667

00:22:15.240 --> 00:22:17.094 But what it strongly suggests is

 $00:22:17.094 \longrightarrow 00:22:20.083$ that Runx one can bind but the post

NOTE Confidence: 0.891751959166667

 $00:22:20.083 \longrightarrow 00:22:21.767$ translational modification is what's

NOTE Confidence: 0.891751959166667

 $00:22:21.767 \longrightarrow 00:22:24.158$ affecting its effect on transcription.

NOTE Confidence: 0.891751959166667

00:22:24.160 --> 00:22:26.272 And keep that in mind because I think

NOTE Confidence: 0.891751959166667

 $00:22:26.272 \longrightarrow 00:22:28.566$ we we start to have clues now as

NOTE Confidence: 0.891751959166667

 $00:22:28.566 \longrightarrow 00:22:30.558$ to where that might be taking us.

NOTE Confidence: 0.891751959166667

00:22:30.560 --> 00:22:32.387 This is just showing you that when

NOTE Confidence: 0.891751959166667

 $00:22:32.387 \longrightarrow 00:22:34.326$ we combine the cut and run and the

NOTE Confidence: 0.891751959166667

 $00{:}22{:}34.326 \dashrightarrow 00{:}22{:}36.291$ RNA seek data that we have this group

NOTE Confidence: 0.891751959166667

00:22:36.291 --> 00:22:38.195 of genes that are activated by both

NOTE Confidence: 0.891751959166667

 $00{:}22{:}38.200 \dashrightarrow 00{:}22{:}40.704$ wild type and 4D in the health cells

NOTE Confidence: 0.891751959166667

 $00:22:40.704 \longrightarrow 00:22:42.976$ but not as much by the 4A mutant.

NOTE Confidence: 0.891751959166667

 $00:22:42.976 \longrightarrow 00:22:43.552$ But yeah,

NOTE Confidence: 0.891751959166667

 $00{:}22{:}43.552 \dashrightarrow 00{:}22{:}45.615$ the 4A mutant and those genes tend

NOTE Confidence: 0.891751959166667

 $00:22:45.615 \longrightarrow 00:22:47.823$ to be genes that we know are very

NOTE Confidence: 0.891751959166667

 $00:22:47.823 \longrightarrow 00:22:49.198$ important in Meg maturation.

 $00:22:49.200 \longrightarrow 00:22:50.892$ So just consistent with what I

NOTE Confidence: 0.891751959166667

 $00{:}22{:}50.892 \rightarrow 00{:}22{:}52.838$ already showed you on the other two,

NOTE Confidence: 0.891751959166667

00:22:52.840 --> 00:22:54.240 I'm not going to show you a whole

NOTE Confidence: 0.891751959166667

 $00:22:54.240 \longrightarrow 00:22:55.657$ lot of data and a whole lot of

NOTE Confidence: 0.891751959166667

 $00:22:55.657 \longrightarrow 00:22:56.960$ work on the cut and run data,

NOTE Confidence: 0.891751959166667

 $00:22:56.960 \longrightarrow 00:23:00.120$ except to say that there really was no

NOTE Confidence: 0.891751959166667

 $00:23:00.120 \longrightarrow 00:23:01.777$ significant difference in binding of

NOTE Confidence: 0.891751959166667

 $00:23:01.777 \longrightarrow 00:23:04.160$ the four a the wild type in the 4D.

NOTE Confidence: 0.891751959166667

 $00{:}23{:}04.160 \dashrightarrow 00{:}23{:}06.197$ So the next question is what phosphory lates

NOTE Confidence: 0.891751959166667

00:23:06.197 --> 00:23:08.037 the runks one and this has been,

NOTE Confidence: 0.891751959166667

 $00:23:08.040 \longrightarrow 00:23:09.000$ this is very recent data,

NOTE Confidence: 0.891751959166667

 $00:23:09.000 \longrightarrow 00:23:10.056$ it's not yet published.

NOTE Confidence: 0.891751959166667

00:23:10.056 --> 00:23:11.640 A lot of this isn't published,

NOTE Confidence: 0.891751959166667

 $00:23:11.640 \longrightarrow 00:23:13.440$ but this is like we got it in

NOTE Confidence: 0.891751959166667

 $00:23:13.440 \longrightarrow 00:23:14.599$ the last few months.

 $00:23:14.600 \longrightarrow 00:23:16.660$ Multiple kinases were published

NOTE Confidence: 0.891751959166667

00:23:16.660 --> 00:23:18.720 that phosphorylate runks one,

NOTE Confidence: 0.891751959166667

 $00:23:18.720 \longrightarrow 00:23:20.390$ and problem is whether when

NOTE Confidence: 0.891751959166667

 $00:23:20.390 \longrightarrow 00:23:22.480$ we knock down any of them,

NOTE Confidence: 0.891751959166667

 $00:23:22.480 \longrightarrow 00:23:27.439$ we had no loss of phosphorylation on Runx 1.

NOTE Confidence: 0.891751959166667

 $00:23:27.440 \longrightarrow 00:23:28.464$ So what's going on?

NOTE Confidence: 0.891751959166667

 $00:23:28.464 \longrightarrow 00:23:30.920$ We decided what has to be another kinase,

NOTE Confidence: 0.891751959166667

 $00:23:30.920 \longrightarrow 00:23:32.404$ so I'm going to take you through

NOTE Confidence: 0.891751959166667

 $00:23:32.404 \longrightarrow 00:23:33.280$ that a little bit.

NOTE Confidence: 0.891751959166667

 $00:23:33.280 \longrightarrow 00:23:36.380$ The predicted kinases for Runx

NOTE Confidence: 0.891751959166667

 $00:23:36.380 \longrightarrow 00:23:38.240$ one include CD,

NOTE Confidence: 0.891751959166667

00:23:38.240 --> 00:23:39.680 all of the cycling dependent kinases,

NOTE Confidence: 0.891751959166667

 $00{:}23{:}39.680 \dashrightarrow 00{:}23{:}41.992$ and CDKS 1-2 and six had all been

NOTE Confidence: 0.891751959166667

 $00{:}23{:}41.992 \to 00{:}23{:}44.399$ proven to phosphorylate it in vitro.

NOTE Confidence: 0.891751959166667

 $00:23:44.400 \longrightarrow 00:23:45.640$ Similarly with the SIP,

NOTE Confidence: 0.891751959166667

 $00:23:45.640 \longrightarrow 00:23:46.880$ K2 and the URC.

00:23:46.880 --> 00:23:48.427 But all of their activity was shown

NOTE Confidence: 0.891751959166667

 $00:23:48.427 \longrightarrow 00:23:49.965$ in reporter assays and it didn't end

NOTE Confidence: 0.891751959166667

00:23:49.965 --> 00:23:51.213 up being relevant for our primary

NOTE Confidence: 0.891751959166667

 $00:23:51.263 \longrightarrow 00:23:52.488$ cells where the phospho levels

NOTE Confidence: 0.891751959166667

 $00{:}23{:}52.488 \dashrightarrow 00{:}23{:}54.091$ didn't change when we knocked down

NOTE Confidence: 0.891751959166667

00:23:54.091 --> 00:23:56.317 these genes or inhibited them with

NOTE Confidence: 0.891751959166667

 $00:23:56.320 \longrightarrow 00:23:59.680$ with with very small molecules.

NOTE Confidence: 0.89175195916666700:23:59.680 --> 00:24:00.388 In fact,

NOTE Confidence: 0.891751959166667

 $00:24:00.388 \longrightarrow 00:24:02.158$ if you what we found

NOTE Confidence: 0.714086705

 $00:24:02.160 \longrightarrow 00:24:03.040$ is if if you

NOTE Confidence: 0.90280320625

00:24:04.200 --> 00:24:05.610 inhibit CDK 9,

NOTE Confidence: 0.90280320625

00:24:05.610 --> 00:24:07.960 which is completely different CDK,

NOTE Confidence: 0.90280320625

 $00{:}24{:}07.960 --> 00{:}24{:}09.040$ that's when you lose it.

NOTE Confidence: 0.90280320625

00:24:09.040 --> 00:24:10.160 So I'm going to show you first,

NOTE Confidence: 0.90280320625

 $00:24:10.160 \longrightarrow 00:24:11.280$ this is what happens when

 $00:24:11.280 \longrightarrow 00:24:12.640$ we inhibit CDK four or six.

NOTE Confidence: 0.90280320625

 $00{:}24{:}12.640 \dashrightarrow 00{:}24{:}14.116$ So they were predicted.

NOTE Confidence: 0.90280320625

 $00:24:14.116 \longrightarrow 00:24:15.961$ CDK six was predicted to

NOTE Confidence: 0.90280320625

 $00:24:15.961 \longrightarrow 00:24:17.996$ be a kinase for Runx One.

NOTE Confidence: 0.90280320625

 $00:24:18.000 \longrightarrow 00:24:19.460$ I previously showed you these

NOTE Confidence: 0.90280320625

 $00:24:19.460 \longrightarrow 00:24:20.920$ data in a different context.

NOTE Confidence: 0.90280320625

 $00:24:20.920 \longrightarrow 00:24:22.439$ When you inhibit CDK four and six,

NOTE Confidence: 0.90280320625

00:24:22.440 --> 00:24:23.820 you actually get more

NOTE Confidence: 0.90280320625

 $00:24:23.820 \longrightarrow 00:24:25.200$ phosphorylation of Runx One.

NOTE Confidence: 0.90280320625

 $00:24:25.200 \longrightarrow 00:24:26.748$ Remember that was consistent with slowing

NOTE Confidence: 0.90280320625

 $00{:}24{:}26.748 \dashrightarrow 00{:}24{:}28.798$ the cell cycle more Runx 1 phosphorylation.

NOTE Confidence: 0.90280320625

 $00:24:28.800 \longrightarrow 00:24:31.640$ So CDK 6 is not the thing that's

NOTE Confidence: 0.90280320625

 $00:24:31.640 \longrightarrow 00:24:33.560$ phosphorylating Runx One in our cells.

NOTE Confidence: 0.90280320625

 $00:24:33.560 \longrightarrow 00:24:36.560$ But when we inhibited CDK 9,

NOTE Confidence: 0.90280320625

 $00:24:36.560 \longrightarrow 00:24:38.340$ which was another predicted kinase

NOTE Confidence: 0.90280320625

00:24:38.340 --> 00:24:40.120 that would phosphorylate these cells,

 $00:24:40.120 \longrightarrow 00:24:41.878$ then we saw something really interesting.

NOTE Confidence: 0.90280320625

 $00:24:41.880 \longrightarrow 00:24:43.692$ Then the total level of Bronx

NOTE Confidence: 0.90280320625

00:24:43.692 --> 00:24:44.598 One didn't change,

NOTE Confidence: 0.90280320625

 $00:24:44.600 \longrightarrow 00:24:46.784$ but the levels of both phosphoserine

NOTE Confidence: 0.90280320625

00:24:46.784 --> 00:24:49.068 3O3 and phosphoserine 276 did change.

NOTE Confidence: 0.90280320625

 $00:24:49.068 \longrightarrow 00:24:51.840$ Now this is one of several flavopyridol

NOTE Confidence: 0.90280320625

00:24:51.917 --> 00:24:54.437 is one of several CDK 9 inhibitors.

NOTE Confidence: 0.90280320625

 $00:24:54.440 \longrightarrow 00:24:56.648$ but none of them is absolutely

NOTE Confidence: 0.90280320625

 $00:24:56.648 \longrightarrow 00:24:58.120$ specific for CDK 9:00.

NOTE Confidence: 0.90280320625

00:24:58.120 --> 00:24:59.975 So we ended up getting a different

NOTE Confidence: 0.90280320625

 $00:24:59.975 \longrightarrow 00:25:01.999$ CDK 9 inhibitor that is more specific.

NOTE Confidence: 0.90280320625

00:25:02.000 --> 00:25:04.238 It's called phallus NSO 3 two,

NOTE Confidence: 0.90280320625

 $00{:}25{:}04.240 \dashrightarrow 00{:}25{:}07.117$ and it induces degradation of CDK 9,

NOTE Confidence: 0.90280320625

 $00:25:07.120 \longrightarrow 00:25:09.024$ which I'm not showing you, but it does.

NOTE Confidence: 0.90280320625

 $00:25:09.024 \longrightarrow 00:25:11.232$ And when we added the Thou,

 $00:25:11.240 \longrightarrow 00:25:13.718$ we also got the loss of the

NOTE Confidence: 0.90280320625

 $00{:}25{:}13.718 \dashrightarrow 00{:}25{:}16.088$ phosphoserine 3O3 and phosphoserine 276.

NOTE Confidence: 0.90280320625

 $00:25:16.088 \longrightarrow 00:25:18.680$ And when we added the Thou to the cells,

NOTE Confidence: 0.90280320625

 $00:25:18.680 \longrightarrow 00:25:19.760$ just as we had expected,

NOTE Confidence: 0.90280320625

 $00:25:19.760 \longrightarrow 00:25:22.960$ we got an erythroid bias to our MEP.

NOTE Confidence: 0.90280320625 00:25:22.960 --> 00:25:23.646 Really. NOTE Confidence: 0.90280320625

 $00{:}25{:}23.646 \dashrightarrow 00{:}25{:}29.134$ Now connecting CDK 9 activity to Ronx 1

NOTE Confidence: 0.90280320625

 $00:25:29.134 \longrightarrow 00:25:32.757$ phosphorylation to MEP Fate specification.

NOTE Confidence: 0.90280320625

00:25:32.760 --> 00:25:34.880 Now for those of you who know what CDK 9 is,

NOTE Confidence: 0.90280320625

 $00:25:34.880 \longrightarrow 00:25:35.768$ this is just like,

NOTE Confidence: 0.90280320625

00:25:35.768 --> 00:25:36.902 Oh my God, what's it doing?

NOTE Confidence: 0.90280320625

 $00:25:36.902 \longrightarrow 00:25:38.200$ And I the answer is I don't know.

NOTE Confidence: 0.90280320625

 $00:25:38.200 \longrightarrow 00:25:40.360$ But for those of you who

NOTE Confidence: 0.90280320625

 $00{:}25{:}40.360 \dashrightarrow 00{:}25{:}41.320$ don't know what CDK 9 is,

NOTE Confidence: 0.90280320625

 $00:25:41.320 \longrightarrow 00:25:42.790$ the reason this is exciting is

NOTE Confidence: 0.90280320625

 $00{:}25{:}42.790 \dashrightarrow 00{:}25{:}45.613$ CDK 9 is part of just the general

 $00:25:45.613 \longrightarrow 00:25:48.520$ transcriptional control apparatus.

NOTE Confidence: 0.90280320625

 $00{:}25{:}48.520 \dashrightarrow 00{:}25{:}52.440$ It's part of activating RNA polymerase too,

NOTE Confidence: 0.90280320625

 $00:25:52.440 \longrightarrow 00:25:54.408$ but in published data from years

NOTE Confidence: 0.90280320625

00:25:54.408 --> 00:25:56.759 ago that has never been explained.

NOTE Confidence: 0.90280320625

00:25:56.760 --> 00:26:00.468 Knock down the CDK 9 causes you to lose

NOTE Confidence: 0.90280320625

 $00:26:00.468 \longrightarrow 00:26:02.400$ megacary sites and people never knew why.

NOTE Confidence: 0.90280320625

 $00:26:02.400 \longrightarrow 00:26:04.840$ So I think we now have a link between CDK 9,

NOTE Confidence: 0.90280320625

 $00{:}26{:}04.840 \dashrightarrow 00{:}26{:}07.114$ Runx One and Meg Fate specification

NOTE Confidence: 0.90280320625

 $00:26:07.114 \longrightarrow 00:26:09.998$ that we have a grant to look at.

NOTE Confidence: 0.90280320625

 $00:26:10.000 \longrightarrow 00:26:13.262$ So the summary of Part 2 is that

NOTE Confidence: 0.90280320625

00:26:13.262 --> 00:26:15.717 phosphosurine RUNX 1 promotes Meg

NOTE Confidence: 0.90280320625

 $00{:}26{:}15.717 \dashrightarrow 00{:}26{:}17.659$ Fate specification that's through

NOTE Confidence: 0.90280320625

 $00{:}26{:}17.659 \dashrightarrow 00{:}26{:}20.771$ phosphorylation by CDK 9 which is part of

NOTE Confidence: 0.90280320625

 $00:26:20.771 \longrightarrow 00:26:22.348$ the transcriptional regulatory complex.

NOTE Confidence: 0.90280320625

 $00:26:22.348 \longrightarrow 00:26:25.456$ And the work that we're in the process

00:26:25.456 --> 00:26:27.436 of doing that I I don't know the

NOTE Confidence: 0.90280320625

 $00:26:27.436 \longrightarrow 00:26:29.537$ answer to it yet is what is their

NOTE Confidence: 0.90280320625

 $00:26:29.537 \longrightarrow 00:26:30.993$ differential binding as phosphosirring

NOTE Confidence: 0.90280320625

 $00:26:30.993 \longrightarrow 00:26:33.359$ runks 1 to different target proteins.

NOTE Confidence: 0.90280320625

 $00:26:33.360 \longrightarrow 00:26:35.268$ And we really want to do RNA seek and

NOTE Confidence: 0.90280320625

 $00:26:35.268 \longrightarrow 00:26:37.302$ cut and run on these various different

NOTE Confidence: 0.90280320625

 $00:26:37.302 \longrightarrow 00:26:39.190$ runks mutants in primary cells because

NOTE Confidence: 0.90280320625

00:26:39.190 --> 00:26:41.082 everything I showed you for that

NOTE Confidence: 0.90280320625

 $00:26:41.082 \longrightarrow 00:26:42.797$ so far was done in health cells.

NOTE Confidence: 0.90280320625

 $00:26:42.800 \longrightarrow 00:26:43.694$ And then really,

NOTE Confidence: 0.90280320625

 $00{:}26{:}43.694 \dashrightarrow 00{:}26{:}47.003$ how does the CDK 9 Pol 2 Runks 1

NOTE Confidence: 0.90280320625

 $00{:}26{:}47.003 \dashrightarrow 00{:}26{:}48.725$ regulate transcriptional elongation

NOTE Confidence: 0.90280320625

 $00:26:48.725 \longrightarrow 00:26:51.595$ to promote Meg BAKED specification.

NOTE Confidence: 0.90280320625

 $00:26:51.600 \longrightarrow 00:26:52.464$ OK Act 3.

NOTE Confidence: 0.90280320625

 $00:26:52.464 \longrightarrow 00:26:54.480$ So act three is I showed you

NOTE Confidence: 0.914371405555556

00:26:54.565 --> 00:26:57.675 that we get colonies and what we do is we

 $00:26:57.759 \longrightarrow 00:27:00.797$ read those colonies out after two weeks.

NOTE Confidence: 0.91437140555556

 $00:27:00.800 \longrightarrow 00:27:02.360$ So you put cells in two weeks later

NOTE Confidence: 0.91437140555556

 $00:27:02.360 \longrightarrow 00:27:04.115$ you say what colony types do we have,

NOTE Confidence: 0.91437140555556

 $00:27:04.120 \longrightarrow 00:27:06.682$ but we really then are not not,

NOTE Confidence: 0.91437140555556

00:27:06.682 --> 00:27:08.374 don't know for sure what's happening

NOTE Confidence: 0.91437140555556

 $00:27:08.374 \longrightarrow 00:27:10.160$ with all the cells in between.

NOTE Confidence: 0.914371405555556

 $00:27:10.160 \longrightarrow 00:27:12.242$ For example, is there more rapid

NOTE Confidence: 0.91437140555556

 $00:27:12.242 \longrightarrow 00:27:14.476$ proliferation in the cells before they

NOTE Confidence: 0.91437140555556

 $00{:}27{:}14.476 \dashrightarrow 00{:}27{:}16.840$ pick the erythroid fate and slower

NOTE Confidence: 0.91437140555556

 $00:27:16.840 \longrightarrow 00:27:19.037$ proliferation before they pick the Meg fate?

NOTE Confidence: 0.914371405555556

 $00:27:19.040 \longrightarrow 00:27:20.160$ How are we going to look at that?

NOTE Confidence: 0.91437140555556

 $00:27:20.160 \longrightarrow 00:27:23.160$ We have to actually watch them

NOTE Confidence: 0.91437140555556

 $00{:}27{:}23.160 \dashrightarrow 00{:}27{:}25.160$ undergoing this fate specification.

NOTE Confidence: 0.91437140555556

 $00{:}27{:}25.160 \dashrightarrow 00{:}27{:}27.592$ So what Vanessa Scanlon lab and did in

NOTE Confidence: 0.91437140555556

 $00:27:27.592 \longrightarrow 00:27:30.238$ my lab and Vanessa has now moved on.

 $00:27:30.240 \longrightarrow 00:27:31.878$ She was an amazing post doc and

NOTE Confidence: 0.91437140555556

 $00{:}27{:}31.878 \dashrightarrow 00{:}27{:}33.918$ she's now an assistant professor at

NOTE Confidence: 0.91437140555556

 $00:27:33.918 \longrightarrow 00:27:35.838$ University of Connecticut and what

NOTE Confidence: 0.91437140555556

 $00:27:35.838 \longrightarrow 00:27:38.390$ she did is she developed a time lapse

NOTE Confidence: 0.91437140555556

 $00:27:38.460 \longrightarrow 00:27:41.370$ microscopy to watch individual human MEP

NOTE Confidence: 0.91437140555556

 $00:27:41.370 \longrightarrow 00:27:43.800$ undergo fate specification in vitro.

NOTE Confidence: 0.91749533

 $00:27:46.920 \longrightarrow 00:27:48.360$ So here's what she did.

NOTE Confidence: 0.91749533

 $00:27:48.360 \longrightarrow 00:27:49.836$ She took her facts, sorted MEP.

NOTE Confidence: 0.91749533

 $00:27:49.840 \longrightarrow 00:27:51.624$ She put very few of them in a

NOTE Confidence: 0.91749533

 $00:27:51.624 \longrightarrow 00:27:53.601$ very small volume in a in a plate

NOTE Confidence: 0.91749533

 $00{:}27{:}53.601 \dashrightarrow 00{:}27{:}55.398$ covered that and that in the same

NOTE Confidence: 0.91749533

 $00:27:55.398 \longrightarrow 00:27:56.904$ semi solid medium that we use

NOTE Confidence: 0.91749533

 $00:27:56.904 \longrightarrow 00:27:58.264$ for our colony forming essays.

NOTE Confidence: 0.91749533

 $00{:}27{:}58.264 \dashrightarrow 00{:}27{:}59.920$ But it has it's very flat.

NOTE Confidence: 0.91749533

 $00:27:59.920 \longrightarrow 00:28:01.656$ She puts a cover slip on top of

NOTE Confidence: 0.91749533

 $00{:}28{:}01.656 \dashrightarrow 00{:}28{:}03.316$ that puts it into the Viva view.

 $00:28:03.320 \longrightarrow 00:28:04.840$ This is an Olympus apparatus

NOTE Confidence: 0.91749533

 $00:28:04.840 \longrightarrow 00:28:06.680$ we still have in the lab.

NOTE Confidence: 0.91749533

 $00:28:06.680 \longrightarrow 00:28:07.580$ It works beautifully.

NOTE Confidence: 0.91749533

 $00:28:07.580 \longrightarrow 00:28:09.080$ They don't make it anymore.

NOTE Confidence: 0.91749533

 $00:28:09.080 \longrightarrow 00:28:10.916$ So for now we have it and then she

NOTE Confidence: 0.91749533

 $00:28:10.916 \longrightarrow 00:28:12.681$ can watch these cells undergoing

NOTE Confidence: 0.91749533

 $00:28:12.681 \longrightarrow 00:28:14.561$ fate specification and add the

NOTE Confidence: 0.91749533

 $00:28:14.561 \longrightarrow 00:28:16.253$ antibodies towards the end of making

NOTE Confidence: 0.91749533

 $00{:}28{:}16.253 \dashrightarrow 00{:}28{:}18.140$ the movie so that the erythroid cells

NOTE Confidence: 0.91749533

00:28:18.140 --> 00:28:20.310 under are showing in red and the

NOTE Confidence: 0.91749533

 $00{:}28{:}20.310 \dashrightarrow 00{:}28{:}22.116$ megacuria sites are showing in green.

NOTE Confidence: 0.91749533

 $00:28:22.120 \longrightarrow 00:28:24.514$ So here you have a bipotent colony,

NOTE Confidence: 0.91749533

 $00{:}28{:}24.520 \dashrightarrow 00{:}28{:}26.440$ a mega only colony and an erythroid colony.

NOTE Confidence: 0.91749533

 $00:28:26.440 \longrightarrow 00:28:28.156$ But they're all very flat because

NOTE Confidence: 0.91749533

 $00:28:28.156 \longrightarrow 00:28:30.043$ we're looking at this and we're going

 $00:28:30.043 \longrightarrow 00:28:31.960$ to want to look at this over time.

NOTE Confidence: 0.91749533

 $00:28:31.960 \longrightarrow 00:28:34.137$ Here's an example of an MEP colony

NOTE Confidence: 0.91749533

00:28:34.137 --> 00:28:37.091 of an MEP ending up making a mega

NOTE Confidence: 0.91749533

00:28:37.091 --> 00:28:39.036 carry site in erythroid colony.

NOTE Confidence: 0.91749533

 $00:28:39.040 \longrightarrow 00:28:40.918$ The little dots that color them,

NOTE Confidence: 0.91749533

 $00:28:40.920 \longrightarrow 00:28:43.080$ we put those in, that's part of our analysis.

NOTE Confidence: 0.91749533

 $00:28:43.080 \longrightarrow 00:28:45.660$ So I don't have that pre dotted.

NOTE Confidence: 0.91749533

 $00:28:45.660 \longrightarrow 00:28:47.480$ But anyway, so that's a single cell.

NOTE Confidence: 0.91749533

 $00{:}28{:}47.480 \dashrightarrow 00{:}28{:}49.316$ We're starting with a single MEP

NOTE Confidence: 0.91749533

 $00:28:49.320 \longrightarrow 00:28:50.982$ and then what you're going to

NOTE Confidence: 0.91749533

 $00:28:50.982 \longrightarrow 00:28:52.896$ see is that that cell over time,

NOTE Confidence: 0.91749533

 $00:28:52.896 \longrightarrow 00:28:54.384$ and this is over the course

NOTE Confidence: 0.91749533

 $00:28:54.384 \longrightarrow 00:28:55.520$ of about seven days,

NOTE Confidence: 0.91749533

 $00:28:55.520 \longrightarrow 00:28:56.720$ undergoes state specification.

NOTE Confidence: 0.91749533

00:28:56.720 --> 00:28:57.920 If it's blue,

NOTE Confidence: 0.91749533

 $00:28:57.920 \longrightarrow 00:28:59.880$ it means that downstream of that cell

 $00:28:59.880 \longrightarrow 00:29:02.079$ there are both Meg and Erythroid cells.

NOTE Confidence: 0.91749533

 $00:29:02.080 \longrightarrow 00:29:02.788$ If it's red,

NOTE Confidence: 0.91749533

00:29:02.788 --> 00:29:03.968 it means everything downstream of

NOTE Confidence: 0.91749533

00:29:03.968 --> 00:29:05.717 that is Erythroid and if it's green,

NOTE Confidence: 0.91749533

 $00{:}29{:}05.720 \dashrightarrow 00{:}29{:}07.312$ it means everything downstream

NOTE Confidence: 0.91749533

 $00:29:07.312 \longrightarrow 00:29:10.080$ of that is going to be Meg.

NOTE Confidence: 0.91749533

 $00:29:10.080 \longrightarrow 00:29:11.410$ And there are a lot of things

NOTE Confidence: 0.91749533

 $00:29:11.410 \longrightarrow 00:29:12.440$ that you can see here.

NOTE Confidence: 0.91749533

 $00:29:12.440 \longrightarrow 00:29:14.048$ One of them maybe you saw

NOTE Confidence: 0.91749533

 $00:29:14.048 \longrightarrow 00:29:15.120$ those streaky green lines,

NOTE Confidence: 0.91749533

 $00:29:15.120 \longrightarrow 00:29:17.038$ the Meg progenitors move a whole lot

NOTE Confidence: 0.91749533

 $00:29:17.038 \longrightarrow 00:29:19.119$ more than the erythroid progenitors.

NOTE Confidence: 0.91749533

 $00{:}29{:}19.120 \dashrightarrow 00{:}29{:}20.632$ We're not sure yet what that means

NOTE Confidence: 0.91749533

 $00:29:20.632 \longrightarrow 00:29:21.777$ and whether it's relevant for

NOTE Confidence: 0.91749533

 $00:29:21.777 \longrightarrow 00:29:23.359$ what's going on in the bone marrow.

00:29:23.360 --> 00:29:24.960 But what we do know is in the bone marrow,

NOTE Confidence: 0.91749533

 $00:29:24.960 \longrightarrow 00:29:26.080$ people have looked at it,

NOTE Confidence: 0.91749533

 $00{:}29{:}26.080 \dashrightarrow 00{:}29{:}28.555$ Erythroid maturation tends to hurt

NOTE Confidence: 0.91749533

 $00:29:28.555 \longrightarrow 00:29:30.552$ occur in bundles, whereas megs,

NOTE Confidence: 0.91749533

 $00:29:30.552 \longrightarrow 00:29:32.600$ they tend to be all over the place.

NOTE Confidence: 0.91749533

 $00:29:32.600 \longrightarrow 00:29:34.168$ So we think that this might have

NOTE Confidence: 0.91749533

00:29:34.168 --> 00:29:35.582 something to do with the fact

NOTE Confidence: 0.91749533

 $00:29:35.582 \longrightarrow 00:29:36.956$ that the Meg destined cell is

NOTE Confidence: 0.91749533

 $00{:}29{:}36.956 \mathrel{--}{>} 00{:}29{:}38.253$ still quite motile and there are

NOTE Confidence: 0.91749533

 $00:29:38.253 \longrightarrow 00:29:39.159$ other things that you can see.

NOTE Confidence: 0.91749533

00:29:39.160 --> 00:29:42.324 I'll just let's go take show you

NOTE Confidence: 0.91749533

 $00:29:42.324 \longrightarrow 00:29:44.127$ quickly where you can see that there

NOTE Confidence: 0.91749533

 $00:29:44.127 \longrightarrow 00:29:46.213$ are blue cells that are still present

NOTE Confidence: 0.91749533

00:29:46.213 --> 00:29:47.838 after multiple rounds of division,

NOTE Confidence: 0.91749533

 $00:29:47.840 \longrightarrow 00:29:49.760$ but fewer and fewer of them.

NOTE Confidence: 0.91749533

 $00{:}29{:}49.760 \dashrightarrow 00{:}29{:}51.720$ Some of the blue cells are still

 $00:29:51.720 \longrightarrow 00:29:53.402$ here even pretty late when

NOTE Confidence: 0.91749533

 $00:29:53.402 \longrightarrow 00:29:55.347$ the other ones still haven't

NOTE Confidence: 0.91749533

 $00:29:55.347 \longrightarrow 00:29:56.514$ undergone fate specification.

NOTE Confidence: 0.91749533

 $00:29:56.520 \longrightarrow 00:29:57.688$ When we analyze these,

NOTE Confidence: 0.91749533

 $00{:}29{:}57.688 \dashrightarrow 00{:}29{:}59.920$ one of the first things we saw is.

NOTE Confidence: 0.91749533

 $00:29:59.920 \longrightarrow 00:30:01.384$ So this is now a tree where the

NOTE Confidence: 0.91749533

 $00:30:01.384 \longrightarrow 00:30:02.360$ blue cells are bipotent,

NOTE Confidence: 0.91749533

 $00{:}30{:}02.360 \dashrightarrow 00{:}30{:}04.106$ the red cells are erythroid committed

NOTE Confidence: 0.91749533

 $00:30:04.106 \longrightarrow 00:30:06.239$ and the green cells are Meg committed.

NOTE Confidence: 0.91749533

00:30:06.240 --> 00:30:07.108 When I say committed,

NOTE Confidence: 0.91749533

 $00{:}30{:}07.108 \dashrightarrow 00{:}30{:}08.193$ I should probably say destined.

NOTE Confidence: 0.957484911428572

 $00:30:08.200 \dashrightarrow 00:30:09.516$ We don't really know when they committed.

NOTE Confidence: 0.957484911428572

 $00{:}30{:}09.520 --> 00{:}30{:}10.840$ We just know what the

NOTE Confidence: 0.957484911428572

 $00:30:10.840 \longrightarrow 00:30:12.160$ cells became at the end.

NOTE Confidence: 0.957484911428572

 $00:30:12.160 \longrightarrow 00:30:13.456$ One thing you can see though

 $00:30:13.456 \longrightarrow 00:30:14.760$ is that MEP self renewal,

NOTE Confidence: 0.957484911428572

 $00{:}30{:}14.760 \dashrightarrow 00{:}30{:}16.968$ this is not something any body had

NOTE Confidence: 0.957484911428572

00:30:16.968 --> 00:30:19.100 ever known before and it was kind

NOTE Confidence: 0.957484911428572

 $00:30:19.100 \longrightarrow 00:30:20.420$ of questionable when you look at

NOTE Confidence: 0.957484911428572

 $00{:}30{:}20.420 \dashrightarrow 00{:}30{:}21.877$ the single cell RNA seek data.

NOTE Confidence: 0.957484911428572

00:30:21.880 --> 00:30:23.875 If you remember we had this graduation,

NOTE Confidence: 0.957484911428572

 $00:30:23.880 \longrightarrow 00:30:26.120$ I didn't know how long that graduation took.

NOTE Confidence: 0.957484911428572

 $00:30:26.120 \longrightarrow 00:30:27.856$ Maybe cells just become an MEP and then

NOTE Confidence: 0.957484911428572

 $00:30:27.856 \longrightarrow 00:30:29.558$ the next day they're mega erythroid.

NOTE Confidence: 0.957484911428572

 $00:30:29.560 \longrightarrow 00:30:31.429$ But here you can see that the

NOTE Confidence: 0.957484911428572

00:30:31.429 --> 00:30:32.927 bipotent cells can self renew

NOTE Confidence: 0.957484911428572

 $00:30:32.927 \longrightarrow 00:30:34.517$ and make more bipotent cells.

NOTE Confidence: 0.957484911428572

 $00:30:34.520 \longrightarrow 00:30:36.140$ Sometimes where one bipotent cell

NOTE Confidence: 0.957484911428572

00:30:36.140 --> 00:30:38.420 makes 2 bipotent cells and times where

NOTE Confidence: 0.957484911428572

 $00:30:38.420 \longrightarrow 00:30:40.534$ sometimes where it makes 1 bipotent cell

NOTE Confidence: 0.957484911428572

 $00:30:40.534 \dashrightarrow 00:30:42.679$ and one fate Destin cell unique fate.

 $00:30:42.680 \longrightarrow 00:30:45.460$ And when we and this is just looking

NOTE Confidence: 0.957484911428572

 $00:30:45.460 \longrightarrow 00:30:47.113$ at the sometimes when we played

NOTE Confidence: 0.957484911428572

 $00:30:47.113 \longrightarrow 00:30:49.040$ at MEP we got MK only colonies,

NOTE Confidence: 0.957484911428572

 $00:30:49.040 \longrightarrow 00:30:50.642$ sometimes when we got we played

NOTE Confidence: 0.957484911428572

 $00:30:50.642 \longrightarrow 00:30:52.718$ at MEP we got E only colonies.

NOTE Confidence: 0.957484911428572

00:30:52.720 --> 00:30:53.875 So this was another opportunity

NOTE Confidence: 0.957484911428572

 $00:30:53.875 \longrightarrow 00:30:55.129$ for us to say, well,

NOTE Confidence: 0.957484911428572

 $00{:}30{:}55.129 \rightarrow 00{:}30{:}57.432$ is this different from when we plate

NOTE Confidence: 0.957484911428572

 $00:30:57.432 \dashrightarrow 00:30:59.371$ an erythroid progenitor that we already

NOTE Confidence: 0.957484911428572

 $00:30:59.371 \longrightarrow 00:31:02.160$ know is E committed or a Meg progenitor?

NOTE Confidence: 0.957484911428572

 $00:31:02.160 \longrightarrow 00:31:04.680$ And the answer is yes.

NOTE Confidence: 0.957484911428572

 $00:31:04.680 \longrightarrow 00:31:06.731$ This is a sample tree from an

NOTE Confidence: 0.957484911428572

 $00{:}31{:}06.731 \dashrightarrow 00{:}31{:}09.014$ MEP that's going to undergo fate

NOTE Confidence: 0.957484911428572

 $00{:}31{:}09.014 \dashrightarrow 00{:}31{:}10.798$ specification down both lineages.

NOTE Confidence: 0.957484911428572

 $00:31:10.800 \longrightarrow 00:31:12.888$ Here's one where it's going to

00:31:12.888 --> 00:31:15.399 undergo Meg only or Erythroid only.

NOTE Confidence: 0.957484911428572

 $00:31:15.400 \longrightarrow 00:31:17.776$ If you compare that when we

NOTE Confidence: 0.957484911428572

 $00:31:17.776 \longrightarrow 00:31:19.360$ plate the Meg progenitors,

NOTE Confidence: 0.957484911428572

 $00:31:19.360 \longrightarrow 00:31:20.600$ there aren't very many divisions.

NOTE Confidence: 0.957484911428572

00:31:20.600 --> 00:31:22.846 They make teeny tiny colonies and

NOTE Confidence: 0.957484911428572

00:31:22.846 --> 00:31:24.476 when we play erythroid progenitors,

NOTE Confidence: 0.957484911428572

 $00:31:24.480 \longrightarrow 00:31:27.098$ what we see is that they reach

NOTE Confidence: 0.957484911428572

 $00{:}31{:}27.098 \dashrightarrow 00{:}31{:}28.760$ this faster proliferation sooner.

NOTE Confidence: 0.957484911428572

 $00:31:28.760 \longrightarrow 00:31:31.168$ So they really are downstream of this

NOTE Confidence: 0.957484911428572

00:31:31.168 --> 00:31:33.623 cell that we're seeing here that is

NOTE Confidence: 0.957484911428572

 $00{:}31{:}33.623 \dashrightarrow 00{:}31{:}35.602$ making a much larger colony with,

NOTE Confidence: 0.957484911428572

 $00:31:35.602 \longrightarrow 00:31:37.294$ and it doesn't speed up its

NOTE Confidence: 0.957484911428572

 $00:31:37.294 \longrightarrow 00:31:38.680$ cell division quite so early.

NOTE Confidence: 0.935882898148148

 $00:31:40.920 \longrightarrow 00:31:42.656$ This is another way of looking at

NOTE Confidence: 0.935882898148148

 $00:31:42.656 \longrightarrow 00:31:44.759$ the data where what you can see is we

NOTE Confidence: 0.935882898148148

 $00:31:44.759 \longrightarrow 00:31:46.503$ were able to follow these cells for

00:31:46.503 --> 00:31:48.800 up to 13 generations, a single cell,

NOTE Confidence: 0.935882898148148

 $00{:}31{:}48.800 \dashrightarrow 00{:}31{:}51.200$ what happens over 13 generations in

NOTE Confidence: 0.935882898148148

 $00:31:51.200 \longrightarrow 00:31:53.399$ vitro and what you can see is expansion.

NOTE Confidence: 0.935882898148148

 $00:31:53.400 \longrightarrow 00:31:55.596$ When one MEP makes 2 ME PS tends to

NOTE Confidence: 0.935882898148148

 $00:31:55.596 \longrightarrow 00:31:57.995$ occur but one is that's where we started.

NOTE Confidence: 0.935882898148148

 $00:31:58.000 \longrightarrow 00:31:59.590$ We only looked at colonies that

NOTE Confidence: 0.935882898148148

 $00:31:59.590 \longrightarrow 00:32:01.239$ were going to make both here.

NOTE Confidence: 0.935882898148148

 $00:32:01.240 \dashrightarrow 00:32:03.408$ But what you can see is that you

NOTE Confidence: 0.935882898148148

00:32:03.408 --> 00:32:05.430 really get MEP self renewal where

NOTE Confidence: 0.935882898148148

 $00:32:05.430 \longrightarrow 00:32:07.863$ you're going to get two expansion from

NOTE Confidence: 0.935882898148148

00:32:07.863 --> 00:32:10.600 MET one MEP to two MEP for the 1st 3

NOTE Confidence: 0.935882898148148

 $00:32:10.600 \longrightarrow 00:32:13.358$ divisions and then that gradually goes

NOTE Confidence: 0.935882898148148

 $00{:}32{:}13.358 \dashrightarrow 00{:}32{:}15.731$ away and by the 6th division you're

NOTE Confidence: 0.935882898148148

 $00:32:15.731 \longrightarrow 00:32:18.077$ not getting one MEP making two MEP.

NOTE Confidence: 0.935882898148148

 $00:32:18.080 \longrightarrow 00:32:19.725$ In contrast this maintenance division

00:32:19.725 --> 00:32:21.999 where one daughter cells going to be a Meg,

NOTE Confidence: 0.935882898148148

 $00{:}32{:}22.000 \longrightarrow 00{:}32{:}24.016$ an MEP and one is going to be fate

NOTE Confidence: 0.935882898148148

00:32:24.016 --> 00:32:25.852 destined that starts to occur at

NOTE Confidence: 0.935882898148148

00:32:25.852 --> 00:32:27.412 approximately the 4th generation and

NOTE Confidence: 0.935882898148148

 $00:32:27.469 \longrightarrow 00:32:29.240$ that's what we have until the end.

NOTE Confidence: 0.935882898148148

 $00:32:29.240 \longrightarrow 00:32:30.598$ And with each time you have one

NOTE Confidence: 0.935882898148148

 $00:32:30.598 \longrightarrow 00:32:31.640$ of these yellow divisions,

NOTE Confidence: 0.935882898148148

00:32:31.640 --> 00:32:34.020 that's when one MEP makes 1 Erythroid

NOTE Confidence: 0.935882898148148

 $00:32:34.020 \longrightarrow 00:32:36.439$ fate committed and one MK fate committed.

NOTE Confidence: 0.935882898148148

 $00:32:36.440 \longrightarrow 00:32:37.960$ That's going to be the end of the

NOTE Confidence: 0.935882898148148

 $00{:}32{:}37.960 \dashrightarrow 00{:}32{:}39.282$ line because we're not going to

NOTE Confidence: 0.935882898148148

 $00:32:39.282 \longrightarrow 00:32:39.954$ keep following MEP.

NOTE Confidence: 0.935882898148148

 $00:32:39.960 \longrightarrow 00:32:42.000$ So it really gives us a nice way of looking

NOTE Confidence: 0.935882898148148

 $00:32:42.050 \longrightarrow 00:32:43.758$ at the changes that occur over time,

NOTE Confidence: 0.935882898148148

00:32:43.760 --> 00:32:46.232 which ends up being highly relevant

NOTE Confidence: 0.935882898148148

 $00:32:46.232 \longrightarrow 00:32:47.880$ for our predictive models.

 $00:32:47.880 \longrightarrow 00:32:49.878$ What we wanted to do is come up with

NOTE Confidence: 0.935882898148148

 $00:32:49.878 \dashrightarrow 00:32:52.100$ a mathematical model that gave us the

NOTE Confidence: 0.935882898148148

 $00{:}32{:}52.100 \dashrightarrow 00{:}32{:}54.741$ outcome that we saw so that we could

NOTE Confidence: 0.935882898148148

 $00:32:54.741 \longrightarrow 00:32:56.673$ understand the probability that a cell

NOTE Confidence: 0.935882898148148

 $00:32:56.680 \longrightarrow 00:32:59.638$ would undergo a specific fate decision.

NOTE Confidence: 0.935882898148148

 $00:32:59.640 \longrightarrow 00:33:01.472$ And this is work done by Everett Thompson

NOTE Confidence: 0.935882898148148

 $00:33:01.472 \longrightarrow 00:33:03.838$ in my lab who's an amazing graduate student.

NOTE Confidence: 0.935882898148148

 $00:33:03.840 \longrightarrow 00:33:06.837$ And what he realized is if he used a

NOTE Confidence: 0.935882898148148

 $00{:}33{:}06.837 \dashrightarrow 00{:}33{:}09.115$ Markov model of these cells that are

NOTE Confidence: 0.935882898148148

 $00:33:09.115 \longrightarrow 00:33:11.314$ MEP that are expanding to make two

NOTE Confidence: 0.935882898148148

 $00:33:11.314 \longrightarrow 00:33:13.300$ MEP exhaustion where the MEP makes

NOTE Confidence: 0.935882898148148

 $00:33:13.300 \longrightarrow 00:33:15.950$ 1 erythroid and 1 Meg fate specified

NOTE Confidence: 0.935882898148148

 $00{:}33{:}15.950 \dashrightarrow 00{:}33{:}17.875$ versus these two maintenance divisions.

NOTE Confidence: 0.935882898148148

 $00:33:17.880 \longrightarrow 00:33:20.240$ He could model the data that we got

NOTE Confidence: 0.935882898148148

 $00:33:20.240 \longrightarrow 00:33:22.862$ as long as he had that model change

 $00:33:22.862 \longrightarrow 00:33:23.514$ over time,

NOTE Confidence: 0.935882898148148

 $00:33:23.520 \longrightarrow 00:33:24.794$ which is consistent with what I just

NOTE Confidence: 0.93588289814814800:33:24.794 --> 00:33:25.158 showed you.

NOTE Confidence: 0.935882898148148

 $00:33:25.160 \longrightarrow 00:33:27.547$ It does change over time the the

NOTE Confidence: 0.935882898148148

 $00:33:27.547 \longrightarrow 00:33:29.640$ probability that the MEP will self

NOTE Confidence: 0.935882898148148

 $00:33:29.640 \longrightarrow 00:33:30.639$ renew and expand.

NOTE Confidence: 0.935882898148148

00:33:30.640 --> 00:33:32.593 So when he did that he got the data

NOTE Confidence: 0.935882898148148

 $00:33:32.593 \longrightarrow 00:33:33.798$ that are plotted here.

NOTE Confidence: 0.935882898148148

 $00:33:33.800 \longrightarrow 00:33:36.579$ So what you're seeing here is the

NOTE Confidence: 0.935882898148148

00:33:36.579 --> 00:33:38.798 the broadbands shown here in blue,

NOTE Confidence: 0.935882898148148

 $00:33:38.800 \longrightarrow 00:33:40.644$ purple, Aqua and yellow.

NOTE Confidence: 0.935882898148148

 $00:33:40.644 \longrightarrow 00:33:44.359$ That is the data predicted by the model.

NOTE Confidence: 0.935882898148148

 $00:33:44.360 \longrightarrow 00:33:47.920$ And then in the dotted line is the.

NOTE Confidence: 0.935882898148148

 $00:33:47.920 \longrightarrow 00:33:50.080$ I want to make sure I say the right thing.

NOTE Confidence: 0.93588289814814800:33:50.080 --> 00:33:50.346 Yeah. NOTE Confidence: 0.935882898148148

 $00{:}33{:}50.346 \dashrightarrow 00{:}33{:}52.474$ And the dotted line is the in blue

 $00:33:52.474 \longrightarrow 00:33:53.918$ is the observed data.

NOTE Confidence: 0.935882898148148

 $00:33:53.920 \longrightarrow 00:33:55.976$ So what you can see is we really

NOTE Confidence: 0.935882898148148

 $00:33:55.976 \longrightarrow 00:33:58.265$ are very closely modeling what the

NOTE Confidence: 0.935882898148148

00:33:58.265 --> 00:34:01.200 actual data are for the exhaustion,

NOTE Confidence: 0.935882898148148

 $00:34:01.200 \longrightarrow 00:34:02.568$ expansion, maintenance and maintenance.

NOTE Confidence: 0.935882898148148

 $00:34:02.568 \longrightarrow 00:34:04.840$ The way to look at this is,

NOTE Confidence: 0.935882898148148

 $00:34:04.840 \longrightarrow 00:34:05.470$ for example,

NOTE Confidence: 0.935882898148148

 $00{:}34{:}05.470 \dashrightarrow 00{:}34{:}07.675$ if you just look at Generation 4,

NOTE Confidence: 0.935882898148148

00:34:07.680 --> 00:34:09.040 if you have an MEP,

NOTE Confidence: 0.935882898148148

 $00:34:09.040 \longrightarrow 00:34:11.770$ their chances are 46% chance of

NOTE Confidence: 0.935882898148148

00:34:11.770 --> 00:34:14.822 expansion or one MEP makes 2 MEP,

NOTE Confidence: 0.935882898148148

 $00:34:14.822 \longrightarrow 00:34:16.226$ 28% chance that you're

NOTE Confidence: 0.935882898148148

00:34:16.226 --> 00:34:17.630 going to get maintenance

NOTE Confidence: 0.891759870909091

 $00{:}34{:}17.700 \dashrightarrow 00{:}34{:}19.688$ plus E, 9% chance of maintenance plus

NOTE Confidence: 0.891759870909091

 $00:34:19.688 \longrightarrow 00:34:22.000$ MK and a 17% chance of exhaustion.

 $00:34:22.000 \longrightarrow 00:34:23.910$ Well, that kind of models our

NOTE Confidence: 0.891759870909091

00:34:23.910 --> 00:34:26.300 outcome in our CFU where we get about

NOTE Confidence: 0.891759870909091

 $00:34:26.300 \longrightarrow 00:34:28.336$ 50% of the colonies have Mega and

NOTE Confidence: 0.891759870909091

 $00:34:28.336 \longrightarrow 00:34:30.231$ Erythroid and the other ones are

NOTE Confidence: 0.891759870909091

 $00:34:30.231 \longrightarrow 00:34:32.199$ Unilineage MK only and Erythroid only.

NOTE Confidence: 0.891759870909091

00:34:32.200 --> 00:34:35.288 And then similarly you can look at another

NOTE Confidence: 0.891759870909091

 $00:34:35.288 \longrightarrow 00:34:37.040$ generation and get additional data.

NOTE Confidence: 0.915327742173913

00:34:39.120 --> 00:34:41.010 She Vanessa got a huge amount of

NOTE Confidence: 0.915327742173913

 $00:34:41.010 \longrightarrow 00:34:43.424$ data out of this and I just want to

NOTE Confidence: 0.915327742173913

 $00:34:43.424 \longrightarrow 00:34:45.320$ show you one other part of that.

NOTE Confidence: 0.915327742173913

 $00:34:45.320 \longrightarrow 00:34:47.824$ And what she did is she analyzed the

NOTE Confidence: 0.915327742173913

 $00:34:47.824 \longrightarrow 00:34:50.402$ length of the cell cycle and whether

NOTE Confidence: 0.915327742173913

 $00:34:50.402 \longrightarrow 00:34:52.669$ that predicted output and it wasn't

NOTE Confidence: 0.915327742173913

 $00:34:52.669 \longrightarrow 00:34:55.680$ as simple as we had hoped, but we did

NOTE Confidence: 0.915327742173913

 $00:34:55.680 \longrightarrow 00:34:57.480$ get some statistically significant data.

NOTE Confidence: 0.915327742173913

 $00:34:57.480 \longrightarrow 00:35:00.360$ The data that we got is that MEP

 $00:35:00.360 \longrightarrow 00:35:03.576$ that are cycling slower are going

NOTE Confidence: 0.915327742173913

 $00:35:03.576 \longrightarrow 00:35:06.516$ to be the MK destined.

NOTE Confidence: 0.915327742173913

00:35:06.520 --> 00:35:07.660 Remember MEP cycling?

NOTE Confidence: 0.915327742173913

 $00:35:07.660 \longrightarrow 00:35:09.560$ I have to remember exactly.

NOTE Confidence: 0.915327742173913

 $00:35:09.560 \longrightarrow 00:35:10.840$ So there was no difference.

NOTE Confidence: 0.915327742173913

 $00:35:10.840 \longrightarrow 00:35:12.800$ And this is where this was disappointing.

NOTE Confidence: 0.915327742173913

 $00:35:12.800 \longrightarrow 00:35:15.760$ There was no difference in the cell cycle

NOTE Confidence: 0.915327742173913

 $00:35:15.760 \longrightarrow 00:35:19.918$ interval between MEP and E destined cells.

NOTE Confidence: 0.915327742173913

 $00:35:19.920 \longrightarrow 00:35:22.260$ I thought that we would have seen that the E

NOTE Confidence: 0.915327742173913

 $00:35:22.320 \longrightarrow 00:35:24.131$ destined cells had a faster proliferation,

NOTE Confidence: 0.915327742173913

 $00:35:24.131 \longrightarrow 00:35:26.357$ but that's not what we saw.

NOTE Confidence: 0.915327742173913

 $00:35:26.360 \longrightarrow 00:35:27.122$ But we did.

NOTE Confidence: 0.915327742173913

 $00:35:27.122 \dashrightarrow 00:35:29.866$ What we did see is that once we and with

NOTE Confidence: 0.915327742173913

 $00:35:29.866 \longrightarrow 00:35:31.959$ MK destined it was a little slower.

NOTE Confidence: 0.915327742173913

 $00:35:31.960 \longrightarrow 00:35:34.039$ That's the point I wanted to make.

 $00:35:34.040 \longrightarrow 00:35:35.360$ So there was a slowing,

NOTE Confidence: 0.915327742173913

 $00:35:35.360 \longrightarrow 00:35:37.068$ as if the cell was dividing more

NOTE Confidence: 0.915327742173913

00:35:37.068 --> 00:35:38.691 slowly there was a very good chance

NOTE Confidence: 0.915327742173913

00:35:38.691 --> 00:35:40.599 that it was going to be MK destined.

NOTE Confidence: 0.915327742173913

 $00:35:40.600 \longrightarrow 00:35:42.553$ And then if you looked at the MKP themselves,

NOTE Confidence: 0.915327742173913 00:35:42.560 --> 00:35:42.920 they are, NOTE Confidence: 0.915327742173913

 $00:35:42.920 \longrightarrow 00:35:44.360$ they're known to have a slower cell cycle.

NOTE Confidence: 0.915327742173913

 $00:35:44.360 \longrightarrow 00:35:45.360$ I already told you that.

NOTE Confidence: 0.915327742173913

 $00:35:45.360 \longrightarrow 00:35:46.900$ But this was really the the new

NOTE Confidence: 0.915327742173913

00:35:46.900 --> 00:35:48.490 data was this MK Destined having

NOTE Confidence: 0.915327742173913

 $00{:}35{:}48.490 \dashrightarrow 00{:}35{:}49.955$ a slightly slower cell cycle.

NOTE Confidence: 0.915327742173913

 $00:35:49.960 \longrightarrow 00:35:51.640$ So not quite as clear as we would have liked,

NOTE Confidence: 0.915327742173913

 $00:35:51.640 \longrightarrow 00:35:53.440$ but that's what the data show

NOTE Confidence: 0.828415577142857

 $00:35:56.280 \longrightarrow 00:35:57.918$ this. So just this is this time

NOTE Confidence: 0.828415577142857

 $00:35:57.918 \longrightarrow 00:35:59.864$ lapse imaging is now a tool in the

NOTE Confidence: 0.828415577142857

 $00:35:59.864 \longrightarrow 00:36:01.400$ laboratory that we are enjoying using.

 $00:36:01.400 \longrightarrow 00:36:03.062$ If anybody wants to collaborate and

NOTE Confidence: 0.828415577142857

 $00:36:03.062 \longrightarrow 00:36:04.839$ use this tool just let us know.

NOTE Confidence: 0.828415577142857

 $00:36:04.840 \longrightarrow 00:36:07.738$ It's one of the tools that's offered by the

NOTE Confidence: 0.828415577142857

00:36:07.738 --> 00:36:11.720 Yale Center of Excellence in Hematology.

NOTE Confidence: 0.828415577142857

00:36:11.720 --> 00:36:13.680 So last story, plenty of time I

NOTE Confidence: 0.828415577142857

 $00:36:13.680 \longrightarrow 00:36:15.955$ wanted to tell you about expansion

NOTE Confidence: 0.828415577142857

 $00:36:15.955 \longrightarrow 00:36:18.240$ microscopy to probe hematopoietic cells.

NOTE Confidence: 0.828415577142857

 $00:36:18.240 \longrightarrow 00:36:20.120$ So what is expansion microscopy?

NOTE Confidence: 0.828415577142857

 $00:36:20.120 \longrightarrow 00:36:23.032$ This is a way of doing super

NOTE Confidence: 0.828415577142857

 $00:36:23.032 \longrightarrow 00:36:25.398$ resolution microscopy using a confocal

NOTE Confidence: 0.828415577142857

 $00:36:25.398 \longrightarrow 00:36:26.992$ microscope and that really opens

NOTE Confidence: 0.828415577142857

 $00:36:26.992 \longrightarrow 00:36:29.722$ up the door to all of those of us

NOTE Confidence: 0.828415577142857

 $00{:}36{:}29.722 \dashrightarrow 00{:}36{:}31.477$ who don't do electron microscopy.

NOTE Confidence: 0.828415577142857

00:36:31.480 --> 00:36:33.480 And even if you do do electron microscopy,

NOTE Confidence: 0.828415577142857

00:36:33.480 --> 00:36:35.560 you know it's very difficult to do any

00:36:35.560 --> 00:36:37.505 kind of immuno analysis because you're

NOTE Confidence: 0.828415577142857

 $00{:}36{:}37.505 \dashrightarrow 00{:}36{:}40.235$ really limited to the size of the gold

NOTE Confidence: 0.828415577142857

 $00:36:40.235 \longrightarrow 00:36:42.440$ balls that are attached to your antibody.

NOTE Confidence: 0.828415577142857

 $00:36:42.440 \longrightarrow 00:36:44.430$ So you maybe can look at two things at the

NOTE Confidence: 0.828415577142857

 $00:36:44.480 \longrightarrow 00:36:46.514$ same time and maybe can see where they are.

NOTE Confidence: 0.828415577142857

 $00:36:46.520 \longrightarrow 00:36:48.936$ Here you have a confocal you can do

NOTE Confidence: 0.828415577142857

 $00{:}36{:}48.936 \dashrightarrow 00{:}36{:}50.518$ immunofluorescence from for some antigens,

NOTE Confidence: 0.828415577142857

 $00:36:50.520 \longrightarrow 00:36:52.319$ not for every antigen with the expansion.

NOTE Confidence: 0.956286988888889

00:36:55.360 --> 00:36:57.475 So this is just to get you guys interested,

NOTE Confidence: 0.95628698888889

00:36:57.480 --> 00:36:58.960 if you're not a pathologist

NOTE Confidence: 0.95628698888889

 $00{:}36{:}58.960 \dashrightarrow 00{:}37{:}00.440$ in looking at mega karyocytes,

NOTE Confidence: 0.956286988888889

 $00:37:00.440 \longrightarrow 00:37:02.198$ they happen to be the most beautiful

NOTE Confidence: 0.956286988888889

 $00:37:02.200 \longrightarrow 00:37:03.999$ cell in the body according to me.

NOTE Confidence: 0.956286988888889

 $00:37:04.000 \longrightarrow 00:37:05.760$ And what you can see is they're very,

NOTE Confidence: 0.95628698888889

 $00:37:05.760 \longrightarrow 00:37:08.560$ very large, hence the name mega karyocyte.

NOTE Confidence: 0.95628698888889

 $00:37:08.560 \longrightarrow 00:37:10.160$ What we're looking at here

 $00:37:10.160 \longrightarrow 00:37:12.220$ is a bunch of blood cells.

NOTE Confidence: 0.956286988888889

 $00:37:12.220 \longrightarrow 00:37:13.995$ These are your normal neutrophils.

NOTE Confidence: 0.95628698888889

 $00:37:14.000 \longrightarrow 00:37:15.400$ You can see the size of their nucleus,

NOTE Confidence: 0.95628698888889

 $00:37:15.400 \longrightarrow 00:37:17.140$ it's about 8 microns and

NOTE Confidence: 0.95628698888889

 $00:37:17.140 \longrightarrow 00:37:18.880$ this is a mega karyocyte.

NOTE Confidence: 0.95628698888889

 $00:37:18.880 \longrightarrow 00:37:20.656$ It's a single cell.

NOTE Confidence: 0.95628698888889

 $00:37:20.656 \longrightarrow 00:37:23.817$ It's got this gigantic nucleus and a

NOTE Confidence: 0.956286988888889

 $00:37:23.817 \longrightarrow 00:37:26.840$ gigantic cell and what this nucleus is,

NOTE Confidence: 0.95628698888889

 $00:37:26.840 \longrightarrow 00:37:27.719$ is it's polyploid.

NOTE Confidence: 0.956286988888889

 $00:37:27.719 \longrightarrow 00:37:29.477$ It's got the cell has divide,

NOTE Confidence: 0.956286988888889

 $00:37:29.480 \longrightarrow 00:37:31.258$ the DNA has divided and the cell

NOTE Confidence: 0.956286988888889

00:37:31.258 --> 00:37:32.639 has gotten bigger and bigger,

NOTE Confidence: 0.956286988888889

 $00:37:32.640 \longrightarrow 00:37:34.080$ but the cell has not divided.

NOTE Confidence: 0.95628698888889

 $00:37:34.080 \longrightarrow 00:37:35.048$ So you have many.

NOTE Confidence: 0.95628698888889

00:37:35.048 --> 00:37:37.360 You can get four and eight and 1632,

 $00:37:37.360 \longrightarrow 00:37:40.560$ whatever, up to 128 clearly.

NOTE Confidence: 0.95628698888889

 $00:37:40.560 \longrightarrow 00:37:42.716$ And then this part of this cell,

NOTE Confidence: 0.956286988888889

 $00:37:42.720 \longrightarrow 00:37:43.780$ which is super interesting

NOTE Confidence: 0.95628698888889

 $00:37:43.780 \longrightarrow 00:37:44.840$ and hard to describe,

NOTE Confidence: 0.95628698888889

 $00:37:44.840 \longrightarrow 00:37:46.640$ but you're about to see what it is.

NOTE Confidence: 0.95628698888889

 $00{:}37{:}46.640 \dashrightarrow 00{:}37{:}50.426$ It's not a single cell membrane

NOTE Confidence: 0.95628698888889

 $00:37:50.426 \longrightarrow 00:37:52.319$ surrounding a cytopus.

NOTE Confidence: 0.956286988888889 00:37:52.320 --> 00:37:53.361 Well, it is, NOTE Confidence: 0.956286988888889

 $00:37:53.361 \longrightarrow 00:37:55.443$ but the cell membrane is invaginated

NOTE Confidence: 0.95628698888889

 $00:37:55.443 \longrightarrow 00:37:57.558$ all throughout that cytoplasm.

NOTE Confidence: 0.956286988888889

 $00:37:57.560 \longrightarrow 00:38:00.320$ And way you can see that is from this movie.

NOTE Confidence: 0.956286988888889

 $00:38:00.320 \longrightarrow 00:38:01.120$ So this is a movie.

NOTE Confidence: 0.956286988888889

00:38:01.120 --> 00:38:03.720 It was published in 1999 by Joe Italiano,

NOTE Confidence: 0.956286988888889

00:38:03.720 --> 00:38:05.405 who's an amazing mega karyocyte

NOTE Confidence: 0.95628698888889

 $00:38:05.405 \longrightarrow 00:38:06.753$ scientist up at Harvard.

NOTE Confidence: 0.95628698888889

 $00{:}38{:}06.760 \dashrightarrow 00{:}38{:}08.596$ This is a single mega karyocyte.

 $00:38:08.600 \longrightarrow 00:38:09.611$ Here's its nucleus.

NOTE Confidence: 0.95628698888889

 $00:38:09.611 \longrightarrow 00:38:11.633$ It's starting to make pro platelets.

NOTE Confidence: 0.95628698888889

00:38:11.640 --> 00:38:13.278 And the thing that's amazing about

NOTE Confidence: 0.95628698888889

 $00:38:13.278 \longrightarrow 00:38:15.306$ this movie is you can see that

NOTE Confidence: 0.95628698888889

00:38:15.306 --> 00:38:16.776 the cytoplasm is basically going

NOTE Confidence: 0.956286988888889

 $00:38:16.776 \longrightarrow 00:38:18.722$ to unravel to release the pro

NOTE Confidence: 0.956286988888889

 $00:38:18.722 \longrightarrow 00:38:20.352$ platelets that then become platelets.

NOTE Confidence: 0.908491521428571

00:38:25.560 --> 00:38:27.996 So all that membrane system was inside,

NOTE Confidence: 0.908491521428571

 $00{:}38{:}28.000 \dashrightarrow 00{:}38{:}30.288$ it was all packaged and then it just

NOTE Confidence: 0.908491521428571

 $00:38:30.288 \longrightarrow 00:38:33.030$ had to be induced to to unravel itself

NOTE Confidence: 0.908491521428571

 $00:38:33.030 \longrightarrow 00:38:35.080$ and release these pro platelets.

NOTE Confidence: 0.908491521428571

 $00:38:35.080 \longrightarrow 00:38:37.796$ So yeah, it's a very cool movie.

NOTE Confidence: 0.908491521428571

 $00{:}38{:}37.800 \dashrightarrow 00{:}38{:}40.710$ When people then look at megacary sites, they

NOTE Confidence: 0.908491521428571

 $00:38:40.710 \longrightarrow 00:38:43.160$ want to see that demarcation membrane system,

NOTE Confidence: 0.908491521428571

 $00:38:43.160 \longrightarrow 00:38:46.040$ that invagination of the plasma membrane.

 $00:38:46.040 \longrightarrow 00:38:47.640$ And we're doing this using

NOTE Confidence: 0.908491521428571

00:38:47.640 --> 00:38:48.280 expansion microscopy.

NOTE Confidence: 0.908491521428571

 $00:38:48.280 \longrightarrow 00:38:49.918$ So what is it, expansion microscopy?

NOTE Confidence: 0.908491521428571

 $00:38:49.920 \longrightarrow 00:38:53.760$ It's been developed in multiple laboratories.

NOTE Confidence: 0.908491521428571

 $00:38:53.760 \longrightarrow 00:38:55.056$ Neither of these labs,

NOTE Confidence: 0.908491521428571

00:38:55.056 --> 00:38:56.676 York Broersdorf or Yong Shinzhao's,

NOTE Confidence: 0.908491521428571

 $00:38:56.680 \longrightarrow 00:38:57.916$ was the first to do it.

NOTE Confidence: 0.908491521428571

 $00:38:57.920 \longrightarrow 00:38:59.432$ But these are the two people

NOTE Confidence: 0.908491521428571

 $00:38:59.432 \dashrightarrow 00:39:00.440$ that we're collaborating with.

NOTE Confidence: 0.908491521428571

00:39:00.440 --> 00:39:01.478 Many of you may know York.

NOTE Confidence: 0.908491521428571

 $00:39:01.480 \longrightarrow 00:39:02.444$ He's here at Yale.

NOTE Confidence: 0.908491521428571

 $00:39:02.444 \longrightarrow 00:39:04.148$ He does beautiful work with Pan XM

NOTE Confidence: 0.908491521428571

00:39:04.148 --> 00:39:06.308 that I'll show you the I And Yong

NOTE Confidence: 0.908491521428571

00:39:06.308 --> 00:39:07.993 Shinzhao is at Carnegie Mellon.

NOTE Confidence: 0.908491521428571

 $00:39:08.000 \longrightarrow 00:39:12.319$ He has a different approach called magnify.

NOTE Confidence: 0.908491521428571

 $00:39:12.320 \longrightarrow 00:39:14.732$ And what you can see is that you take

00:39:14.732 --> 00:39:17.443 your cell and here we're just looking

NOTE Confidence: 0.908491521428571

 $00{:}39{:}17.443 \dashrightarrow 00{:}39{:}19.361$ at different the mitochondria and

NOTE Confidence: 0.908491521428571

 $00{:}39{:}19.361 \dashrightarrow 00{:}39{:}21.513$ the Golgi here in the cell and you

NOTE Confidence: 0.908491521428571

00:39:21.520 --> 00:39:25.078 polymerize polyacrylamide gel into the cell,

NOTE Confidence: 0.908491521428571

 $00:39:25.080 \longrightarrow 00:39:27.200$ hit it and it cross links with it.

NOTE Confidence: 0.908491521428571

 $00:39:27.200 \longrightarrow 00:39:29.534$ You then expand that because there's

NOTE Confidence: 0.908491521428571

 $00:39:29.534 \longrightarrow 00:39:32.199$ acrylamide in there and sodium acrylate.

NOTE Confidence: 0.908491521428571

 $00:39:32.200 \longrightarrow 00:39:34.797$ Sodium acrylate is what's in babies diapers.

NOTE Confidence: 0.908491521428571 00:39:34.800 --> 00:39:35.514 It's very, NOTE Confidence: 0.908491521428571

 $00:39:35.514 \longrightarrow 00:39:36.228$ very absorptive.

NOTE Confidence: 0.908491521428571

00:39:36.228 --> 00:39:39.081 So if you have sodium acrylate and then

NOTE Confidence: 0.908491521428571

 $00:39:39.081 \longrightarrow 00:39:41.001$ you add water everything expands so

NOTE Confidence: 0.908491521428571

 $00{:}39{:}41.001 \dashrightarrow 00{:}39{:}43.311$ you get this huge expansion then what

NOTE Confidence: 0.908491521428571

 $00:39:43.311 \dashrightarrow 00:39:46.618$ they do in the boomers Dorf's lab is

NOTE Confidence: 0.908491521428571

00:39:46.618 --> 00:39:49.900 they stop that get rid of the cross

 $00:39:49.900 \longrightarrow 00:39:52.160$ linking re embedded and do it again.

NOTE Confidence: 0.908491521428571

 $00{:}39{:}52.160 --> 00{:}39{:}54.374$ So they can get up to 16 to 20

NOTE Confidence: 0.908491521428571

 $00:39:54.374 \longrightarrow 00:39:56.597$ fold expansion of a single cell.

NOTE Confidence: 0.908491521428571

00:39:56.600 --> 00:39:58.608 With Magnify you get about a 10 fold

NOTE Confidence: 0.908491521428571

00:39:58.608 --> 00:40:00.373 expansion and I'll tell you about the

NOTE Confidence: 0.908491521428571

 $00:40:00.373 \longrightarrow 00:40:02.438$ differences but we we do both in the lab.

NOTE Confidence: 0.908491521428571

 $00:40:02.440 \longrightarrow 00:40:04.752$ I mean the idea is you type take

NOTE Confidence: 0.908491521428571

 $00:40:04.752 \longrightarrow 00:40:06.838$ one thing that was really little

NOTE Confidence: 0.908491521428571

 $00:40:06.838 \longrightarrow 00:40:08.633$ and now it's really big.

NOTE Confidence: 0.908491521428571

00:40:08.640 --> 00:40:12.167 This is data from your Goersdorf's lab using

NOTE Confidence: 0.908491521428571

 $00:40:12.167 \longrightarrow 00:40:15.600$ the Pan XM his two fold expansion approach.

NOTE Confidence: 0.908491521428571

 $00:40:15.600 \longrightarrow 00:40:18.240$ What you can see in these cells is

NOTE Confidence: 0.908491521428571

 $00:40:18.240 \longrightarrow 00:40:21.160$ an NHS Ester just stains proteins.

NOTE Confidence: 0.908491521428571

00:40:21.160 --> 00:40:23.225 So it gives you something that's very

NOTE Confidence: 0.908491521428571

 $00:40:23.225 \longrightarrow 00:40:25.276$ similar to what you might see on EM.

NOTE Confidence: 0.908491521428571

 $00:40:25.280 \longrightarrow 00:40:26.880$ And you see this beautiful

 $00:40:26.880 \longrightarrow 00:40:28.480$ Golgi apparatus in a cell.

NOTE Confidence: 0.908491521428571

 $00:40:28.480 \longrightarrow 00:40:31.198$ This is just he LA cells.

NOTE Confidence: 0.908491521428571

00:40:31.200 --> 00:40:33.642 They can actually get antibodies to

NOTE Confidence: 0.908491521428571

 $00:40:33.642 \longrightarrow 00:40:36.433$ work that allow them to localize whether

NOTE Confidence: 0.908491521428571

 $00:40:36.433 \longrightarrow 00:40:39.378$ a protein is on the outside or the

NOTE Confidence: 0.908491521428571

 $00:40:39.378 \longrightarrow 00:40:41.248$ inside of this of the mitochondria.

NOTE Confidence: 0.908491521428571

 $00:40:41.248 \longrightarrow 00:40:43.670$ And So what you can see here is

NOTE Confidence: 0.908491521428571

 $00{:}40{:}43.670 \dashrightarrow 00{:}40{:}45.679$ when they stain with anti Cox four,

NOTE Confidence: 0.908491521428571

 $00:40:45.680 \longrightarrow 00:40:48.277$ it's on the inside of the mitochondria.

NOTE Confidence: 0.908491521428571

 $00{:}40{:}48.280 \to 00{:}40{:}49.624$ When they stain with anti Tom 20

NOTE Confidence: 0.908491521428571

 $00:40:49.624 \longrightarrow 00:40:51.288$ which is known to be on the outside

NOTE Confidence: 0.908491521428571

 $00:40:51.288 \longrightarrow 00:40:51.915$ of the mitochondria,

NOTE Confidence: 0.908491521428571

 $00{:}40{:}51.920 \dashrightarrow 00{:}40{:}53.045$ you can see this different

NOTE Confidence: 0.908491521428571

00:40:53.045 --> 00:40:54.106 pattern and it's really,

NOTE Confidence: 0.908491521428571

00:40:54.106 --> 00:40:55.542 really beautiful how you

 $00:40:55.542 \longrightarrow 00:40:57.197$ can clearly see the Cox,

NOTE Confidence: 0.908491521428571

 $00:40:57.200 \longrightarrow 00:40:59.480$ the Tom 20 is on the outside and

NOTE Confidence: 0.908491521428571

 $00:40:59.480 \longrightarrow 00:41:02.118$ the Cox 9 is on the inside Cox four,

NOTE Confidence: 0.908491521428571 00:41:02.120 --> 00:41:02.463 sorry. NOTE Confidence: 0.908491521428571

 $00:41:02.463 \longrightarrow 00:41:04.521$ So just beautiful imaging that we

NOTE Confidence: 0.908491521428571

 $00:41:04.521 \longrightarrow 00:41:07.324$ want to be able to use in now in

NOTE Confidence: 0.908491521428571

 $00:41:07.324 \longrightarrow 00:41:09.200$ mega carry sites and platelets.

NOTE Confidence: 0.908491521428571

00:41:09.200 --> 00:41:11.769 This is a comparison of Magnify which

NOTE Confidence: 0.908491521428571

 $00{:}41{:}11.769 \longrightarrow 00{:}41{:}14.639$ is from Yong Shin Zhao's lab and the

NOTE Confidence: 0.65870976777778

00:41:14.640 --> 00:41:17.079 Pan XM that is in your Boomer source lab.

NOTE Confidence: 0.65870976777778

 $00{:}41{:}17.080 \longrightarrow 00{:}41{:}20.750$ And we really takes the best of both in some

NOTE Confidence: 0.65870976777778

00:41:20.835 --> 00:41:22.880 of our assays York Boomersdorf's approach.

NOTE Confidence: 0.65870976777778

 $00:41:22.880 \longrightarrow 00:41:25.760$ The Pan XM gives you much better resolution.

NOTE Confidence: 0.65870976777778

 $00{:}41{:}25.760 \dashrightarrow 00{:}41{:}28.651$ No doubt you're getting 16X expansion and

NOTE Confidence: 0.65870976777778

 $00:41:28.651 \longrightarrow 00:41:31.079$ you're really preserving morphology better.

NOTE Confidence: 0.65870976777778

 $00{:}41{:}31.080 \dashrightarrow 00{:}41{:}34.599$ However, it takes a lot of time and effort.

 $00:41:34.600 \longrightarrow 00:41:36.520$ In contrast,

NOTE Confidence: 0.65870976777778

 $00{:}41{:}36.520 \dashrightarrow 00{:}41{:}37.576$ Yongshin's approach called Magnify,

NOTE Confidence: 0.65870976777778

 $00:41:37.576 \longrightarrow 00:41:39.160$ just takes one to three days.

NOTE Confidence: 0.65870976777778

00:41:39.160 --> 00:41:41.460 It's less than an hour of hands on time per

NOTE Confidence: 0.65870976777778

 $00:41:41.520 \longrightarrow 00:41:43.879$ day and there's no special equipment needed.

NOTE Confidence: 0.65870976777778

 $00:41:43.880 \longrightarrow 00:41:45.205$ You don't need this nitrogen

NOTE Confidence: 0.65870976777778

00:41:45.205 --> 00:41:47.120 tank and you get less expansion,

NOTE Confidence: 0.65870976777778

 $00:41:47.120 \longrightarrow 00:41:48.120$ but it's still quite beautiful.

NOTE Confidence: 0.65870976777778

00:41:48.120 --> 00:41:49.338 So I'll show you some data

NOTE Confidence: 0.65870976777778

 $00:41:49.338 \longrightarrow 00:41:50.440$ that we have for each.

NOTE Confidence: 0.65870976777778

 $00{:}41{:}50.440 \dashrightarrow 00{:}41{:}53.716$ And this is not an expensive thing to do.

NOTE Confidence: 0.65870976777778

 $00:41:53.720 \longrightarrow 00:41:56.216$ This is just a beautiful image

NOTE Confidence: 0.65870976777778

 $00{:}41{:}56.216 \dashrightarrow 00{:}41{:}58.940$ that comes from the that we did in

NOTE Confidence: 0.65870976777778

 $00:41:58.940 \longrightarrow 00:42:00.000$ collaboration with your Brewers.

NOTE Confidence: 0.65870976777778

 $00:42:00.000 \longrightarrow 00:42:02.048$ Dorf's lab and your runs the imaging core

 $00:42:02.048 \longrightarrow 00:42:04.437$ for the Center of Excellence in Hematology.

NOTE Confidence: 0.65870976777778

 $00{:}42{:}04.440 \dashrightarrow 00{:}42{:}06.800$ And what you see here is a pan XM image.

NOTE Confidence: 0.65870976777778

 $00:42:06.800 \longrightarrow 00:42:09.638$ So that's the 16 fold increase,

NOTE Confidence: 0.65870976777778

 $00:42:09.640 \longrightarrow 00:42:10.486$ 20 fold increase.

NOTE Confidence: 0.65870976777778

00:42:10.486 --> 00:42:13.080 And they pan stained it with the NHS Ester,

NOTE Confidence: 0.65870976777778

00:42:13.080 --> 00:42:16.560 which stains all proteins and with M cling.

NOTE Confidence: 0.65870976777778

00:42:16.560 --> 00:42:18.360 The nice thing about M cling is it bind,

NOTE Confidence: 0.65870976777778

 $00:42:18.360 \longrightarrow 00:42:20.160$ you stain the cells before you expand them.

NOTE Confidence: 0.65870976777778

 $00:42:20.160 \longrightarrow 00:42:21.660$ It binds to membranes,

NOTE Confidence: 0.65870976777778

 $00:42:21.660 \longrightarrow 00:42:23.160$ it binds to lipids.

NOTE Confidence: 0.65870976777778

 $00{:}42{:}23.160 \to 00{:}42{:}26.200$ And this is allowing us to start to see this

NOTE Confidence: 0.65870976777778

 $00:42:26.279 \longrightarrow 00:42:29.119$ invaginated membrane throughout the cell.

NOTE Confidence: 0.65870976777778

 $00:42:29.120 \longrightarrow 00:42:31.190$ And we're getting better and better

NOTE Confidence: 0.65870976777778

 $00:42:31.190 \longrightarrow 00:42:32.952$ images of this invagination that

NOTE Confidence: 0.65870976777778

 $00:42:32.952 \longrightarrow 00:42:34.890$ tells that shows us the demarcation

NOTE Confidence: 0.65870976777778

 $00:42:34.890 \longrightarrow 00:42:36.960$ membrane system of the megakaryocytes.

00:42:39.120 --> 00:42:40.674 So here's another way of looking at

NOTE Confidence: 0.918802040909091

 $00:42:40.674 \longrightarrow 00:42:41.640$ this demarcation membrane system.

NOTE Confidence: 0.918802040909091

00:42:41.640 --> 00:42:43.809 Now not with the M cling but just with

NOTE Confidence: 0.918802040909091

 $00:42:43.809 \longrightarrow 00:42:45.836$ the pan stain of all the proteins.

NOTE Confidence: 0.918802040909091

 $00:42:45.840 \longrightarrow 00:42:48.367$ This is an electron microscopy image and

NOTE Confidence: 0.918802040909091

 $00:42:48.367 \longrightarrow 00:42:51.640$ this is from our expanded whole bone marrow.

NOTE Confidence: 0.918802040909091

 $00:42:51.640 \longrightarrow 00:42:53.600$ This is Mina Shu gave us this slide.

NOTE Confidence: 0.918802040909091

 $00:42:53.600 \longrightarrow 00:42:55.440$ So this is expanded bone

NOTE Confidence: 0.918802040909091

00:42:55.440 --> 00:42:57.280 marrow from human FFPE tissue.

NOTE Confidence: 0.918802040909091

00:42:57.280 --> 00:42:59.701 And what you can see is that this PAN

NOTE Confidence: 0.918802040909091

00:42:59.701 --> 00:43:02.263 XM really shows you the demarcation

NOTE Confidence: 0.918802040909091

 $00:43:02.263 \longrightarrow 00:43:04.951$ membrane system similarly to what you

NOTE Confidence: 0.918802040909091

 $00{:}43{:}04.951 \dashrightarrow 00{:}43{:}07.315$ can see with the electron microscopy.

NOTE Confidence: 0.918802040909091

 $00:43:07.320 \longrightarrow 00:43:08.740$ Here's another expanded thing.

NOTE Confidence: 0.918802040909091

00:43:08.740 --> 00:43:10.515 This is now from magnify,

00:43:10.520 --> 00:43:11.936 showing that we have some antigens

NOTE Confidence: 0.918802040909091

 $00:43:11.936 \longrightarrow 00:43:12.880$ that we can identify.

NOTE Confidence: 0.918802040909091

 $00:43:12.880 \longrightarrow 00:43:15.016$ We can identify CD 61 shown

NOTE Confidence: 0.918802040909091

 $00:43:15.016 \longrightarrow 00:43:16.440$ in green and thrombospondin.

NOTE Confidence: 0.918802040909091

 $00:43:16.440 \longrightarrow 00:43:19.240$ So these are megacaryocytes and

NOTE Confidence: 0.918802040909091

 $00:43:19.240 \longrightarrow 00:43:21.974$ these green and red vesicles are

NOTE Confidence: 0.918802040909091

 $00:43:21.974 \longrightarrow 00:43:23.456$ actually the granules that are going

NOTE Confidence: 0.918802040909091

 $00:43:23.456 \longrightarrow 00:43:24.918$ to become the platelet granules,

NOTE Confidence: 0.918802040909091

 $00:43:24.920 \longrightarrow 00:43:26.320$ the alpha granules that have

NOTE Confidence: 0.918802040909091

 $00:43:26.320 \longrightarrow 00:43:27.720$ within them the thrombus bonded.

NOTE Confidence: 0.959589074

 $00:43:29.760 \longrightarrow 00:43:30.640$ And this is an image.

NOTE Confidence: 0.959589074

00:43:30.640 --> 00:43:32.476 I just can't get it out of my mind.

NOTE Confidence: 0.959589074

 $00:43:32.480 \longrightarrow 00:43:33.680$ But we haven't seen this again,

NOTE Confidence: 0.959589074

 $00:43:33.680 \longrightarrow 00:43:34.640$ we haven't done this.

NOTE Confidence: 0.959589074

 $00:43:34.640 \longrightarrow 00:43:36.590$ Again, this is again the formal

NOTE Confidence: 0.959589074

 $00:43:36.590 \longrightarrow 00:43:38.385$ and fixed paraffin embedded tissue

 $00:43:38.385 \longrightarrow 00:43:40.935$ from Mina shoe where we just

NOTE Confidence: 0.959589074

 $00{:}43{:}40.935 \dashrightarrow 00{:}43{:}44.000$ did a pan stain after expansion.

NOTE Confidence: 0.959589074

00:43:44.000 --> 00:43:45.330 And I can't get over this little

NOTE Confidence: 0.959589074

 $00:43:45.330 \longrightarrow 00:43:46.560$ hole in the megacaryocyte.

NOTE Confidence: 0.959589074

 $00:43:46.560 \longrightarrow 00:43:48.639$ I really think that this might be

NOTE Confidence: 0.959589074

 $00:43:48.639 \longrightarrow 00:43:50.279$ where the invagination is happening,

NOTE Confidence: 0.959589074

 $00:43:50.280 \longrightarrow 00:43:51.715$ but we have to see it more.

NOTE Confidence: 0.959589074

00:43:51.720 --> 00:43:52.770 But I'm showing it to you

NOTE Confidence: 0.959589074

 $00:43:52.770 \longrightarrow 00:43:53.920$ because this is a pathology,

NOTE Confidence: 0.959589074

 $00:43:53.920 \longrightarrow 00:43:55.798$ grand rounds and it's so beautiful.

NOTE Confidence: 0.959589074

 $00:43:55.800 \longrightarrow 00:43:57.396$ These are autofluorescent red blood cells.

NOTE Confidence: 0.959589074

 $00:43:57.400 \longrightarrow 00:43:59.824$ On the on the outside it's

NOTE Confidence: 0.959589074

 $00{:}43{:}59.824 \dashrightarrow 00{:}44{:}01.440$ just your gigantic nucleus.

NOTE Confidence: 0.959589074

 $00:44:01.440 \longrightarrow 00:44:03.665$ What what we've been quite

NOTE Confidence: 0.959589074

 $00:44:03.665 \longrightarrow 00:44:05.640$ successful at is using this to

 $00:44:05.640 \longrightarrow 00:44:07.260$ look at platelets and this is

NOTE Confidence: 0.959589074

 $00:44:07.322 \longrightarrow 00:44:09.317$ work that was done by Max Carlino.

NOTE Confidence: 0.959589074

 $00:44:09.320 \longrightarrow 00:44:10.976$ Some of you may know he's a first

NOTE Confidence: 0.959589074

00:44:10.976 --> 00:44:12.359 year graduate student of pathology,

NOTE Confidence: 0.959589074

 $00:44:12.360 \longrightarrow 00:44:13.928$ but he worked in my lab before

NOTE Confidence: 0.959589074

 $00:44:13.928 \longrightarrow 00:44:15.782$ that and he worked on this

NOTE Confidence: 0.959589074

 $00:44:15.782 \longrightarrow 00:44:17.278$ expansion microscopy on platelets.

NOTE Confidence: 0.959589074

 $00:44:17.280 \longrightarrow 00:44:19.848$ This is just an ultra an electromic

NOTE Confidence: 0.959589074

 $00{:}44{:}19.848 \dashrightarrow 00{:}44{:}21.960$ graph view of a platelet and you can

NOTE Confidence: 0.959589074

 $00:44:22.022 \longrightarrow 00:44:23.702$ see that there are dense granules

NOTE Confidence: 0.959589074

 $00:44:23.702 \longrightarrow 00:44:25.360$ and there are alpha granules.

NOTE Confidence: 0.959589074

 $00:44:25.360 \longrightarrow 00:44:27.097$ So I didn't mean to go to the next

NOTE Confidence: 0.959589074

 $00:44:27.097 \longrightarrow 00:44:29.297$ one so quite so quickly at but you

NOTE Confidence: 0.959589074

 $00:44:29.297 \longrightarrow 00:44:31.157$ need electron microscopy to see the details.

NOTE Confidence: 0.959589074

 $00:44:31.160 \longrightarrow 00:44:34.238$ So what Max was able to do was expand

NOTE Confidence: 0.959589074

 $00{:}44{:}34.238 \dashrightarrow 00{:}44{:}36.436$ primary human platelets and then just

 $00:44:36.436 \longrightarrow 00:44:38.951$ this was just the pan staining with

NOTE Confidence: 0.959589074

 $00{:}44{:}38.951 \dashrightarrow 00{:}44{:}41.436$ the protein stain you can see granules.

NOTE Confidence: 0.959589074

 $00:44:41.440 \longrightarrow 00:44:44.920$ Then he used antibody against thrombospondin.

NOTE Confidence: 0.959589074 00:44:44.920 --> 00:44:45.186 Oops, NOTE Confidence: 0.959589074

00:44:45.186 --> 00:44:47.314 it's supposed to be playing Oh well then

NOTE Confidence: 0.959589074

 $00:44:47.314 \longrightarrow 00:44:49.437$ he used antibiotic and there you go.

NOTE Confidence: 0.959589074

00:44:49.440 --> 00:44:51.080 So sorry.

NOTE Confidence: 0.959589074

 $00:44:51.080 \longrightarrow 00:44:52.856$ This is the thrombospondin

NOTE Confidence: 0.959589074

00:44:52.856 --> 00:44:55.076 which is in alpha granules.

NOTE Confidence: 0.959589074

 $00:44:55.080 \longrightarrow 00:44:57.366$ This is staining for tubulin which

NOTE Confidence: 0.959589074

 $00:44:57.366 \longrightarrow 00:44:59.919$ is on the outside of platelets.

NOTE Confidence: 0.959589074

 $00:44:59.920 \longrightarrow 00:45:01.117$ So and just the way you expect,

NOTE Confidence: 0.959589074

 $00{:}45{:}01.120 \dashrightarrow 00{:}45{:}03.115$ we can see this tubulin ring and

NOTE Confidence: 0.959589074

 $00:45:03.115 \longrightarrow 00:45:05.350$ this is showing you both the tubulin

NOTE Confidence: 0.959589074

 $00:45:05.350 \longrightarrow 00:45:07.000$ ring and the thrombus bonded.

 $00:45:07.000 \longrightarrow 00:45:09.037$ Beautiful. What can we use this for?

NOTE Confidence: 0.959589074 00:45:09.040 --> 00:45:09.255 Well, NOTE Confidence: 0.959589074

 $00:45:09.255 \longrightarrow 00:45:10.975$ one of the things we can use it

NOTE Confidence: 0.959589074

00:45:10.975 --> 00:45:13.137 for is to try to quantitate alpha

NOTE Confidence: 0.959589074

00:45:13.137 --> 00:45:14.397 granules within the platelets.

NOTE Confidence: 0.959589074

00:45:14.400 --> 00:45:16.416 And what I'm showing you here on the

NOTE Confidence: 0.959589074

00:45:16.416 --> 00:45:18.644 left is some of the classic work

NOTE Confidence: 0.959589074

 $00:45:18.644 \longrightarrow 00:45:20.304$ where they were quantifying alpha

NOTE Confidence: 0.959589074

 $00{:}45{:}20.371 \dashrightarrow 00{:}45{:}22.261$ granules in platelets using electron

NOTE Confidence: 0.959589074

00:45:22.261 --> 00:45:25.336 microscopy and they got about 50 such

NOTE Confidence: 0.959589074

 $00{:}45{:}25.336 \to 00{:}45{:}28.276$ granules per platelet on average.

NOTE Confidence: 0.959589074

 $00:45:28.280 \longrightarrow 00:45:29.568$ This is our data,

NOTE Confidence: 0.959589074

 $00:45:29.568 \longrightarrow 00:45:31.178$ not counting them using electron

NOTE Confidence: 0.959589074

 $00:45:31.178 \longrightarrow 00:45:32.801$ microscopy where you it's a huge

NOTE Confidence: 0.959589074

00:45:32.801 --> 00:45:35.186 amount of time and effort to try to

NOTE Confidence: 0.959589074

 $00{:}45{:}35.186 \dashrightarrow 00{:}45{:}36.634$ get this three-dimensional microscopy.

 $00:45:36.640 \longrightarrow 00:45:39.076$ Here he can look at 151 platelets

NOTE Confidence: 0.959589074

 $00:45:39.076 \longrightarrow 00:45:40.882$ in that stained slide that in the

NOTE Confidence: 0.959589074

 $00:45:40.882 \longrightarrow 00:45:42.582$ slide I just showed you and he can

NOTE Confidence: 0.959589074

 $00:45:42.582 \longrightarrow 00:45:44.050$ say how many total granules are

NOTE Confidence: 0.959589074

 $00:45:44.050 \longrightarrow 00:45:45.954$ there and how many granules are there

NOTE Confidence: 0.959589074

 $00:45:45.960 \longrightarrow 00:45:47.520$ that have thromaspondon in them.

NOTE Confidence: 0.959589074

 $00:45:47.520 \longrightarrow 00:45:48.968$ And he could see that there were a

NOTE Confidence: 0.959589074

 $00:45:48.968 \longrightarrow 00:45:50.307$ little bit more than 50 granules

NOTE Confidence: 0.959589074

 $00{:}45{:}50.307 \dashrightarrow 00{:}45{:}51.472$ on average per platelet looking

NOTE Confidence: 0.959589074

 $00:45:51.472 \longrightarrow 00:45:52.400$ very similar to this.

NOTE Confidence: 0.959589074

 $00:45:52.400 \longrightarrow 00:45:53.814$ And then he could even look at

NOTE Confidence: 0.959589074

 $00:45:53.814 \longrightarrow 00:45:55.195$ what percentage of those platelets

NOTE Confidence: 0.959589074

 $00{:}45{:}55.195 \dashrightarrow 00{:}45{:}55.919$ have thromas pondon.

NOTE Confidence: 0.959589074

 $00{:}45{:}55{.}920 \dashrightarrow 00{:}45{:}57{.}384$ So again something that I think

NOTE Confidence: 0.959589074

 $00:45:57.384 \longrightarrow 00:45:58.360$ can be useful clinically,

 $00:45:58.360 \longrightarrow 00:46:02.200$ certainly it's interesting scientifically.

NOTE Confidence: 0.959589074

00:46:02.200 --> 00:46:02.808 So finally,

NOTE Confidence: 0.959589074

 $00:46:02.808 \longrightarrow 00:46:05.240$ this is what I've told you today that

NOTE Confidence: 0.8670297356

 $00:46:05.307 \longrightarrow 00:46:07.431$ single cell RNA seek reveals MEP

NOTE Confidence: 0.8670297356

 $00:46:07.431 \longrightarrow 00:46:09.954$ as a unique transitional state in

NOTE Confidence: 0.8670297356

 $00:46:09.954 \longrightarrow 00:46:11.520$ hematopoietic fate specification.

NOTE Confidence: 0.8670297356

 $00:46:11.520 \longrightarrow 00:46:13.220$ That cell cycle differences really

NOTE Confidence: 0.8670297356

 $00:46:13.220 \longrightarrow 00:46:15.260$ seem to regulate MEP fate and

NOTE Confidence: 0.8670297356

 $00:46:15.260 \longrightarrow 00:46:16.958$ we're trying to figure out how.

NOTE Confidence: 0.8670297356

 $00:46:16.960 \longrightarrow 00:46:19.895$ One of the ways that seems to be working

NOTE Confidence: 0.8670297356

 $00{:}46{:}19.895 {\:\dashrightarrow\:} 00{:}46{:}22.520$ is through in a slower cycling cell

NOTE Confidence: 0.8670297356

00:46:22.520 --> 00:46:24.878 there's more phosphoserine Ronx one,

NOTE Confidence: 0.8670297356

 $00:46:24.880 \longrightarrow 00:46:26.280$ and that phosphoserine Ronx

NOTE Confidence: 0.8670297356

 $00:46:26.280 \longrightarrow 00:46:27.680$ 1 activates Meg genes,

NOTE Confidence: 0.8670297356

00:46:27.680 --> 00:46:30.158 so you get Meg fate specification.

NOTE Confidence: 0.8670297356

 $00{:}46{:}30.160 \dashrightarrow 00{:}46{:}32.242$ I showed you time lapse imaging

 $00:46:32.242 \longrightarrow 00:46:34.360$ that really showed at least that

NOTE Confidence: 0.8670297356

 $00:46:34.360 \longrightarrow 00:46:35.776$ statistically significant slowing

NOTE Confidence: 0.8670297356

 $00:46:35.776 \longrightarrow 00:46:38.608$ of the cell cycle speed predicts

NOTE Confidence: 0.8670297356

00:46:38.608 --> 00:46:40.824 MK fade specification and that

NOTE Confidence: 0.8670297356

 $00:46:40.824 \longrightarrow 00:46:42.909$ we can predict the probability

NOTE Confidence: 0.8670297356

 $00:46:42.909 \longrightarrow 00:46:45.107$ of MEP fade specification over

NOTE Confidence: 0.8670297356

 $00:46:45.107 \longrightarrow 00:46:47.237$ time with this Markov model.

NOTE Confidence: 0.8670297356

 $00:46:47.240 \longrightarrow 00:46:49.711$ And finally that we're very excited about

NOTE Confidence: 0.8670297356

 $00:46:49.711 \longrightarrow 00:46:52.599$ the power of using expansion microscopy.

NOTE Confidence: 0.8670297356

 $00{:}46{:}52.600 \dashrightarrow 00{:}46{:}54.000$ I wanted to take a minute to tell

NOTE Confidence: 0.8670297356

00:46:54.000 --> 00:46:55.306 you about the cooperative centers

NOTE Confidence: 0.8670297356

 $00:46:55.306 \longrightarrow 00:46:56.518$ of excellence in hematology,

NOTE Confidence: 0.8670297356

00:46:56.520 --> 00:46:57.624 which Karen already mentioned,

NOTE Confidence: 0.8670297356

 $00:46:57.624 \longrightarrow 00:46:59.280$ but who listens to the intro.

NOTE Confidence: 0.8670297356

 $00:46:59.280 \longrightarrow 00:47:04.136$ So YCCEH is funded by the NIDDK.

 $00:47:04.136 \longrightarrow 00:47:06.768$ Yale is one of five such centers

NOTE Confidence: 0.8670297356

 $00{:}47{:}06.768 \dashrightarrow 00{:}47{:}08.599$ nationwide and we all provide

NOTE Confidence: 0.8670297356

 $00:47:08.599 \longrightarrow 00:47:10.603$ cores that can help people who

NOTE Confidence: 0.8670297356

00:47:10.603 --> 00:47:12.759 do non malignant hematology.

NOTE Confidence: 0.8670297356

00:47:12.760 --> 00:47:14.594 And some of what I showed you

NOTE Confidence: 0.8670297356

 $00:47:14.594 \longrightarrow 00:47:16.533$ today is available in our core

NOTE Confidence: 0.8670297356

00:47:16.533 --> 00:47:17.997 including the expansion microscopy,

NOTE Confidence: 0.8670297356

 $00:47:18.000 \longrightarrow 00:47:20.960$ the time lapse microscopy,

NOTE Confidence: 0.8670297356

 $00{:}47{:}20.960 \dashrightarrow 00{:}47{:}22.408$ CDC's colony forming assays.

NOTE Confidence: 0.8670297356

00:47:22.408 --> 00:47:24.580 We can help you with hematopoietic

NOTE Confidence: 0.8670297356

 $00:47:24.646 \longrightarrow 00:47:26.716$ assays and other across the country.

NOTE Confidence: 0.8670297356

 $00:47:26.720 \longrightarrow 00:47:28.360$ There's a metabolomics core for

NOTE Confidence: 0.8670297356

00:47:28.360 --> 00:47:30.000 any non malignant heme work

NOTE Confidence: 0.8670297356

00:47:30.064 --> 00:47:31.678 that you're doing in at Utah.

NOTE Confidence: 0.8670297356

 $00:47:31.680 \longrightarrow 00:47:33.735$ There's an imaging core that

NOTE Confidence: 0.8670297356

 $00:47:33.735 \longrightarrow 00:47:35.428$ does codecs in Indiana.

00:47:35.428 --> 00:47:38.437 You can get as many CD34 cells as

NOTE Confidence: 0.8670297356

00:47:38.437 --> 00:47:40.111 you would ever need from multiple

NOTE Confidence: 0.8670297356

 $00:47:40.111 \longrightarrow 00:47:42.600$ types of donors in Seattle,

NOTE Confidence: 0.8670297356

 $00:47:42.600 \longrightarrow 00:47:45.210$ so do contact me if you want to be part

NOTE Confidence: 0.8670297356

 $00:47:45.281 \longrightarrow 00:47:47.751$ of that or look it up at ceeh dot IO.

NOTE Confidence: 0.8670297356

 $00:47:47.760 \longrightarrow 00:47:49.825$ Finally, there are grants available

NOTE Confidence: 0.8670297356

00:47:49.825 --> 00:47:51.120 through ICCEH Money,

NOTE Confidence: 0.8670297356

00:47:51.120 --> 00:47:52.440 Money, Money, money.

NOTE Confidence: 0.8670297356

 $00:47:52.440 \longrightarrow 00:47:54.195$ They have Type A grants and Type B grants.

NOTE Confidence: 0.8670297356

 $00:47:54.200 \longrightarrow 00:47:57.522$ The Type A grants give you \$12,000 worth

NOTE Confidence: 0.8670297356

00:47:57.522 --> 00:48:01.320 of services at any one of the five cores,

NOTE Confidence: 0.8670297356

 $00{:}48{:}01.320 \dashrightarrow 00{:}48{:}03.959$ and those are it's a rolling submission.

NOTE Confidence: 0.8670297356

 $00:48:03.960 \longrightarrow 00:48:05.864$ Anytime you have one of these just

NOTE Confidence: 0.8670297356

 $00:48:05.864 \longrightarrow 00:48:07.666$ submit it and we'll we review

NOTE Confidence: 0.8670297356

 $00:48:07.666 \longrightarrow 00:48:09.184$ the monthly and then the Type

 $00:48:09.184 \longrightarrow 00:48:10.656$ B grants are up to 70,000.

NOTE Confidence: 0.8670297356

 $00{:}48{:}10.656 \dashrightarrow 00{:}48{:}13.552$ They take an 8% overhead out of that

NOTE Confidence: 0.8670297356

00:48:13.552 --> 00:48:15.880 \$70,000 for you for your research

NOTE Confidence: 0.8670297356

 $00:48:15.880 \longrightarrow 00:48:17.612$ for non malignant hematology.

NOTE Confidence: 0.8670297356

00:48:17.612 --> 00:48:20.744 And those Type B grants are due

NOTE Confidence: 0.8670297356

00:48:20.744 --> 00:48:23.285 February 15th I think don't quote me

NOTE Confidence: 0.8670297356

 $00:48:23.285 \longrightarrow 00:48:25.718$ on that go to I go to CCH dot IO.

NOTE Confidence: 0.8670297356

00:48:25.720 --> 00:48:28.436 But really it's it's they're good grants.

NOTE Confidence: 0.8670297356

 $00:48:28.440 \longrightarrow 00:48:32.840$ So finally thank you to the lab,

NOTE Confidence: 0.8670297356

00:48:32.840 --> 00:48:34.250 everybody's pictured here and hopefully

NOTE Confidence: 0.8670297356

 $00:48:34.250 \longrightarrow 00:48:36.360$ I gave them credit as we went along.

NOTE Confidence: 0.8670297356

 $00:48:36.360 \longrightarrow 00:48:36.960$ Thanks so much.

NOTE Confidence: 0.666180874

 $00:48:45.640 \longrightarrow 00:48:46.640$ This is open for questions.

NOTE Confidence: 0.5525023

 $00:48:50.480 \longrightarrow 00:48:50.720$ Yeah,

NOTE Confidence: 0.2580808375

 $00:48:52.800 \longrightarrow 00:48:55.680$ expansion by class is 34.

NOTE Confidence: 0.2580808375

 $00{:}48{:}55.680 \dashrightarrow 00{:}48{:}58.765$ I'm wondering do you know if

00:48:58.765 --> 00:49:00.529 that expansion material disrupt

NOTE Confidence: 0.2580808375

00:49:00.529 --> 00:49:02.999 like protein public interaction,

NOTE Confidence: 0.2580808375

 $00:49:03.000 \longrightarrow 00:49:04.792$ did you try to see that colonization

NOTE Confidence: 0.2580808375

 $00:49:04.792 \longrightarrow 00:49:07.480$ of sort of things? Yeah. So

NOTE Confidence: 0.707747023333333

00:49:10.640 --> 00:49:12.398 the answer is that proteins stay

NOTE Confidence: 0.707747023333333

00:49:12.400 --> 00:49:14.564 intact and protein interactions they

NOTE Confidence: 0.707747023333333

00:49:14.564 --> 00:49:16.520 they're they say look Co localized,

NOTE Confidence: 0.707747023333333

 $00:49:16.520 \longrightarrow 00:49:18.424$ but I don't know if they stay

NOTE Confidence: 0.707747023333333

 $00:49:18.424 \longrightarrow 00:49:20.120$ negative if it's not prevailed.

NOTE Confidence: 0.707747023333333

 $00:49:20.120 \longrightarrow 00:49:23.272$ What you what you can do though with

NOTE Confidence: 0.707747023333333

00:49:23.272 --> 00:49:25.399 extended microscopy is Co localized

NOTE Confidence: 0.707747023333333

 $00:49:25.399 \longrightarrow 00:49:27.931$ 2 proteins that you cannot clearly

NOTE Confidence: 0.707747023333333

 $00{:}49{:}27.931 \dashrightarrow 00{:}49{:}30.398$ visualize if you don't have extension.

NOTE Confidence: 0.707747023333333

00:49:30.400 --> 00:49:32.640 So if you stain them after you've extended,

NOTE Confidence: 0.707747023333333

 $00:49:32.640 \longrightarrow 00:49:34.170$ you'll really be able to see

 $00:49:34.170 \longrightarrow 00:49:35.938$ that they were right next to each

NOTE Confidence: 0.707747023333333

 $00:49:35.938 \longrightarrow 00:49:37.905$ other and all of the epitopes will

NOTE Confidence: 0.707747023333333

 $00:49:37.905 \longrightarrow 00:49:39.772$ still be there because they're not

NOTE Confidence: 0.707747023333333

 $00:49:39.772 \longrightarrow 00:49:41.560$ blocking one another by being bad.

NOTE Confidence: 0.707747023333333

 $00:49:41.560 \longrightarrow 00:49:43.840$ So people have done Co localization

NOTE Confidence: 0.707747023333333

 $00:49:43.840 \longrightarrow 00:49:45.800$ studies with expansion that weren't

NOTE Confidence: 0.707747023333333

 $00:49:45.800 \longrightarrow 00:49:47.950$ feasible prior to having expansion.

NOTE Confidence: 0.707747023333333

00:49:47.950 --> 00:49:50.715 But if you're asking other things when we

NOTE Confidence: 0.707747023333333

 $00:49:50.715 \longrightarrow 00:49:53.079$ don't know what happens to DNA and RNA,

NOTE Confidence: 0.707747023333333

00:49:53.080 --> 00:49:55.117 some people have gotten fish to work,

NOTE Confidence: 0.707747023333333

 $00{:}49{:}55.120 \dashrightarrow 00{:}49{:}57.136$ but I don't really know what the

NOTE Confidence: 0.707747023333333

 $00{:}49{:}57.136 \to 00{:}49{:}59.104$ stretching does and what exactly gets

NOTE Confidence: 0.707747023333333

 $00:49:59.104 \longrightarrow 00:50:01.426$ stretched at that tiny molecular level.

NOTE Confidence: 0.707747023333333

 $00:50:01.426 \longrightarrow 00:50:03.920$ I've asked the same questions to the answer,

NOTE Confidence: 0.707747023333333

00:50:03.920 --> 00:50:05.120 but I'm not sure you know,

NOTE Confidence: 0.5280967575

 $00:50:06.600 \longrightarrow 00:50:09.720$ with your increase in drugs on

 $00:50:09.720 \longrightarrow 00:50:13.478$ causing the increase in accuracy.

NOTE Confidence: 0.5280967575

 $00:50:13.480 \longrightarrow 00:50:16.680$ Do you know that this later gets rise

NOTE Confidence: 0.5280967575

 $00:50:16.680 \longrightarrow 00:50:18.560$ to functional increase in platelets?

NOTE Confidence: 0.749041935

 $00:50:20.880 \longrightarrow 00:50:23.348$ No. But what we do know,

NOTE Confidence: 0.749041935

00:50:23.348 --> 00:50:24.770 so our work was unique in

NOTE Confidence: 0.807950995517242

 $00:50:24.829 \longrightarrow 00:50:26.549$ starting with the bipodent progenitor

NOTE Confidence: 0.807950995517242

 $00:50:26.549 \longrightarrow 00:50:28.600$ and what we were always looking

NOTE Confidence: 0.807950995517242

 $00:50:28.600 \longrightarrow 00:50:30.752$ for is just which fake did it pick.

NOTE Confidence: 0.807950995517242

 $00:50:30.760 \longrightarrow 00:50:32.344$ And so you're right, we're only

NOTE Confidence: 0.807950995517242

00:50:32.344 --> 00:50:35.200 looking like the first part of it,

NOTE Confidence: 0.807950995517242

 $00:50:35.200 \longrightarrow 00:50:36.130$ but we didn't come up with

NOTE Confidence: 0.807950995517242

 $00:50:36.130 \longrightarrow 00:50:37.880$ rocks all by ourselves.

NOTE Confidence: 0.807950995517242

 $00{:}50{:}37.880 \dashrightarrow 00{:}50{:}40.078$ Bronx One is known in a mouse.

NOTE Confidence: 0.807950995517242

00:50:40.080 --> 00:50:41.358 If you knock down Bronx One,

NOTE Confidence: 0.807950995517242

 $00:50:41.360 \longrightarrow 00:50:43.436$ you have lower meds, lower platelets.

 $00:50:43.440 \longrightarrow 00:50:44.560$ If you over fresh rocks,

NOTE Confidence: 0.807950995517242

 $00:50:44.560 \longrightarrow 00:50:46.240$ you have more meds and more platelets.

NOTE Confidence: 0.807950995517242

00:50:46.240 --> 00:50:47.902 What wasn't known is where was

NOTE Confidence: 0.807950995517242

00:50:47.902 --> 00:50:49.714 that acting and that it might

NOTE Confidence: 0.807950995517242

 $00:50:49.714 \longrightarrow 00:50:51.664$ be acting literally at the Fate

NOTE Confidence: 0.807950995517242

 $00:50:51.664 \longrightarrow 00:50:52.920$ specification level of an MEP.

NOTE Confidence: 0.807950995517242

00:50:52.920 --> 00:50:54.840 So I think they would,

NOTE Confidence: 0.807950995517242

 $00:50:54.840 \longrightarrow 00:50:55.995$ but I can't tell you for sure.

NOTE Confidence: 0.4893077

 $00{:}50{:}56.400 \dashrightarrow 00{:}50{:}58.066$ I ask this because of our patients

NOTE Confidence: 0.4893077

00:50:58.066 --> 00:51:01.600 with rocks one journal on mutation

NOTE Confidence: 0.4893077

 $00{:}51{:}01.600 \dashrightarrow 00{:}51{:}04.480$ and they in the bone marrow have the

NOTE Confidence: 0.4893077

 $00:51:04.480 \longrightarrow 00:51:07.000$ creation of abnormal and carrying sites,

NOTE Confidence: 0.4893077

00:51:07.000 --> 00:51:08.398 but then they have Bronx therapy.

NOTE Confidence: 0.73607370875

00:51:09.720 --> 00:51:13.040 Those patients actually are

NOTE Confidence: 0.73607370875

 $00:51:13.040 \longrightarrow 00:51:16.360$ hemisitis for inactivating mutation.

NOTE Confidence: 0.73607370875

 $00{:}51{:}16.360 \dashrightarrow 00{:}51{:}20.040$ They have decreased Bronx activity.

00:51:20.040 --> 00:51:22.630 So their mutant Bronx is either hypo

NOTE Confidence: 0.73607370875

 $00{:}51{:}22.630 \dashrightarrow 00{:}51{:}25.240$ functioning or not functioning at all.

NOTE Confidence: 0.73607370875

00:51:25.240 --> 00:51:27.760 I wasn't aware then more plate, more megs.

NOTE Confidence: 0.73607370875

00:51:27.760 --> 00:51:30.096 I know they have lower ploying megs because

NOTE Confidence: 0.73607370875

 $00:51:30.096 \longrightarrow 00:51:32.307$ they have a defect in Meg maturation

NOTE Confidence: 0.73607370875

 $00:51:32.307 \longrightarrow 00:51:34.000$ and they have lower platelets. Yeah,

NOTE Confidence: 0.73544616

 $00:51:36.960 \longrightarrow 00:51:39.536$ yes, yes, it's really beautiful.

NOTE Confidence: 0.73544616

 $00:51:39.536 \longrightarrow 00:51:41.840$ I was wondering that the the

NOTE Confidence: 0.524295674615385

 $00:51:41.917 \longrightarrow 00:51:44.407$ the common progenitor and in vitro,

NOTE Confidence: 0.524295674615385

 $00:51:44.407 \longrightarrow 00:51:46.501$ the lineage commitment from the Detroit

NOTE Confidence: 0.524295674615385

 $00{:}51{:}46.501 \dashrightarrow 00{:}51{:}49.048$ and and Medicare is obviously driven by

NOTE Confidence: 0.524295674615385

 $00:51:49.048 \longrightarrow 00:51:51.519$ the cell cycle towards that it's right.

NOTE Confidence: 0.524295674615385

 $00{:}51{:}51.520 \dashrightarrow 00{:}51{:}54.790$ Could you understand your situation in

NOTE Confidence: 0.524295674615385

 $00:51:54.790 \longrightarrow 00:51:57.730$ vivo where those things are altered in

NOTE Confidence: 0.524295674615385

 $00:51:57.730 \longrightarrow 00:52:00.608$ a way that the the ratio you know the

00:52:00.608 --> 00:52:01.952 cell has to decide it's going to make?

NOTE Confidence: 0.524295674615385

 $00:52:01.960 \longrightarrow 00:52:04.676$ How many RPCS and how many pavements?

NOTE Confidence: 0.524295674615385

 $00:52:04.680 \longrightarrow 00:52:07.277$ In which situation does it go awry

NOTE Confidence: 0.524295674615385

 $00:52:07.280 \longrightarrow 00:52:11.600$ and is it truly lineage commitment

NOTE Confidence: 0.524295674615385

00:52:11.600 --> 00:52:13.480 between or is it just stochastic? Well,

NOTE Confidence: 0.820013413333333

 $00:52:14.560 \longrightarrow 00:52:16.360$ we think it's truly lineage commitment

NOTE Confidence: 0.53965566

 $00:52:17.440 \longrightarrow 00:52:19.040$ on a stochastic low because

NOTE Confidence: 0.807673904545455

 $00:52:19.040 \longrightarrow 00:52:20.021$ there's always probability.

NOTE Confidence: 0.807673904545455

 $00{:}52{:}20.021 \dashrightarrow 00{:}52{:}22.680$ We don't see that if we overspress rocks,

NOTE Confidence: 0.807673904545455

 $00.52:22.680 \longrightarrow 00.52:23.556$ everything goes in it.

NOTE Confidence: 0.807673904545455

 $00:52:23.556 \dashrightarrow 00:52:25.480$ It's just some ability to go over throw it.

NOTE Confidence: 0.807673904545455

 $00:52:25.480 \longrightarrow 00:52:27.664$ In fact you need rocks one

NOTE Confidence: 0.807673904545455

 $00:52:27.664 \longrightarrow 00:52:28.756$ for erythroid maturation.

NOTE Confidence: 0.807673904545455

 $00:52:28.760 \longrightarrow 00:52:32.197$ So I think it's stochastic but biased

NOTE Confidence: 0.807673904545455

 $00:52:32.200 \longrightarrow 00:52:34.195$ that you know you have one ratio.

NOTE Confidence: 0.807673904545455

 $00{:}52{:}34.200 \dashrightarrow 00{:}52{:}35.604$ In the absence of over expressing

 $00:52:35.604 \longrightarrow 00:52:37.396$ wrongs you get a ratio that's very

NOTE Confidence: 0.807673904545455

 $00{:}52{:}37.396 \dashrightarrow 00{:}52{:}38.998$ Meg biased when you over express

NOTE Confidence: 0.807673904545455

00:52:38.998 --> 00:52:40.676 wrongs and more Meg bias if you have

NOTE Confidence: 0.737836598

 $00:52:40.920 \longrightarrow 00:52:42.960$ normal. But in a normal progenitor

NOTE Confidence: 0.737836598

 $00{:}52{:}42.960 \dashrightarrow 00{:}52{:}44.804$ what is the ratio of commitment

NOTE Confidence: 0.737836598

 $00:52:44.804 \longrightarrow 00:52:46.014$ towards something like a carrier

NOTE Confidence: 0.737836598

 $00:52:46.014 \longrightarrow 00:52:47.440$ site and the unit for itself?

NOTE Confidence: 0.678241175

 $00{:}52{:}47.800 \dashrightarrow 00{:}52{:}49.494$ You're asking in vivo and I can

NOTE Confidence: 0.678241175

 $00:52:49.494 \longrightarrow 00:52:51.180$ only tell you in vitro, yeah,

NOTE Confidence: 0.678241175

 $00:52:51.180 \longrightarrow 00:52:53.096$ or even in vitro. In vitro,

NOTE Confidence: 0.678241175

 $00{:}52{:}53.096 \dashrightarrow 00{:}52{:}56.440$ it seems that they're about equal and

NOTE Confidence: 0.678241175

 $00:52:56.440 \longrightarrow 00:52:58.680$ there's a good reason for that.

NOTE Confidence: 0.678241175

 $00{:}52{:}58.680 \dashrightarrow 00{:}53{:}01.230$ What happens downstream is the

NOTE Confidence: 0.678241175

 $00:53:01.230 \longrightarrow 00:53:02.760$ erythroid progenitor proliferates

NOTE Confidence: 0.678241175

 $00:53:02.760 \longrightarrow 00:53:05.363$ log fold multiple times very quickly

 $00:53:05.363 \longrightarrow 00:53:08.120$ to make a lot of erythroid cells.

NOTE Confidence: 0.678241175

 $00{:}53{:}08.120 \dashrightarrow 00{:}53{:}09.980$ The Meg progenitor doesn't

NOTE Confidence: 0.678241175

00:53:09.980 --> 00:53:11.840 proliferate very many times,

NOTE Confidence: 0.678241175

00:53:11.840 --> 00:53:13.910 but each mega carry site makes

NOTE Confidence: 0.678241175

 $00:53:13.910 \longrightarrow 00:53:16.120$ 10 to the three platelets.

NOTE Confidence: 0.678241175

 $00{:}53{:}16.120 \dashrightarrow 00{:}53{:}19.540$ So you have a three log production

NOTE Confidence: 0.678241175

00:53:19.540 --> 00:53:21.210 per mega Carrison.

NOTE Confidence: 0.678241175

00:53:21.210 --> 00:53:23.520 So it kind of works mathematically.

NOTE Confidence: 0.678241175

00:53:23.520 --> 00:53:24.948 If you say you make one play

NOTE Confidence: 0.678241175

 $00:53:24.948 \longrightarrow 00:53:26.725$ then one or it's all about you

NOTE Confidence: 0.678241175

 $00:53:26.725 \longrightarrow 00:53:27.715$ know 1 to 1 ratios that

NOTE Confidence: 0.891264846

 $00:53:27.720 \longrightarrow 00:53:29.000$ that's how it would go. And

NOTE Confidence: 0.508137418181818

 $00{:}53{:}29.000 \dashrightarrow 00{:}53{:}31.667$ we know if in older a dults where

NOTE Confidence: 0.508137418181818

 $00:53:31.667 \longrightarrow 00:53:33.600$ there is minority buys that

NOTE Confidence: 0.508137418181818

 $00:53:33.600 \longrightarrow 00:53:35.906$ that there is a a differential

NOTE Confidence: 0.508137418181818

 $00:53:35.906 \longrightarrow 00:53:37.671$ response to this commitment between

 $00:53:37.671 \longrightarrow 00:53:39.280$ megataryocytes and heart disease. I

NOTE Confidence: 0.90591115631579

 $00:53:39.280 \longrightarrow 00:53:41.624$ don't know, I'd love to actually get access

NOTE Confidence: 0.90591115631579

 $00:53:41.624 \longrightarrow 00:53:43.888$ to marrow from patients with different

NOTE Confidence: 0.90591115631579

 $00:53:43.888 \longrightarrow 00:53:45.913$ diseases and that's been problematic.

NOTE Confidence: 0.90591115631579

 $00:53:45.920 \longrightarrow 00:53:50.130$ We have looked at MPNS and in MPNS if they

NOTE Confidence: 0.90591115631579

 $00:53:50.238 \longrightarrow 00:53:51.944$ have essential thrombocytosis then they

NOTE Confidence: 0.90591115631579

 $00:53:51.944 \longrightarrow 00:53:55.288$ do tend to have a Meg bias to their MEP

NOTE Confidence: 0.90591115631579

 $00:53:55.288 \longrightarrow 00:53:57.280$ and the opposite for polysychemia Vera.

NOTE Confidence: 0.90591115631579

00:53:57.280 --> 00:53:58.448 But it's very subtle.

NOTE Confidence: 0.90591115631579

 $00:53:58.448 \longrightarrow 00:54:01.444$ I think a lot of that is downstream of

NOTE Confidence: 0.90591115631579

 $00:54:01.444 \longrightarrow 00:54:03.796$ the MEP and the FATE certification.

NOTE Confidence: 0.90591115631579

 $00:54:03.800 \longrightarrow 00:54:06.862$ Jack 2:00 and from and Teepo, they're there.

NOTE Confidence: 0.90591115631579

 $00{:}54{:}06.862 \dashrightarrow 00{:}54{:}08.517$ They're acted the whole time.

NOTE Confidence: 0.90591115631579

 $00:54:08.520 \longrightarrow 00:54:09.997$ So it's not going to just toggle

NOTE Confidence: 0.66814592333333300:54:10.000 --> 00:54:11.800 it. Yeah. So

 $00:54:11.800 \longrightarrow 00:54:13.720$ along those lines that you looked or

NOTE Confidence: 0.664692644

00:54:13.720 --> 00:54:17.200 what do you know about CHIP and actually

NOTE Confidence: 0.595743156363636

00:54:17.600 --> 00:54:18.401 mutations in Ronczuan,

NOTE Confidence: 0.595743156363636

 $00:54:18.401 \longrightarrow 00:54:20.600$ a lot of things in terms of their

NOTE Confidence: 0.595743156363636

 $00:54:20.600 \longrightarrow 00:54:22.880$ cell cycling and their biases,

NOTE Confidence: 0.694387464117647

 $00:54:23.080 \longrightarrow 00:54:25.984$ nothing but. But patients with Ronczuan

NOTE Confidence: 0.694387464117647

 $00:54:25.984 \longrightarrow 00:54:27.920$ familial mutations in Ronczuan

NOTE Confidence: 0.694387464117647

 $00:54:27.995 \longrightarrow 00:54:30.277$ do have an increased risk of Chip

NOTE Confidence: 0.688225391

 $00.54:32.800 \longrightarrow 00.54:34.408$ that might just be because they

NOTE Confidence: 0.688225391

00:54:34.408 --> 00:54:35.480 have abnormal Hemato policies.

NOTE Confidence: 0.688225391

 $00:54:35.480 \longrightarrow 00:54:37.223$ And so the few, the better cells

NOTE Confidence: 0.688225391

 $00:54:37.223 \longrightarrow 00:54:39.198$ are the ones that are taking over.

NOTE Confidence: 0.688225391

00:54:39.200 --> 00:54:40.355 But I I don't know for sure.

NOTE Confidence: 0.688225391

 $00:54:40.360 \longrightarrow 00:54:42.040$ It's a good question,

NOTE Confidence: 0.688225391

 $00:54:42.040 \longrightarrow 00:54:42.576$ really good question.

NOTE Confidence: 0.688225391

 $00:54:42.576 \longrightarrow 00:54:45.011$ It'll be fun to look at that.

 $00:54:45.011 \longrightarrow 00:54:46.488$ We have a lot of such patients

NOTE Confidence: 0.688225391

 $00{:}54{:}46.488 \to 00{:}54{:}48.120$ that we can get access to cells.

NOTE Confidence: 0.36197081

 $00:54:52.880 \longrightarrow 00:54:53.560$ That question

NOTE Confidence: 0.52111016

 $00:54:55.640 \longrightarrow 00:54:57.188$ hypothetically speaking, eventually

NOTE Confidence: 0.52111016

 $00{:}54{:}57.188 \dashrightarrow 00{:}55{:}00.800$ the red blood cells will be Euclided.

NOTE Confidence: 0.52111016

 $00{:}55{:}00.800 \dashrightarrow 00{:}55{:}02.736$ Is there part of the process that they

NOTE Confidence: 0.52111016

 $00:55:02.736 \longrightarrow 00:55:04.825$ don't have to have a nucleus in the end

NOTE Confidence: 0.52111016

 $00:55:04.825 \longrightarrow 00:55:06.680$ that allows them to proliferate so fast?

NOTE Confidence: 0.52111016

 $00:55:06.680 \longrightarrow 00:55:09.508$ Is the ability of proliferation is is

NOTE Confidence: 0.52111016

 $00:55:09.508 \longrightarrow 00:55:11.877$ reduced because they don't have to

NOTE Confidence: 0.52111016

00:55:11.877 --> 00:55:13.716 maintain the full sort of nucleus.

NOTE Confidence: 0.52111016

00:55:13.716 --> 00:55:15.480 They can just go faster by being

NOTE Confidence: 0.52111016

 $00{:}55{:}15.531 \dashrightarrow 00{:}55{:}16.916$ more efficient in that way.

NOTE Confidence: 0.52111016

 $00:55:16.920 \longrightarrow 00:55:17.120$ They keep

NOTE Confidence: 0.427930538

 $00:55:17.200 \longrightarrow 00:55:19.040$ it absolutely as well they're.

00:55:19.520 --> 00:55:20.920 But content is the content the same?

NOTE Confidence: 0.618049331428571

 $00{:}55{:}20.920 \dashrightarrow 00{:}55{:}23.116$ Do you know what the size

NOTE Confidence: 0.618049331428571

 $00:55:23.120 \longrightarrow 00:55:24.236$ as they as they go forward?

NOTE Confidence: 0.484321094285714

 $00:55:24.240 \longrightarrow 00:55:26.039$ It's a good question for PAD Gallup.

NOTE Confidence: 0.484321094285714

 $00:55:26.040 \longrightarrow 00:55:30.520$ Here we go. What we do know is that

NOTE Confidence: 0.484321094285714

 $00.55:30.520 \longrightarrow 00.55:33.480$ as these erythroid cells are matured,

NOTE Confidence: 0.484321094285714

 $00:55:33.480 \longrightarrow 00:55:34.440$ they're proliferating.

NOTE Confidence: 0.484321094285714

00:55:34.440 --> 00:55:37.320 Again, matured that with the maturation,

NOTE Confidence: 0.484321094285714

 $00:55:37.320 \longrightarrow 00:55:39.600$ the nucleus shuts down and the histones

NOTE Confidence: 0.484321094285714

00:55:39.600 --> 00:55:42.320 get spit out. But prior to that,

NOTE Confidence: 0.484321094285714

 $00:55:42.320 \longrightarrow 00:55:43.920$ when they're so proliferating,

NOTE Confidence: 0.484321094285714

00:55:43.920 --> 00:55:46.125 I'm not aware of what's changing at

NOTE Confidence: 0.484321094285714

 $00:55:46.125 \longrightarrow 00:55:47.960$ the chromatin level, but correct.

NOTE Confidence: 0.484321094285714

 $00:55:47.960 \longrightarrow 00:55:49.308$ But that's been published.

NOTE Confidence: 0.484321094285714

00:55:49.308 --> 00:55:50.319 I should know.

NOTE Confidence: 0.484321094285714

00:55:50.320 --> 00:55:52.920 It's because Pat's published,

 $00:55:52.920 \longrightarrow 00:55:53.832$ I think what they,

NOTE Confidence: 0.484321094285714

00:55:53.832 --> 00:55:55.200 I think if I remember correctly,

NOTE Confidence: 0.484321094285714

 $00:55:55.200 \longrightarrow 00:55:56.970$ they express fewer and fewer genes

NOTE Confidence: 0.484321094285714

 $00:55:56.970 \longrightarrow 00:55:58.776$ and higher and higher levels of

NOTE Confidence: 0.484321094285714

00:55:58.776 --> 00:56:00.474 the erythroid genes and you know,

NOTE Confidence: 0.484321094285714

 $00:56:00.480 \longrightarrow 00:56:01.615$ like globins because it's going

NOTE Confidence: 0.484321094285714

 $00:56:01.615 \longrightarrow 00:56:02.995$ to need all that globin for

NOTE Confidence: 0.484321094285714

 $00:56:02.995 \longrightarrow 00:56:04.195$ when it doesn't have a nucleus

NOTE Confidence: 0.59440742

00:56:04.240 --> 00:56:05.900 if they give them a timing advantage, if

NOTE Confidence: 0.59440742

 $00:56:05.900 \longrightarrow 00:56:07.520$ they're going to that moment. So they can. I

NOTE Confidence: 0.597231438888889

 $00:56:08.080 \longrightarrow 00:56:09.490$ don't know why it sounds like

NOTE Confidence: 0.597231438888889

 $00:56:09.490 \longrightarrow 00:56:10.760$ being so fast. It's part of their

NOTE Confidence: 0.291903385

00:56:12.240 --> 00:56:16.600 own. Yeah, throughout that. So you can see,

NOTE Confidence: 0.850209194814815

00:56:17.680 --> 00:56:19.451 so can you see any advantage to

NOTE Confidence: 0.850209194814815

00:56:19.451 --> 00:56:21.314 cycling faster or that you can cycle

 $00:56:21.314 \longrightarrow 00:56:23.233$ faster because you don't need so much

NOTE Confidence: 0.850209194814815

00:56:23.233 --> 00:56:24.955 activity going on in your nucleus,

NOTE Confidence: 0.28122279

 $00:56:29.320 \longrightarrow 00:56:32.280$ which is like slow down. Yeah,

NOTE Confidence: 0.456336573333333

00:56:35.000 --> 00:56:36.116 sticking outside. Oh, I like it,

NOTE Confidence: 0.718126226153846

00:56:36.160 --> 00:56:37.880 I like it. Let me know when you

NOTE Confidence: 0.718126226153846

 $00:56:37.880 \longrightarrow 00:56:40.080$ have to go to that conference.

NOTE Confidence: 0.48513156

 $00:56:40.440 \longrightarrow 00:56:41.950$ So in addition to intrinsic

NOTE Confidence: 0.48513156

 $00:56:41.950 \longrightarrow 00:56:43.760$ things that would be

NOTE Confidence: 0.44606757

00:56:45.840 --> 00:56:48.000 differentiate, you can see downstream

NOTE Confidence: 0.44606757

00:56:48.000 --> 00:56:49.666 what about contribution from other

NOTE Confidence: 0.44606757

 $00:56:49.666 \longrightarrow 00:56:51.515$ cell types either from other chromatic

NOTE Confidence: 0.44606757

 $00:56:51.515 \longrightarrow 00:56:53.480$ cells and signals or thrombo cells.

NOTE Confidence: 0.831722017083333

 $00:56:55.720 \longrightarrow 00:56:58.200$ We have looked really hard for other parts

NOTE Confidence: 0.831722017083333

00:56:58.200 --> 00:57:00.602 of the micro environment that might affect

NOTE Confidence: 0.831722017083333

00:57:00.602 --> 00:57:03.837 MEP fate and I did not include those data,

NOTE Confidence: 0.831722017083333

 $00:57:03.840 \longrightarrow 00:57:05.775$ but we've done a lot of work and and

 $00:57:05.775 \longrightarrow 00:57:07.360$ Vanessa's published quite a bit on it.

NOTE Confidence: 0.831722017083333

 $00:57:07.360 \longrightarrow 00:57:09.961$ One thing we know is there are two growth

NOTE Confidence: 0.831722017083333

 $00:57:09.961 \longrightarrow 00:57:12.383$ factors that may many of you may be

NOTE Confidence: 0.831722017083333

 $00:57:12.383 \longrightarrow 00:57:14.399$ aware of erythropodent and thrombopodent.

NOTE Confidence: 0.831722017083333

00:57:14.400 --> 00:57:16.230 Thrombopodin sounds like it's making

NOTE Confidence: 0.831722017083333

00:57:16.230 --> 00:57:17.490 platelets, right, Thrombopodin,

NOTE Confidence: 0.831722017083333

00:57:17.490 --> 00:57:19.270 erythropodin making erythroid but

NOTE Confidence: 0.831722017083333

 $00:57:19.270 \longrightarrow 00:57:21.552$ they actually act super differently

NOTE Confidence: 0.831722017083333

 $00:57:21.552 \longrightarrow 00:57:22.878$ on different cells.

NOTE Confidence: 0.831722017083333

 $00:57:22.880 \longrightarrow 00:57:24.748$ Thrombopodin is the thrombopodin

NOTE Confidence: 0.831722017083333

 $00{:}57{:}24.748 \dashrightarrow 00{:}57{:}27.550$ receptor is is on hematopoietic stem

NOTE Confidence: 0.831722017083333

 $00:57:27.618 \longrightarrow 00:57:29.916$ cell and all of those progenitors.

NOTE Confidence: 0.831722017083333

 $00{:}57{:}29.920 \dashrightarrow 00{:}57{:}31.400$ So they all need thrombopod in

NOTE Confidence: 0.831722017083333

 $00{:}57{:}31.400 \dashrightarrow 00{:}57{:}33.270$ and they're it's binding in the

NOTE Confidence: 0.831722017083333

 $00:57:33.270 \longrightarrow 00:57:34.915$ middle of the thrombopod receptor.

00:57:34.920 --> 00:57:37.373 When you get to the anti P level though,

NOTE Confidence: 0.831722017083333

00:57:37.373 --> 00:57:42.072 the erythroid progenitor loses its erythroid,

NOTE Confidence: 0.831722017083333

00:57:42.072 --> 00:57:44.316 its thrombopodin receptor,

NOTE Confidence: 0.831722017083333

 $00:57:44.320 \longrightarrow 00:57:47.146$ so it does not have ***** on it,

NOTE Confidence: 0.831722017083333

 $00:57:47.146 \longrightarrow 00:57:50.597$ and the MEP progenitor has increased ******.

NOTE Confidence: 0.831722017083333

 $00.57.50.600 \longrightarrow 00.57.52.460$ What we thought then is if we add

NOTE Confidence: 0.831722017083333

00:57:52.460 --> 00:57:54.255 ****** or remove ****** we're going

NOTE Confidence: 0.831722017083333

 $00:57:54.255 \longrightarrow 00:57:55.515$ to affect faith specification.

NOTE Confidence: 0.831722017083333

00:57:55.520 --> 00:57:57.770 No, what happened is when you

NOTE Confidence: 0.831722017083333

 $00:57:57.770 \longrightarrow 00:57:58.520$ remove thrombocodin,

NOTE Confidence: 0.831722017083333

 $00:57:58.520 \longrightarrow 00:57:59.600$ I'm sorry saying that one.

NOTE Confidence: 0.831722017083333

00:57:59.600 --> 00:58:02.168 When you remove thrombocodin you get

NOTE Confidence: 0.831722017083333

 $00:58:02.168 \longrightarrow 00:58:05.119$ exactly the same ratio of colony types,

NOTE Confidence: 0.831722017083333

 $00:58:05.120 \longrightarrow 00:58:07.520$ but way fewer colonies and the

NOTE Confidence: 0.831722017083333

 $00:58:07.520 \longrightarrow 00:58:09.120$ colonies are teeny tiny.

NOTE Confidence: 0.831722017083333

 $00:58:09.120 \longrightarrow 00:58:10.737$ And when we look at the time

 $00:58:10.737 \longrightarrow 00:58:11.720$ lapse microscopy of that,

NOTE Confidence: 0.831722017083333

 $00:58:11.720 \longrightarrow 00:58:14.114$ what we see is that the cells are dying.

NOTE Confidence: 0.831722017083333

 $00.58:14.120 \longrightarrow 00.58:15.244$ So they're trying to,

NOTE Confidence: 0.831722017083333

00:58:15.244 --> 00:58:16.368 they're doing everything right

NOTE Confidence: 0.831722017083333

00:58:16.368 --> 00:58:18.072 at the beginning and then you

NOTE Confidence: 0.831722017083333

 $00:58:18.072 \longrightarrow 00:58:19.000$ can just see apoptosis.

NOTE Confidence: 0.831722017083333

00:58:19.000 --> 00:58:19.597 I don't know,

NOTE Confidence: 0.831722017083333

 $00{:}58{:}19.597 \dashrightarrow 00{:}58{:}21.248$ I didn't prove it was after you see

NOTE Confidence: 0.831722017083333

 $00:58:21.248 \longrightarrow 00:58:23.110$ the cells dying with erythropoietin,

NOTE Confidence: 0.831722017083333

 $00:58:23.110 \longrightarrow 00:58:26.800$ again no difference in fate specification,

NOTE Confidence: 0.831722017083333

00:58:26.800 --> 00:58:29.956 but a lack of erythroid maturation,

NOTE Confidence: 0.831722017083333

 $00:58:29.960 \longrightarrow 00:58:30.659$ absolutely no difference

NOTE Confidence: 0.831722017083333

 $00:58:30.659 \longrightarrow 00:58:32.532$ in the ratio of output.

NOTE Confidence: 0.831722017083333

 $00:58:32.532 \longrightarrow 00:58:35.213$ We have seen an effect in this and

NOTE Confidence: 0.831722017083333

00:58:35.213 --> 00:58:36.996 this is part of Vanessa Scanlon's

 $00:58:36.996 \longrightarrow 00:58:40.152$ work now in the lab that when she Co

NOTE Confidence: 0.831722017083333

 $00:58:40.152 \longrightarrow 00:58:42.072$ cultures the cells with endothelial

NOTE Confidence: 0.831722017083333

 $00:58:42.072 \longrightarrow 00:58:45.040$ cells then she also sees an an

NOTE Confidence: 0.831722017083333

00:58:45.040 --> 00:58:46.399 erythroid phase specification.

NOTE Confidence: 0.831722017083333

 $00:58:46.400 \longrightarrow 00:58:48.450$ It's it's subtle but she can

NOTE Confidence: 0.831722017083333

00:58:48.450 --> 00:58:49.750 see a statistically significant

NOTE Confidence: 0.831722017083333

 $00:58:49.750 \longrightarrow 00:58:51.880$ increase in E phase specification.

NOTE Confidence: 0.831722017083333

 $00:58:51.880 \longrightarrow 00:58:54.152$ What she wants to do now is very

NOTE Confidence: 0.831722017083333

 $00:58:54.152 \longrightarrow 00:58:55.729$ methodically add different cell types

NOTE Confidence: 0.831722017083333

00.58.55.729 --> 00.58.57.927 that are in the bone marrow micro

NOTE Confidence: 0.831722017083333

 $00:58:57.985 \longrightarrow 00:59:00.703$ environment and determine how they affect

NOTE Confidence: 0.831722017083333

 $00:59:00.703 \longrightarrow 00:59:02.515$ NDP phase specification individually

NOTE Confidence: 0.831722017083333

 $00:59:02.520 \longrightarrow 00:59:04.758$ and together and then determine how.

NOTE Confidence: 0.831722017083333

 $00:59:04.760 \longrightarrow 00:59:05.796$ But that's as much as we know,

NOTE Confidence: 0.831722017083333

 $00:59:05.800 \longrightarrow 00:59:07.354$ but it's definitely not TECO and ECO.

NOTE Confidence: 0.4187528975

00:59:08.640 --> 00:59:10.400 Has she tried macrophages

00:59:10.400 --> 00:59:12.800 since there's the, you know,

NOTE Confidence: 0.2188043

 $00:59:15.960 \longrightarrow 00:59:17.745$ I think she did once but

NOTE Confidence: 0.2188043

 $00:59:17.745 \longrightarrow 00:59:19.330$ she didn't have really good

NOTE Confidence: 0.897041930769231

 $00:59:19.395 \longrightarrow 00:59:20.598$ macrophages to use.

NOTE Confidence: 0.897041930769231

 $00{:}59{:}20.600 \dashrightarrow 00{:}59{:}22.686$ We're much better in my lab at

NOTE Confidence: 0.897041930769231

 $00:59:22.686 \longrightarrow 00:59:24.240$ making urine macrophages than human.

NOTE Confidence: 0.897041930769231

00:59:24.240 --> 00:59:26.240 So I'd say we haven't done that adequately.

NOTE Confidence: 0.586639343333333 00:59:28.120 --> 00:59:28.678 I am here, NOTE Confidence: 0.503246048571429

 $00:59:29.720 \longrightarrow 00:59:31.435$ very nice talk. So I think this

NOTE Confidence: 0.53200364

 $00:59:31.440 \longrightarrow 00:59:31.878$ is just a

NOTE Confidence: 0.459704265

 $00:59:36.800 \longrightarrow 00:59:40.920$ using the IPS cell, it's with the

NOTE Confidence: 0.48968234

 $00:59:40.920 \longrightarrow 00:59:42.439$ fringe and all kind of other cells,

NOTE Confidence: 0.48968234

 $00{:}59{:}42.440 \dashrightarrow 00{:}59{:}43.840$ but they cannot differentiate

NOTE Confidence: 0.48968234

 $00:59:43.840 \longrightarrow 00:59:45.238$ that character. Is that true?

NOTE Confidence: 0.569767385

 $00:59:46.560 \longrightarrow 00:59:48.200$ They can make mix.

00:59:48.200 --> 00:59:50.434 They can make mix and in fact there's

NOTE Confidence: 0.569767385

 $00:59:50.434 \longrightarrow 00:59:52.640$ even one really good scientist who

NOTE Confidence: 0.569767385

 $00:59:52.640 \longrightarrow 00:59:56.240$ has made IPS derived megacarius like

NOTE Confidence: 0.569767385

 $00:59:56.240 \longrightarrow 00:59:59.400$ progenitor cell line that is a it's a

NOTE Confidence: 0.569767385

 $00:59:59.400 \longrightarrow 01:00:00.640$ really beautiful model for studying.

NOTE Confidence: 0.569767385

01:00:00.640 --> 01:00:03.146 You know you can get different mutations

NOTE Confidence: 0.569767385

 $01{:}00{:}03.146 \dashrightarrow 01{:}00{:}05.788$ from the patients make IPSC make this

NOTE Confidence: 0.569767385

01:00:05.788 --> 01:00:08.920 Meg cell line and basically it doesn't

NOTE Confidence: 0.569767385

01:00:08.920 --> 01:00:11.200 look renty until you then induce

NOTE Confidence: 0.464620721428571

01:00:12.520 --> 01:00:16.720 the movie show. When you see that, terrified,

NOTE Confidence: 0.640357305

01:00:18.840 --> 01:00:21.720 do you see that? The size,

NOTE Confidence: 0.640357305

01:00:21.720 --> 01:00:22.760 you know, every size

NOTE Confidence: 0.559254254

 $01:00:23.000 \longrightarrow 01:00:24.400$ comes in the same size. Yeah,

NOTE Confidence: 0.458314306666667

 $01:00:24.560 \longrightarrow 01:00:25.916$ yeah, the arithmetics are always small

NOTE Confidence: 0.572628846666667

01:00:25.920 --> 01:00:27.837 and round and the bags get bigger and bigger

NOTE Confidence: 0.5829912225

 $01:00:27.840 \longrightarrow 01:00:29.492$ and bigger and bigger. But when when

 $01:00:29.492 \longrightarrow 01:00:31.360$ do you see the immersion? Just like

NOTE Confidence: 0.638526113333333

 $01:00:31.720 \longrightarrow 01:00:32.920$ self started right

NOTE Confidence: 0.75125650375

 $01:00:32.920 \longrightarrow 01:00:34.480$ about the same time that they

NOTE Confidence: 0.75125650375

 $01:00:34.480 \longrightarrow 01:00:37.451$ express the C41. So by the time

NOTE Confidence: 0.75125650375

01:00:37.451 --> 01:00:38.319 they're they're they're 41,

NOTE Confidence: 0.75125650375

 $01:00:38.320 \longrightarrow 01:00:39.358$ they're they're kind of bigger now.

NOTE Confidence: 0.81822744

 $01:00:42.240 \longrightarrow 01:00:43.518$ We haven't looked at that carefully.

NOTE Confidence: 0.81822744

 $01{:}00{:}43.520 \dashrightarrow 01{:}00{:}45.956$ If we really looked at nuclear size

NOTE Confidence: 0.81822744

01:00:45.960 --> 01:00:47.724 carefully, I would bet we would see

NOTE Confidence: 0.81822744

 $01:00:47.724 \longrightarrow 01:00:48.880$ something different because they're

NOTE Confidence: 0.81822744

 $01:00:48.880 \longrightarrow 01:00:50.320$ undergoing different nuclear changes.

NOTE Confidence: 0.81822744

 $01:00:50.320 \longrightarrow 01:00:51.120$ But we haven't looked that

NOTE Confidence: 0.642686613333333

01:00:51.120 --> 01:00:52.278 carefully. Thank you.

NOTE Confidence: 0.4887288

01:00:55.080 --> 01:00:55.840 One last question, the

NOTE Confidence: 0.472317065

 $01:00:58.080 \longrightarrow 01:01:01.560$ cell regulatory volume is it's super, super

 $01:01:04.000 \longrightarrow 01:01:06.034$ tightly regulated and that carrier sets

NOTE Confidence: 0.532123136666667

 $01{:}01{:}06.034 \dashrightarrow 01{:}01{:}08.080$ something very unique in that regard.

NOTE Confidence: 0.532123136666667

 $01:01:08.080 \dashrightarrow 01:01:10.285$ So I was wondering can you stall

NOTE Confidence: 0.532123136666667

 $01:01:10.285 \longrightarrow 01:01:13.640$ that process and or carrier sets

NOTE Confidence: 0.532123136666667

 $01:01:13.640 \longrightarrow 01:01:16.359$ that they do not and you know

NOTE Confidence: 0.5947661175

 $01:01:17.600 \longrightarrow 01:01:18.640$ how long can can

NOTE Confidence: 0.815826193

 $01:01:18.640 \longrightarrow 01:01:20.656$ that be done or if that

NOTE Confidence: 0.815826193

01:01:20.656 --> 01:01:22.000 happens in any pathologies

NOTE Confidence: 0.82743574777778

01:01:24.560 --> 01:01:27.108 it hasn't been done but many people

NOTE Confidence: 0.82743574777778

01:01:27.108 --> 01:01:29.398 have tried not specifically with cell

NOTE Confidence: 0.82743574777778

 $01:01:29.398 \longrightarrow 01:01:31.552$ volume because many period sites can

NOTE Confidence: 0.82743574777778

 $01:01:31.552 \longrightarrow 01:01:33.400$ make platelets as a 2N cell as 4,

NOTE Confidence: 0.82743574777778

 $01:01:33.400 \longrightarrow 01:01:36.112$ N cell as 8, N as 16 and 32.

NOTE Confidence: 0.82743574777778

 $01:01:36.112 \longrightarrow 01:01:37.200$ So the question is,

NOTE Confidence: 0.82743574777778

01:01:37.200 --> 01:01:40.182 what tells the men stop undergoing this

NOTE Confidence: 0.82743574777778

 $01:01:40.182 \longrightarrow 01:01:43.678$ end of mitosis and start making platelets?

01:01:43.680 --> 01:01:46.656 All we know so far is that if you

NOTE Confidence: 0.82743574777778

 $01{:}01{:}46.656 \dashrightarrow 01{:}01{:}48.840$ take the inside of a magnet making

NOTE Confidence: 0.82743574777778

 $01:01:48.909 \longrightarrow 01:01:51.536$ platelets set up and Joe Battalion

NOTE Confidence: 0.82743574777778

 $01:01:51.536 \longrightarrow 01:01:54.000$ and you inject it into a 2NA,

NOTE Confidence: 0.82743574777778

 $01:01:54.000 \longrightarrow 01:01:55.626$ it'll make platelets.

NOTE Confidence: 0.82743574777778

 $01:01:55.626 \longrightarrow 01:01:58.878$ So there's something that says go.

NOTE Confidence: 0.82743574777778

01:01:58.880 --> 01:02:00.100 And once you have it,

NOTE Confidence: 0.82743574777778

 $01:02:00.100 \longrightarrow 01:02:01.475$ you can transplant it into

NOTE Confidence: 0.82743574777778

 $01:02:01.475 \longrightarrow 01:02:02.759$ another bag and it'll tell

NOTE Confidence: 0.630230093846154

 $01{:}02{:}02.760 \dashrightarrow 01{:}02{:}04.776$ it to go. So you can give a hypertonic

NOTE Confidence: 0.630230093846154

 $01{:}02{:}04.776 \dashrightarrow 01{:}02{:}06.119$ shock to a melanchary ocyte.

NOTE Confidence: 0.630230093846154

 $01:02:06.120 \longrightarrow 01:02:07.960$ Would it make platelets? I don't know.

NOTE Confidence: 0.3690446475

01:02:11.280 --> 01:02:12.450 I don't know if that would

NOTE Confidence: 0.3690446475

 $01:02:12.450 \longrightarrow 01:02:14.040$ be done. I don't know. Thank

NOTE Confidence: 0.757707125

 $01:02:17.280 \longrightarrow 01:02:18.200$ you. Next.